U2A5

Andrea Felix

13/11/2020

Cadena de Markov

La cadena de Markov, también conocida como modelo de Markov o proceso de Markov, es un concepto desarrollado dentro de la teoría de la probabilidad y la estadística que establece una fuerte dependencia entre un evento y otro suceso anterior. Su principal utilidad es el análisis del comportamiento de procesos estocásticos.

La explicación de estas cadenas la desarrolló el matemático de origen ruso Andréi Márkov en 1907. Así, a lo largo del siglo XX, se ha podido emplear dicha metodología en numerosos casos prácticos de la vida cotidiana.

Según señaló Markov, en sistemas o procesos estocásticos (es decir, aleatorios) que presentan un estado presente es posible conocer sus antecedentes o desarrollo histórico. Por lo tanto, es factible establecer una descripción de la probabilidad futura de los mismos.

La base de las cadenas es la conocida como propiedad de Markov, la cual resume lo dicho anteriormente en la siguiente regla: lo que la cadena experimente en un momento t + 1 solamente depende de lo acontecido en el momento t (el inmediatamente anterior).

Dada esta sencilla explicación de la teoría, puede observarse que es posible a través de la misma conocer la probabilidad de que un estado ocurra en el largo plazo. Esto ayuda indudablemente a la predicción y estimación en largos periodos de tiempo.

Cadena de Markov

Galán, J. S. (2020, 1 junio). Cadena de Markov. Economipedia. https://economipedia.com/definiciones/cadena-de-markov.html

Metodo Montecarlo

El método de Montecarlo es un método de simulación que permite calcular estadísticamente el valor final de una secuencia de sucesos no deterministas (sujetos a variabilidad), como es el caso del plazo o el coste de un proyecto.

En la práctica este análisis consiste en ejecutar varias veces los diferentes sucesos variando aleatoriamente su valor en función de la función estadística que los define, dando como resultado un conjunto de valores finales. Este conjunto de valores permite calcular el valor medio y la variabilidad para el conjunto.

¿Utilidad del método de Montecarlo en proyectos?

Las estimaciones de plazo y coste que hacemos durante la planificación de un proyecto están sujetas a variabilidad. Esta variabilidad es debida tanto a la variabilidad intrínseca de las estimaciones, una determinada tarea no cuesta o dura siempre lo mismo, como a los riesgos asumidos, los cuales tienen una determinada probabilidad de ocurrir y un impacto.

Por ello no es conceptualmente correcto dar un valor determinado para el coste o la duración del proyecto, aunque todos lo hacemos, ya que estos van a estar sujetos a variabilidad. Por el contrario, lo más correcto sería hablar de un valor medio y una variabilidad para el coste y la duración totales, los cuales pueden determinarse mediante el análisis de Montecarlo.

Montecarlo

De esta forma el método de Montecarlo permite calcular el valor de coste y plazo del proyecto en base a un determinado grado de confianza, y así determinar en qué medida nuestra planificación es realista, y va a permitir conseguir los objetivos del proyecto. Esto significa determinar en qué porcentaje de las simulaciones realizadas, el plazo y el coste totales son menores a los objetivos del proyecto.

Garriga, A. (2020, 16 noviembre). Método de Montecarlo en proyectos. Recusos en project management. https://www.recursosenprojectmanagement.com/metodo-de-montecarlo/