Details of the data and list of variables

# Number of participants in the first round
nrow(firstgun)
## [1] 6200
# Number of participants in the second round
nrow(secondgun)
## [1] 3500
# Number of participants in the merged data
nrow(new_data)
## [1] 9700
# Number of Variables in the merged data
ncol(new_data)
## [1] 203
# List of variables the merged data
str(new_data)
## Classes 'data.table' and 'data.frame':   9700 obs. of  203 variables:
##  $ new_id         : chr  "a[1]" "a[2]" "a[3]" "a[4]" ...
##  $ gender         : Factor w/ 5 levels "Male","Female",..: 1 2 1 2 1 2 2 2 1 1 ...
##  $ educ           : Factor w/ 6 levels "Less than High School",..: 5 4 3 2 5 1 2 4 3 4 ...
##  $ relation       : Factor w/ 5 levels "Unmarried and not currently in a committed relationship",..: 5 1 5 1 5 1 3 1 2 2 ...
##  $ age            : Factor w/ 9 levels "Under 18","18-24",..: 3 5 3 3 3 5 2 7 3 3 ...
##  $ race           : chr  "White" "White" "Black" "Hispanic" ...
##  $ sex            : Factor w/ 2 levels "Male","Female": 1 2 1 2 1 2 2 2 1 1 ...
##  $ income         : Factor w/ 12 levels "$10,000 - $19,999",..: 3 6 5 12 9 4 5 3 4 4 ...
##  $ gunhome        : Factor w/ 3 levels "No","Yes","Prefer not to answer": 2 3 2 1 2 1 1 1 2 2 ...
##  $ acquireplan    : Factor w/ 4 levels "No","Yes","Haven't decided yet",..: 2 4 3 1 1 3 1 1 1 2 ...
##  $ safety_1       : Factor w/ 5 levels "Strongly Agree",..: 1 3 2 3 4 5 3 2 2 1 ...
##  $ safety_2       : Factor w/ 5 levels "Strongly Agree",..: 1 3 4 3 5 5 3 2 2 2 ...
##  $ safety_3       : Factor w/ 5 levels "Strongly Agree",..: 1 4 2 5 4 5 3 3 1 1 ...
##  $ ptci_1         : Factor w/ 7 levels "Totally Disagree",..: 7 7 5 1 5 6 4 3 3 5 ...
##  $ ptci_2         : Factor w/ 7 levels "Totally Disagree",..: 7 7 5 7 7 6 4 3 4 7 ...
##  $ ptci_3         : Factor w/ 7 levels "Totally Disagree",..: 7 7 5 7 5 6 4 2 5 6 ...
##  $ si_1           : chr  "I wish I could disappear or not exist" "I wish I could disappear or not exist" "0" "0" ...
##  $ si_2           : chr  "0" "I wish I was never born" "0" "0" ...
##  $ si_3           : Factor w/ 2 levels "0","My life is not worth living": 1 2 1 1 1 1 1 1 1 1 ...
##  $ si_4           : Factor w/ 2 levels "0","I wish I could go to sleep and never wake up": 1 2 1 1 1 1 1 1 1 1 ...
##  $ si_5           : Factor w/ 2 levels "0","I wish I were dead": 2 2 1 1 1 1 1 1 1 2 ...
##  $ si_6           : Factor w/ 2 levels "0","Maybe I should kill myself": 1 2 1 1 1 1 1 1 1 2 ...
##  $ si_7           : Factor w/ 2 levels "0","I should kill myself": 1 2 1 1 1 1 1 1 1 1 ...
##  $ si_8           : Factor w/ 2 levels "0","I am going to kill myself": 1 1 1 1 1 1 1 1 1 1 ...
##  $ sitime_1       : Factor w/ 4 levels "0","More than 1 year ago",..: 2 4 1 1 1 1 4 1 4 3 ...
##  $ sitime_2       : Factor w/ 4 levels "0","More than 1 year ago",..: 1 4 1 1 1 1 1 1 4 1 ...
##  $ sitime_3       : Factor w/ 4 levels "0","More than 1 year ago",..: 1 4 1 1 1 1 1 1 1 1 ...
##  $ sitime_4       : Factor w/ 4 levels "0","More than 1 year ago",..: 1 4 1 1 1 1 1 1 1 1 ...
##  $ sitime_5       : Factor w/ 4 levels "0","More than 1 year ago",..: 2 4 1 1 1 1 1 1 1 4 ...
##  $ sitime_6       : Factor w/ 4 levels "0","More than 1 year ago",..: 1 4 1 1 1 1 1 1 1 2 ...
##  $ sitime_7       : Factor w/ 4 levels "0","More than 1 year ago",..: 1 4 1 1 1 1 1 1 1 1 ...
##  $ sitime_8       : Factor w/ 4 levels "0","More than 1 year ago",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ sb_1           : Factor w/ 2 levels "0","Done something to prepare to make a suicide attempt. For example, gaining access to method, looking up a method"| __truncated__: 2 1 1 1 1 2 1 1 1 1 ...
##  $ sb_2           : Factor w/ 2 levels "0","Practiced making a suicide attempt. For example, taking an overdose of an amount you knew in advance would not "| __truncated__: 2 1 1 1 1 1 1 1 1 2 ...
##  $ sb_3           : Factor w/ 2 levels "0","Been very close to killing yourself but at the last minute you decided not to do it before taking any action. F"| __truncated__: 1 1 1 1 1 1 1 1 2 1 ...
##  $ sb_4           : Factor w/ 2 levels "0","Been very close to killing yourself but at the last minute, someone or something else stopped you before you to"| __truncated__: 1 1 1 1 1 1 1 1 2 1 ...
##  $ sb_5           : Factor w/ 2 levels "0","Started to kill yourself and then you stopped after you had already taken some action. For example, taking one "| __truncated__: 1 1 1 1 1 1 1 1 1 1 ...
##  $ sb_6           : Factor w/ 2 levels "0","Started to kill yourself and then you decided to reach out for help after you had already taken some action. Fo"| __truncated__: 1 1 1 1 1 1 1 1 1 2 ...
##  $ sb_7           : Factor w/ 2 levels "0","Tried to kill yourself and someone found you afterwards. For example, taking an overdose of pills and then some"| __truncated__: 1 1 1 1 1 1 1 1 1 1 ...
##  $ sb_8           : Factor w/ 2 levels "0","Tried to kill yourself and no one found you afterwards. For example, taking an overdose of pills and then waking up later.": 1 1 1 1 1 1 1 1 1 1 ...
##  $ sb_9           : Factor w/ 2 levels "0","Purposely hurt yourself without wanting to die. For example, cutting yourself or burning your skin to reduce em"| __truncated__: 1 1 1 1 1 1 1 1 1 1 ...
##  $ sbtime_1       : Factor w/ 4 levels "0","More than 1 year ago",..: 2 1 1 1 1 2 1 1 1 1 ...
##  $ sbtime_2       : Factor w/ 4 levels "0","More than 1 year ago",..: 2 1 1 1 1 1 1 1 1 4 ...
##  $ sbtime_3       : Factor w/ 4 levels "0","More than 1 year ago",..: 1 1 1 1 1 1 1 1 3 1 ...
##  $ sbtime_4       : Factor w/ 4 levels "0","More than 1 year ago",..: 1 1 1 1 1 1 1 1 3 1 ...
##  $ sbtime_5       : Factor w/ 4 levels "0","More than 1 year ago",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ sbtime_6       : Factor w/ 4 levels "0","More than 1 year ago",..: 1 1 1 1 1 1 1 1 1 3 ...
##  $ sbtime_7       : Factor w/ 4 levels "0","More than 1 year ago",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ sbtime_8       : Factor w/ 4 levels "0","More than 1 year ago",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ sbtime_9       : Factor w/ 4 levels "0","More than 1 year ago",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ married        : Factor w/ 2 levels "No","Yes": 2 1 2 1 2 1 1 2 2 2 ...
##  $ adults         : Factor w/ 11 levels "0","1","10 or more",..: 4 2 4 5 4 5 4 2 10 2 ...
##  $ children       : Factor w/ 11 levels "0","1","10 or more",..: 2 1 2 1 4 2 2 1 5 2 ...
##  $ state          : Factor w/ 53 levels "Alabama","Alaska",..: 33 5 11 39 10 14 50 48 38 11 ...
##  $ zip            : chr  "11216                                                                                                          "| __truncated__ "92647                                                                                                          "| __truncated__ "31601                                                                                                          "| __truncated__ "15701                                                                                                          "| __truncated__ ...
##  $ military_1     : Factor w/ 2 levels "Army active duty",..: 1 2 1 2 2 2 2 2 1 2 ...
##  $ military_2     : Factor w/ 2 levels "Army National Guard",..: 1 2 2 2 2 2 2 2 2 2 ...
##  $ military_3     : Factor w/ 2 levels "Army Reserve",..: 2 2 2 2 2 2 2 2 2 2 ...
##  $ military_4     : Factor w/ 2 levels "Navy active duty",..: 2 2 2 2 2 2 2 2 2 2 ...
##  $ military_5     : Factor w/ 2 levels "Navy Reserve",..: 2 2 2 2 2 2 2 2 2 2 ...
##  $ military_6     : Factor w/ 2 levels "Marines active duty",..: 2 2 2 2 2 2 2 2 2 2 ...
##  $ military_7     : Factor w/ 2 levels "Marines Reserve",..: 2 2 2 2 2 2 2 2 2 2 ...
##  $ military_8     : Factor w/ 2 levels "Air Force active duty",..: 2 2 2 2 2 2 2 2 2 2 ...
##  $ military_9     : Factor w/ 2 levels "Air National Guard",..: 2 2 2 2 2 2 2 2 2 1 ...
##  $ military_10    : Factor w/ 2 levels "Air Force Reserve",..: 2 2 2 2 2 2 2 2 2 2 ...
##  $ military_11    : Factor w/ 2 levels "Coast Guard active duty",..: 2 2 2 2 2 2 2 2 2 2 ...
##  $ military_12    : Factor w/ 2 levels "Coast Guard Reserve",..: 2 2 2 2 2 2 2 2 2 2 ...
##  $ vertcoll_1     : Factor w/ 7 levels "1","2","3","4",..: 6 1 5 5 7 4 7 7 5 4 ...
##  $ vertcoll_2     : Factor w/ 7 levels "1","2","3","4",..: 6 1 6 4 7 5 7 4 5 3 ...
##  $ vertcoll_3     : Factor w/ 7 levels "1","2","3","4",..: 7 1 6 4 6 4 7 7 5 6 ...
##  $ vertcoll_4     : Factor w/ 7 levels "1","2","3","4",..: 7 1 6 4 7 4 7 7 7 4 ...
##  $ vertcoll_5     : Factor w/ 7 levels "1","2","3","4",..: 5 1 6 5 6 5 7 4 6 4 ...
##  $ vertcoll_6     : Factor w/ 7 levels "1","2","3","4",..: 7 4 6 5 6 5 7 7 6 6 ...
##  $ crime_1        : Factor w/ 2 levels "0","Someone broke into your home or attempted to break into your home by forcing a window, pushing past someone, ji"| __truncated__: 2 1 1 1 2 1 1 2 2 1 ...
##  $ crime_2        : Factor w/ 2 levels "0","Someone illegally got into or tried to get into a hotel or motel room or vacation home where you were staying.": 2 1 2 1 1 1 1 1 1 1 ...
##  $ crime_3        : Factor w/ 2 levels "0","Someone illegally got into or tried to get into a garage, shed, or storage room.": 1 1 1 1 1 1 1 1 2 2 ...
##  $ crime_4        : Factor w/ 2 levels "0","Someone stole or used your motor vehicle without permission": 1 1 1 1 2 1 1 2 1 2 ...
##  $ crime_5        : Factor w/ 2 levels "0","Someone stole or attempted to steal parts attached to your vehicle": 1 1 2 1 1 1 1 1 1 1 ...
##  $ crime_6        : Factor w/ 2 levels "0","Someone assaulted or attacked you without a weapon (for example, by hitting, slapping, kicking, or beating you up)": 1 2 1 1 1 1 1 1 1 2 ...
##  $ crime_7        : Factor w/ 2 levels "0","Someone assaulted or attacked you with a weapon (for example, with a firearm, knife, baseball bat, or another item)": 1 1 2 1 1 1 1 1 1 1 ...
##  $ crime_8        : Factor w/ 2 levels "0","Someone you didn't know forced or coerced you to engage in unwanted sexual activity": 1 1 1 1 1 1 1 1 1 1 ...
##  $ crime_9        : Factor w/ 2 levels "0","Someone you know well forced or coerced you to engage in unwanted sexual activity": 1 1 2 1 1 1 1 1 1 2 ...
##  $ crime_10       : Factor w/ 2 levels "0","A casual acquaintance forced or coerced you to engage in unwanted sexual activity": 1 1 1 1 1 1 1 1 1 1 ...
##  $ defense_1      : Factor w/ 2 levels "0","Hitting, kicking, slapping, pushing, or otherwise using physical bodily force towards someone": 2 2 1 1 2 1 1 1 2 1 ...
##  $ defense_2      : Factor w/ 2 levels "0","Telling someone you had a knife, baseball bat, or another non-firearm weapon": 2 1 1 1 1 1 1 1 1 2 ...
##  $ defense_3      : Factor w/ 2 levels "0","Showing someone that you had a knife, baseball bat, or another non-firearm weapon in your possession": 1 1 1 1 1 1 1 1 2 1 ...
##  $ defense_4      : Factor w/ 2 levels "0","Using a knife, baseball bat, or another non-firearm weapon on someone": 1 1 1 1 1 1 1 1 1 2 ...
##  $ defense_5      : Factor w/ 2 levels "0","Telling someone that you had a firearm": 1 1 1 1 1 1 1 1 1 1 ...
##  $ defense_6      : Factor w/ 2 levels "0","Showing someone that you had a firearm in your possession": 1 1 1 1 1 1 1 1 1 1 ...
##  $ defense_7      : Factor w/ 2 levels "0","Pointing a firearm at someone": 1 1 1 1 1 1 1 1 1 2 ...
##  $ defense_8      : Factor w/ 2 levels "0","Shooting or discharging a firearm in the air or another direction that would not hit or injure someone (for exa"| __truncated__: 1 1 1 1 1 1 1 1 1 1 ...
##  $ defense_9      : Factor w/ 2 levels "0","Shooting or discharging a firearm at someone": 1 1 1 1 1 1 1 1 1 1 ...
##  $ homereasons2   : Factor w/ 11 levels "I received it as a gift or inheritance",..: 1 NA 7 NA 1 NA NA NA 1 4 ...
##  $ homesafety_1   : Factor w/ 2 levels "0","Knob locks or lever handle locks in doors": 1 2 1 2 1 2 2 1 1 2 ...
##  $ homesafety_2   : Factor w/ 2 levels "0","Deadbolts, chains, or slide locks on doors": 1 2 2 2 2 2 2 2 1 1 ...
##  $ homesafety_3   : Factor w/ 2 levels "0","Window locks": 1 2 2 1 2 2 2 1 2 1 ...
##  $ homesafety_4   : Factor w/ 2 levels "0","Bar, rod, or other device that prevents windows/doors from sliding open": 2 2 1 1 1 1 1 1 1 1 ...
##  $ homesafety_5   : Factor w/ 2 levels "0","Bars over doors and/or windows": 2 1 1 1 1 1 1 1 2 1 ...
##  $ homesafety_6   : Factor w/ 2 levels "0","Alarm system": 2 1 2 1 1 1 2 1 1 2 ...
##   [list output truncated]
##  - attr(*, ".internal.selfref")=<externalptr>

Missing in the data

##          new_id          gender            educ        relation             age 
##               0               0               0               0               0 
##            race             sex          income         gunhome     acquireplan 
##               0               3               0               0               7 
##        safety_1        safety_2        safety_3          ptci_1          ptci_2 
##              12               9              10               9               8 
##          ptci_3            si_1            si_2            si_3            si_4 
##               9               0               0               0               0 
##            si_5            si_6            si_7            si_8        sitime_1 
##               0               0               0               0               0 
##        sitime_2        sitime_3        sitime_4        sitime_5        sitime_6 
##               0               0               0               0               0 
##        sitime_7        sitime_8            sb_1            sb_2            sb_3 
##               0               0               0               0               0 
##            sb_4            sb_5            sb_6            sb_7            sb_8 
##               0               0               0               0               0 
##            sb_9        sbtime_1        sbtime_2        sbtime_3        sbtime_4 
##               0               0               0               0               0 
##        sbtime_5        sbtime_6        sbtime_7        sbtime_8        sbtime_9 
##               0               0               0               0               0 
##         married          adults        children           state             zip 
##               1               1              13              43               0 
##      military_1      military_2      military_3      military_4      military_5 
##               0               0               0               0               0 
##      military_6      military_7      military_8      military_9     military_10 
##               0               0               0               0               0 
##     military_11     military_12      vertcoll_1      vertcoll_2      vertcoll_3 
##               0               0               7              10            3500 
##      vertcoll_4      vertcoll_5      vertcoll_6         crime_1         crime_2 
##               9              10               8               0               0 
##         crime_3         crime_4         crime_5         crime_6         crime_7 
##               0               0               0               0               0 
##         crime_8         crime_9        crime_10       defense_1       defense_2 
##               0               0               0               0               0 
##       defense_3       defense_4       defense_5       defense_6       defense_7 
##               0               0               0               0               0 
##       defense_8       defense_9    homereasons2    homesafety_1    homesafety_2 
##               0               0            6380               0               0 
##    homesafety_3    homesafety_4    homesafety_5    homesafety_6    homesafety_7 
##               0               0               0               0               0 
##    homesafety_8    homesafety_9   homesafety_10   homesafety_11   homesafety_12 
##               0               0               0               0               0 
##   homesafety_13   homesafety_14   homesafety_15   homesafety_16   homesafety_17 
##               0               0               0               0               0 
##           cos_1           cos_2           cos_3      gun1stshot   gun1stacquire 
##               7               8               7               3               2 
##         acquire        gunchild acquirereason_1 acquirereason_2 acquirereason_3 
##            5701               3               0               0               0 
## acquirereason_4 acquirereason_5 acquirereason_6 acquirereason_7     acquiremore 
##               0               0               0               0            5703 
##       guns_no_1       guns_no_2       guns_no_3   homereasons_1   homereasons_2 
##            5713            5713            5717               0               0 
##   homereasons_3   homereasons_4   homereasons_5   homereasons_6   homereasons_7 
##               0               0               0               0               0 
##   homereasons_8   homereasons_9  homereasons_10  homereasons_11    gunstorage_1 
##               0               0               0               0               0 
##    gunstorage_2    gunstorage_3    gunstorage_4    gunstorage_5    gunstorage_6 
##               0               0               0               0               0 
##    gunstorage_7  acquireplan2_1  acquireplan2_2  acquireplan2_3  acquireplan2_4 
##               0               0               0               0               0 
##  acquireplan2_5  acquireplan2_6  acquireplan2_7         panas_1         panas_2 
##               0               0               0               0               0 
##         panas_3         panas_4         panas_5         panas_6         panas_7 
##               0               0               0               0               0 
##         panas_8         panas_9        panas_10    PurchaseWhen      C_19SS_D_1 
##               0               0               0            2382               8 
##      C_19SS_D_2      C_19SS_D_3      C_19SS_D_4      C_19SS_D_5      C_19SS_D_6 
##               7              10              13              12              16 
##   C_19SS_SESC_1   C_19SS_SESC_2   C_19SS_SESC_3   C_19SS_SESC_4   C_19SS_SESC_5 
##              12              13              13              11              12 
##   C_19SS_SESC_6        C_19SS_1        C_19SS_2      C_19SS_X_3      C_19SS_X_4 
##              11              13              12              16              14 
##      C_19SS_X_5      C_19SS_X_6     C_19SS_TS_1     C_19SS_TS_2     C_19SS_TS_3 
##              12              14              12              11              16 
##     C_19SS_TS_4     C_19SS_TS_5     C_19SS_TS_6    C_19SS_Con_1    C_19SS_Con_2 
##              11              13              14              11              10 
##    C_19SS_Con_3    C_19SS_Con_4    C_19SS_Con_5    C_19SS_Con_6  C_19SS_Check_1 
##              14              12              13              12              12 
##  C_19SS_Check_2  C_19SS_Check_3  C_19SS_Check_4  C_19SS_Check_5  C_19SS_Check_6 
##              10              12               9               9               9 
##            wave      count_si_1      count_si_2 
##               0               0               0

Plots

##  [1] "crime_1"  "crime_2"  "crime_3"  "crime_4"  "crime_5"  "crime_6" 
##  [7] "crime_7"  "crime_8"  "crime_9"  "crime_10"

##  [1] "homesafety_1"  "homesafety_2"  "homesafety_3"  "homesafety_4" 
##  [5] "homesafety_5"  "homesafety_6"  "homesafety_7"  "homesafety_8" 
##  [9] "homesafety_9"  "homesafety_10" "homesafety_11" "homesafety_12"
## [13] "homesafety_13" "homesafety_14" "homesafety_15" "homesafety_16"
## [17] "homesafety_17"

#(n=5713 missing)

## Warning: Removed 5713 rows containing non-finite values (stat_count).

#(n=5713 missing)

## Warning: Removed 5713 rows containing non-finite values (stat_count).

#(n=5717 missing)

## Warning: Removed 5717 rows containing non-finite values (stat_count).

##  [1] "homereasons_1"  "homereasons_2"  "homereasons_3"  "homereasons_4" 
##  [5] "homereasons_5"  "homereasons_6"  "homereasons_7"  "homereasons_8" 
##  [9] "homereasons_9"  "homereasons_10" "homereasons_11"

Descriptive

# gender descriptive in the data sets
prop.table(table(new_data$gender))*100
## 
##                                              Male 
##                                       48.56701031 
##                                            Female 
##                                       50.95876289 
##                                       Transgender 
##                                        0.27835052 
##   Do not identify as male, female, or transgender 
##                                        0.15463918 
## I do not identify as male, female, or transgender 
##                                        0.04123711
# Education 
firstgun %>%
  count(educ)
##                                educ    n
## 1             Less than High School  121
## 2 High School Diploma or Equivalent 2418
## 3                Associate's Degree 1305
## 4                 Bachelor's Degree 1460
## 5                   Master's Degree  734
## 6  Doctorate's/ Professional Degree  162
secondgun %>%
  count(educ)
##                                educ    n
## 1             Less than High School   77
## 2 High School Diploma or Equivalent 1371
## 3                Associate's Degree  718
## 4                 Bachelor's Degree  734
## 5                   Master's Degree  477
## 6   Doctorate's/Professional Degree  123
# Education descriptive in the 
prop.table(table(firstgun$educ))*100
## 
##             Less than High School High School Diploma or Equivalent 
##                          1.951613                         39.000000 
##                Associate's Degree                 Bachelor's Degree 
##                         21.048387                         23.548387 
##                   Master's Degree  Doctorate's/ Professional Degree 
##                         11.838710                          2.612903
prop.table(table(secondgun$educ))*100
## 
##             Less than High School High School Diploma or Equivalent 
##                          2.200000                         39.171429 
##                Associate's Degree                 Bachelor's Degree 
##                         20.514286                         20.971429 
##                   Master's Degree   Doctorate's/Professional Degree 
##                         13.628571                          3.514286
prop.table(table(new_data$educ))*100
## 
##             Less than High School High School Diploma or Equivalent 
##                          2.041237                         39.061856 
##                Associate's Degree                 Bachelor's Degree 
##                         20.855670                         22.618557 
##                   Master's Degree   Doctorate's/Professional Degree 
##                         12.484536                          2.938144
# Relationship descriptive in the data sets
firstgun %>%
  count(relation)
##                                                                       relation
## 1                      Unmarried and not currently in a committed relationship
## 2 Unmarried and currently in a committed relationship, but not living together
## 3     Unmarried and currently in a committed relationship, and living together
## 4                                             Married, but not living together
## 5                                                  Married and living together
##      n
## 1 1795
## 2  494
## 3  628
## 4  161
## 5 3122
secondgun %>%
  count(relation)
##                                                                       relation
## 1                      Unmarried and not currently in a committed relationship
## 2 Unmarried and currently in a committed relationship, but not living together
## 3     Unmarried and currently in a committed relationship, and living together
## 4                                             Married, but not living together
## 5                                                  Married and living together
##      n
## 1 1190
## 2  261
## 3  316
## 4   85
## 5 1648
prop.table(table(firstgun$relation))*100
## 
##                      Unmarried and not currently in a committed relationship 
##                                                                    28.951613 
## Unmarried and currently in a committed relationship, but not living together 
##                                                                     7.967742 
##     Unmarried and currently in a committed relationship, and living together 
##                                                                    10.129032 
##                                             Married, but not living together 
##                                                                     2.596774 
##                                                  Married and living together 
##                                                                    50.354839
prop.table(table(secondgun$relation))*100
## 
##                      Unmarried and not currently in a committed relationship 
##                                                                    34.000000 
## Unmarried and currently in a committed relationship, but not living together 
##                                                                     7.457143 
##     Unmarried and currently in a committed relationship, and living together 
##                                                                     9.028571 
##                                             Married, but not living together 
##                                                                     2.428571 
##                                                  Married and living together 
##                                                                    47.085714
prop.table(table(new_data$relation))*100
## 
##                      Unmarried and not currently in a committed relationship 
##                                                                    30.773196 
## Unmarried and currently in a committed relationship, but not living together 
##                                                                     7.783505 
##     Unmarried and currently in a committed relationship, and living together 
##                                                                     9.731959 
##                                             Married, but not living together 
##                                                                     2.536082 
##                                                  Married and living together 
##                                                                    49.175258
# age descriptive in the (age_r in the first data is categorical 4 groups, and age in the first set is 8 groups, and )
firstgun %>%
  count(age)
##     age    n
## 1 18-24  643
## 2 25-34 1217
## 3 35-44 1313
## 4 45-54  857
## 5 55-64 1136
## 6 65-74  845
## 7 75-84  181
## 8   85+    8
secondgun %>%
  count(age)
##        age   n
## 1    18-24 570
## 2    25-34 489
## 3    35-44 787
## 4    45-54 431
## 5    55-64 500
## 6    65-74 570
## 7    75-84 145
## 8      85+   7
## 9 Under 18   1
new_data %>%
  count(age)
##         age    n
## 1: Under 18    1
## 2:    18-24 1213
## 3:    25-34 1706
## 4:    35-44 2100
## 5:    45-54 1288
## 6:    55-64 1636
## 7:    65-74 1415
## 8:    75-84  326
## 9:      85+   15
prop.table(table(firstgun$age))*100
## 
##   Under 18      18-24      25-34      35-44      45-54      55-64      65-74 
##  0.0000000 10.3709677 19.6290323 21.1774194 13.8225806 18.3225806 13.6290323 
##      75-84        85+ 
##  2.9193548  0.1290323
prop.table(table(secondgun$age))*100
## 
##       18-24       25-34       35-44       45-54       55-64       65-74 
## 16.28571429 13.97142857 22.48571429 12.31428571 14.28571429 16.28571429 
##       75-84         85+    Under 18 
##  4.14285714  0.20000000  0.02857143
prop.table(table(new_data$age))*100
## 
##    Under 18       18-24       25-34       35-44       45-54       55-64 
##  0.01030928 12.50515464 17.58762887 21.64948454 13.27835052 16.86597938 
##       65-74       75-84         85+ 
## 14.58762887  3.36082474  0.15463918
# race
firstgun %>%
  count(race)
##       race    n
## 1   Alaska  197
## 2    Asian  818
## 3    Black  637
## 4 Hawaiian   29
## 5 Hispanic  919
## 6    Other   97
## 7    White 3503
secondgun %>%
  count(race)
##       race    n
## 1   Alaska   83
## 2    Asian  340
## 3    Black  424
## 4 Hawaiian   13
## 5 Hispanic  482
## 6    Other   45
## 7    White 2113
new_data %>%
  count(race)
##        race    n
## 1:   Alaska  280
## 2:    Asian 1158
## 3:    Black 1061
## 4: Hawaiian   42
## 5: Hispanic 1401
## 6:    Other  142
## 7:    White 5616
prop.table(table(firstgun$race))*100
## 
##     Alaska      Asian      Black   Hawaiian   Hispanic      Other      White 
##  3.1774194 13.1935484 10.2741935  0.4677419 14.8225806  1.5645161 56.5000000
prop.table(table(secondgun$race))*100
## 
##     Alaska      Asian      Black   Hawaiian   Hispanic      Other      White 
##  2.3714286  9.7142857 12.1142857  0.3714286 13.7714286  1.2857143 60.3714286
prop.table(table(secondgun$race))*100
## 
##     Alaska      Asian      Black   Hawaiian   Hispanic      Other      White 
##  2.3714286  9.7142857 12.1142857  0.3714286 13.7714286  1.2857143 60.3714286
# Sex
firstgun %>%
  count(sex)
##      sex    n
## 1   Male 3038
## 2 Female 3162
secondgun %>%
  count(sex)
##      sex    n
## 1   Male 1695
## 2 Female 1802
## 3   <NA>    3
new_data %>%
  count(sex)
##       sex    n
## 1:   Male 4733
## 2: Female 4964
## 3:   <NA>    3
prop.table(table(firstgun$sex))*100
## 
##   Male Female 
##     49     51
prop.table(table(secondgun$sex))*100
## 
##     Male   Female 
## 48.47012 51.52988
prop.table(table(secondgun$sex))*100
## 
##     Male   Female 
## 48.47012 51.52988
# Income
firstgun %>%
  count(income)
##                 income    n
## 1    $10,000 - $19,999  459
## 2  $100,000 - $149,999 1324
## 3     $150,000 or more  350
## 4    $20,000 - $29,999  561
## 5    $30,000 - $39,999  538
## 6    $40,000 - $49,999  465
## 7    $50,000 - $59,999  639
## 8    $60,000 - $69,999  410
## 9    $70,000 - $79,999  419
## 10   $80,000 - $89,999  279
## 11   $90,000 - $99,999  299
## 12   Less than $10,000  457
secondgun %>%
  count(income)
##                 income   n
## 1    Less than $10,000 245
## 2    $10,000 - $19,999 290
## 3    $20,000 - $29,999 349
## 4    $30,000 - $39,999 296
## 5    $40,000 - $49,999 227
## 6    $50,000 - $59,999 331
## 7    $60,000 - $69,999 244
## 8    $70,000 - $79,999 270
## 9    $80,000 - $89,999 142
## 10   $90,000 - $99,999 173
## 11 $100,000 - $149,999 560
## 12    $150,000 or more 373
new_data %>%
  count(income)
##                  income    n
##  1:   $10,000 - $19,999  749
##  2: $100,000 - $149,999 1884
##  3:    $150,000 or more  723
##  4:   $20,000 - $29,999  910
##  5:   $30,000 - $39,999  834
##  6:   $40,000 - $49,999  692
##  7:   $50,000 - $59,999  970
##  8:   $60,000 - $69,999  654
##  9:   $70,000 - $79,999  689
## 10:   $80,000 - $89,999  421
## 11:   $90,000 - $99,999  472
## 12:   Less than $10,000  702
prop.table(table(firstgun$income))*100
## 
##   $10,000 - $19,999 $100,000 - $149,999    $150,000 or more   $20,000 - $29,999 
##            7.403226           21.354839            5.645161            9.048387 
##   $30,000 - $39,999   $40,000 - $49,999   $50,000 - $59,999   $60,000 - $69,999 
##            8.677419            7.500000           10.306452            6.612903 
##   $70,000 - $79,999   $80,000 - $89,999   $90,000 - $99,999   Less than $10,000 
##            6.758065            4.500000            4.822581            7.370968
prop.table(table(secondgun$income))*100
## 
##   Less than $10,000   $10,000 - $19,999   $20,000 - $29,999   $30,000 - $39,999 
##            7.000000            8.285714            9.971429            8.457143 
##   $40,000 - $49,999   $50,000 - $59,999   $60,000 - $69,999   $70,000 - $79,999 
##            6.485714            9.457143            6.971429            7.714286 
##   $80,000 - $89,999   $90,000 - $99,999 $100,000 - $149,999    $150,000 or more 
##            4.057143            4.942857           16.000000           10.657143
prop.table(table(secondgun$income))*100
## 
##   Less than $10,000   $10,000 - $19,999   $20,000 - $29,999   $30,000 - $39,999 
##            7.000000            8.285714            9.971429            8.457143 
##   $40,000 - $49,999   $50,000 - $59,999   $60,000 - $69,999   $70,000 - $79,999 
##            6.485714            9.457143            6.971429            7.714286 
##   $80,000 - $89,999   $90,000 - $99,999 $100,000 - $149,999    $150,000 or more 
##            4.057143            4.942857           16.000000           10.657143
#Gunhome

firstgun %>%
  count(gunhome)
##                gunhome    n
## 1                   No 3729
## 2                  Yes 2311
## 3 Prefer not to answer  160
secondgun %>%
  count(gunhome)
##                gunhome    n
## 1                   No 2105
## 2                  Yes 1356
## 3 Prefer not to answer   39
new_data %>%
  count(gunhome)
##                 gunhome    n
## 1:                   No 5834
## 2:                  Yes 3667
## 3: Prefer not to answer  199
# acquireplan

firstgun %>%
  count(acquireplan)
##            acquireplan    n
## 1                   No 4043
## 2                  Yes  793
## 3  Haven't decided yet 1292
## 4 Prefer not to answer   72
secondgun %>%
  count(acquireplan)
##            acquireplan    n
## 1                   No 2365
## 2                  Yes  516
## 3  Haven't decided yet  596
## 4 Prefer not to answer   16
## 5                 <NA>    7
new_data %>%
  count(acquireplan)
##             acquireplan    n
## 1:                   No 6408
## 2:                  Yes 1309
## 3:  Haven't decided yet 1888
## 4: Prefer not to answer   88
## 5:                 <NA>    7
# safety_1

firstgun %>%
  count(safety_1)
##                               safety_1    n
## 1                       Strongly Agree 1768
## 2                                Agree 2289
## 3 Neutral (neither agree not disagree) 1248
## 4                             Disagree  619
## 5                    Strongly Disagree  276
secondgun %>%
  count(safety_1)
##                               safety_1    n
## 1                       Strongly Agree  958
## 2                                Agree 1347
## 3 Neutral (neither agree not disagree)  718
## 4                             Disagree  325
## 5                    Strongly Disagree  140
## 6                                 <NA>   12
new_data %>%
  count(safety_1)
##                                safety_1    n
## 1:                       Strongly Agree 2726
## 2:                                Agree 3636
## 3: Neutral (neither agree not disagree) 1966
## 4:                             Disagree  944
## 5:                    Strongly Disagree  416
## 6:                                 <NA>   12
# safety_2
firstgun %>%
  count(safety_2)
##                               safety_2    n
## 1                       Strongly Agree 1513
## 2                                Agree 2256
## 3 Neutral (neither agree not disagree) 1310
## 4                             Disagree  750
## 5                    Strongly Disagree  371
secondgun %>%
  count(safety_2)
##                               safety_2    n
## 1                       Strongly Agree  887
## 2                                Agree 1300
## 3 Neutral (neither agree not disagree)  759
## 4                             Disagree  382
## 5                    Strongly Disagree  163
## 6                                 <NA>    9
new_data %>%
  count(safety_2)
##                                safety_2    n
## 1:                       Strongly Agree 2400
## 2:                                Agree 3556
## 3: Neutral (neither agree not disagree) 2069
## 4:                             Disagree 1132
## 5:                    Strongly Disagree  534
## 6:                                 <NA>    9
# safety_3
firstgun %>%
  count(safety_3)
##                               safety_3    n
## 1                       Strongly Agree 1145
## 2                                Agree 2146
## 3 Neutral (neither agree not disagree) 1660
## 4                             Disagree  890
## 5                    Strongly Disagree  359
secondgun %>%
  count(safety_3)
##                               safety_3    n
## 1                       Strongly Agree  672
## 2                                Agree 1262
## 3 Neutral (neither agree not disagree)  935
## 4                             Disagree  454
## 5                    Strongly Disagree  167
## 6                                 <NA>   10
new_data %>%
  count(safety_3)
##                                safety_3    n
## 1:                       Strongly Agree 1817
## 2:                                Agree 3408
## 3: Neutral (neither agree not disagree) 2595
## 4:                             Disagree 1344
## 5:                    Strongly Disagree  526
## 6:                                 <NA>   10
# ptci_1
firstgun %>%
  count(ptci_1)
##               ptci_1    n
## 1   Totally Disagree  377
## 2 Disagree Very Much  682
## 3  Disagree Slightly 1017
## 4            Neutral 1437
## 5     Agree Slightly 1433
## 6    Agree Very Much  667
## 7      Totally Agree  587
secondgun %>%
  count(ptci_1)
##               ptci_1   n
## 1   Totally Disagree 207
## 2 Disagree Very Much 388
## 3  Disagree Slightly 479
## 4            Neutral 772
## 5     Agree Slightly 870
## 6    Agree Very Much 418
## 7      Totally Agree 357
## 8               <NA>   9
new_data %>%
  count(ptci_1)
##                ptci_1    n
## 1:   Totally Disagree  584
## 2: Disagree Very Much 1070
## 3:  Disagree Slightly 1496
## 4:            Neutral 2209
## 5:     Agree Slightly 2303
## 6:    Agree Very Much 1085
## 7:      Totally Agree  944
## 8:               <NA>    9
# ptci_2
firstgun %>%
  count(ptci_2)
##               ptci_2    n
## 1   Totally Disagree  490
## 2 Disagree Very Much  744
## 3  Disagree Slightly 1099
## 4            Neutral 1259
## 5     Agree Slightly 1277
## 6    Agree Very Much  723
## 7      Totally Agree  608
secondgun %>%
  count(ptci_2)
##               ptci_2   n
## 1   Totally Disagree 261
## 2 Disagree Very Much 420
## 3  Disagree Slightly 541
## 4            Neutral 703
## 5     Agree Slightly 799
## 6    Agree Very Much 423
## 7      Totally Agree 345
## 8               <NA>   8
new_data %>%
  count(ptci_2)
##                ptci_2    n
## 1:   Totally Disagree  751
## 2: Disagree Very Much 1164
## 3:  Disagree Slightly 1640
## 4:            Neutral 1962
## 5:     Agree Slightly 2076
## 6:    Agree Very Much 1146
## 7:      Totally Agree  953
## 8:               <NA>    8
# ptci_3
firstgun %>%
  count(ptci_3)
##               ptci_3    n
## 1   Totally Disagree  245
## 2 Disagree Very Much  454
## 3  Disagree Slightly  709
## 4            Neutral 1554
## 5     Agree Slightly 1788
## 6    Agree Very Much  813
## 7      Totally Agree  637
secondgun %>%
  count(ptci_3)
##               ptci_3    n
## 1   Totally Disagree  129
## 2 Disagree Very Much  217
## 3  Disagree Slightly  401
## 4            Neutral  808
## 5     Agree Slightly 1023
## 6    Agree Very Much  494
## 7      Totally Agree  419
## 8               <NA>    9
new_data %>%
  count(ptci_3)
##                ptci_3    n
## 1:   Totally Disagree  374
## 2: Disagree Very Much  671
## 3:  Disagree Slightly 1110
## 4:            Neutral 2362
## 5:     Agree Slightly 2811
## 6:    Agree Very Much 1307
## 7:      Totally Agree 1056
## 8:               <NA>    9
# si_1
firstgun %>%
  count(si_1)
##                                    si_1    n
## 1                                     0 4680
## 2 I wish I could disappear or not exist 1520
secondgun %>%
  count(si_1)
##                                    si_1    n
## 1                                     0 2645
## 2 I wish I could disappear or not exist  855
new_data %>%
  count(si_1)
##                                     si_1    n
## 1:                                     0 7325
## 2: I wish I could disappear or not exist 2375
# si_2
firstgun %>%
  count(si_2)
##                      si_2    n
## 1                       0 5211
## 2 I wish I was never born  989
secondgun %>%
  count(si_2)
##                      si_2    n
## 1                       0 2902
## 2 I wish I was never born  598
new_data %>%
  count(si_2)
##                       si_2    n
## 1:                       0 8113
## 2: I wish I was never born 1587
# si_3
firstgun %>%
  count(si_3)
##                          si_3    n
## 1                           0 5123
## 2 My life is not worth living 1077
secondgun %>%
  count(si_3)
##                          si_3    n
## 1                           0 2867
## 2 My life is not worth living  633
new_data %>%
  count(si_3)
##                           si_3    n
## 1:                           0 7990
## 2: My life is not worth living 1710
# si_4
firstgun %>%
  count(si_4)
##                                           si_4    n
## 1                                            0 5006
## 2 I wish I could go to sleep and never wake up 1194
secondgun %>%
  count(si_4)
##                                           si_4    n
## 1                                            0 2735
## 2 I wish I could go to sleep and never wake up  765
new_data %>%
  count(si_4)
##                                            si_4    n
## 1:                                            0 7741
## 2: I wish I could go to sleep and never wake up 1959
# si_5
firstgun %>%
  count(si_5)
##                 si_5    n
## 1                  0 5348
## 2 I wish I were dead  852
secondgun %>%
  count(si_5)
##                 si_5    n
## 1                  0 2976
## 2 I wish I were dead  524
new_data %>%
  count(si_5)
##                  si_5    n
## 1:                  0 8324
## 2: I wish I were dead 1376
# si_6
firstgun %>%
  count(si_6)
##                         si_6    n
## 1                          0 5469
## 2 Maybe I should kill myself  731
secondgun %>%
  count(si_6)
##                         si_6    n
## 1                          0 3064
## 2 Maybe I should kill myself  436
new_data %>%
  count(si_6)
##                          si_6    n
## 1:                          0 8533
## 2: Maybe I should kill myself 1167
# si_7
firstgun %>%
  count(si_7)
##                   si_7    n
## 1                    0 5700
## 2 I should kill myself  500
secondgun %>%
  count(si_7)
##                   si_7    n
## 1                    0 3199
## 2 I should kill myself  301
new_data %>%
  count(si_7)
##                    si_7    n
## 1:                    0 8899
## 2: I should kill myself  801
# si_8
firstgun %>%
  count(si_8)
##                        si_8    n
## 1                         0 5851
## 2 I am going to kill myself  349
secondgun %>%
  count(si_8)
##                        si_8    n
## 1                         0 3270
## 2 I am going to kill myself  230
new_data %>%
  count(si_8)
##                         si_8    n
## 1:                         0 9121
## 2: I am going to kill myself  579
# sb_1
firstgun %>%
  count(sb_1)
##                                                                                                                                                                                                   sb_1
## 1                                                                                                                                                                                                    0
## 2 Done something to prepare to make a suicide attempt. For example, gaining access to method, looking up a method online, writing a suicide note, updating your will, or saying goodbye to loved ones.
##      n
## 1 5522
## 2  678
secondgun %>%
  count(sb_1)
##                                                                                                                                                                                                   sb_1
## 1 Done something to prepare to make a suicide attempt. For example, gaining access to method, looking up a method online, writing a suicide note, updating your will, or saying goodbye to loved ones.
## 2                                                                                                                                                                                                    0
##      n
## 1  406
## 2 3094
new_data %>%
  count(sb_1)
##                                                                                                                                                                                                    sb_1
## 1:                                                                                                                                                                                                    0
## 2: Done something to prepare to make a suicide attempt. For example, gaining access to method, looking up a method online, writing a suicide note, updating your will, or saying goodbye to loved ones.
##       n
## 1: 8616
## 2: 1084
# sb_2
firstgun %>%
  count(sb_2)
##                                                                                                                                                                                                                                                         sb_2
## 1                                                                                                                                                                                                                                                          0
## 2 Practiced making a suicide attempt. For example, taking an overdose of an amount you knew in advance would not kill you, hanging a rope to see if it would support your body weight, or jumping from a height that you knew in advance would not kill you.
##      n
## 1 5844
## 2  356
secondgun %>%
  count(sb_2)
##                                                                                                                                                                                                                                                         sb_2
## 1                                                                                                                                                                                                                                                          0
## 2 Practiced making a suicide attempt. For example, taking an overdose of an amount you knew in advance would not kill you, hanging a rope to see if it would support your body weight, or jumping from a height that you knew in advance would not kill you.
##      n
## 1 3250
## 2  250
new_data %>%
  count(sb_2)
##                                                                                                                                                                                                                                                          sb_2
## 1:                                                                                                                                                                                                                                                          0
## 2: Practiced making a suicide attempt. For example, taking an overdose of an amount you knew in advance would not kill you, hanging a rope to see if it would support your body weight, or jumping from a height that you knew in advance would not kill you.
##       n
## 1: 9094
## 2:  606
# sb_3
firstgun %>%
  count(sb_3)
##                                                                                                                                                                                                                                                              sb_3
## 1                                                                                                                                                                                                                                                               0
## 2 Been very close to killing yourself but at the last minute you decided not to do it before taking any action. For example, holding a bottle of pills in your hand but deciding not to take any, setting up a noose but then deciding not to use it, or pointing
##      n
## 1 5733
## 2  467
secondgun %>%
  count(sb_3)
##                                                                                                                                                                                                                                                              sb_3
## 1 Been very close to killing yourself but at the last minute you decided not to do it before taking any action. For example, holding a bottle of pills in your hand but deciding not to take any, setting up a noose but then deciding not to use it, or pointing
## 2                                                                                                                                                                                                                                                               0
##      n
## 1  302
## 2 3198
new_data %>%
  count(sb_3)
##                                                                                                                                                                                                                                                               sb_3
## 1:                                                                                                                                                                                                                                                               0
## 2: Been very close to killing yourself but at the last minute you decided not to do it before taking any action. For example, holding a bottle of pills in your hand but deciding not to take any, setting up a noose but then deciding not to use it, or pointing
##       n
## 1: 8931
## 2:  769
# sb_4
firstgun %>%
  count(sb_4)
##                                                                                                                                                                                                                                                              sb_4
## 1                                                                                                                                                                                                                                                               0
## 2 Been very close to killing yourself but at the last minute, someone or something else stopped you before you took any action. For example, holding a bottle of pills in your hand but then someone stopped you before you took any, pointing a gun to your head
##      n
## 1 5915
## 2  285
secondgun %>%
  count(sb_4)
##                                                                                                                                                                                                                                                              sb_4
## 1 Been very close to killing yourself but at the last minute, someone or something else stopped you before you took any action. For example, holding a bottle of pills in your hand but then someone stopped you before you took any, pointing a gun to your head
## 2                                                                                                                                                                                                                                                               0
##      n
## 1  216
## 2 3284
new_data %>%
  count(sb_4)
##                                                                                                                                                                                                                                                               sb_4
## 1:                                                                                                                                                                                                                                                               0
## 2: Been very close to killing yourself but at the last minute, someone or something else stopped you before you took any action. For example, holding a bottle of pills in your hand but then someone stopped you before you took any, pointing a gun to your head
##       n
## 1: 9199
## 2:  501
# sb_5
firstgun %>%
  count(sb_5)
##                                                                                                                                                                                                                                                              sb_5
## 1                                                                                                                                                                                                                                                               0
## 2 Started to kill yourself and then you stopped after you had already taken some action. For example, taking one or a few pills of an overdose but then you changed your mind and stopped yourself, or starting to hang yourself but then you changed your mind a
##      n
## 1 6006
## 2  194
secondgun %>%
  count(sb_5)
##                                                                                                                                                                                                                                                              sb_5
## 1 Started to kill yourself and then you stopped after you had already taken some action. For example, taking one or a few pills of an overdose but then you changed your mind and stopped yourself, or starting to hang yourself but then you changed your mind a
## 2                                                                                                                                                                                                                                                               0
##      n
## 1  157
## 2 3343
new_data %>%
  count(sb_5)
##                                                                                                                                                                                                                                                               sb_5
## 1:                                                                                                                                                                                                                                                               0
## 2: Started to kill yourself and then you stopped after you had already taken some action. For example, taking one or a few pills of an overdose but then you changed your mind and stopped yourself, or starting to hang yourself but then you changed your mind a
##       n
## 1: 9349
## 2:  351
# sb_6
firstgun %>%
  count(sb_6)
##                                                                                                                                                                                      sb_6
## 1                                                                                                                                                                                       0
## 2 Started to kill yourself and then you decided to reach out for help after you had already taken some action. For example, taking an overdose and then calling a friend or 911 for help.
##      n
## 1 6060
## 2  140
secondgun %>%
  count(sb_6)
##                                                                                                                                                                                      sb_6
## 1 Started to kill yourself and then you decided to reach out for help after you had already taken some action. For example, taking an overdose and then calling a friend or 911 for help.
## 2                                                                                                                                                                                       0
##      n
## 1  114
## 2 3386
new_data %>%
  count(sb_6)
##                                                                                                                                                                                       sb_6
## 1:                                                                                                                                                                                       0
## 2: Started to kill yourself and then you decided to reach out for help after you had already taken some action. For example, taking an overdose and then calling a friend or 911 for help.
##       n
## 1: 9446
## 2:  254
# sb_7
firstgun %>%
  count(sb_7)
##                                                                                                                                                                                                                        sb_7
## 1                                                                                                                                                                                                                         0
## 2 Tried to kill yourself and someone found you afterwards. For example, taking an overdose of pills and then someone found you unconscious and called 911, or hanging yourself and then someone found you and cut you down.
##      n
## 1 6033
## 2  167
secondgun %>%
  count(sb_7)
##                                                                                                                                                                                                                        sb_7
## 1 Tried to kill yourself and someone found you afterwards. For example, taking an overdose of pills and then someone found you unconscious and called 911, or hanging yourself and then someone found you and cut you down.
## 2                                                                                                                                                                                                                         0
##      n
## 1  119
## 2 3381
new_data %>%
  count(sb_7)
##                                                                                                                                                                                                                         sb_7
## 1:                                                                                                                                                                                                                         0
## 2: Tried to kill yourself and someone found you afterwards. For example, taking an overdose of pills and then someone found you unconscious and called 911, or hanging yourself and then someone found you and cut you down.
##       n
## 1: 9414
## 2:  286
# sb_8
firstgun %>%
  count(sb_8)
##                                                                                                                         sb_8
## 1                                                                                                                          0
## 2 Tried to kill yourself and no one found you afterwards. For example, taking an overdose of pills and then waking up later.
##      n
## 1 6070
## 2  130
secondgun %>%
  count(sb_8)
##                                                                                                                         sb_8
## 1 Tried to kill yourself and no one found you afterwards. For example, taking an overdose of pills and then waking up later.
## 2                                                                                                                          0
##      n
## 1   78
## 2 3422
new_data %>%
  count(sb_8)
##                                                                                                                          sb_8
## 1:                                                                                                                          0
## 2: Tried to kill yourself and no one found you afterwards. For example, taking an overdose of pills and then waking up later.
##       n
## 1: 9492
## 2:  208
# sb_9
firstgun %>%
  count(sb_9)
##                                                                                                                                                                                                                                           sb_9
## 1                                                                                                                                                                                                                                            0
## 2 Purposely hurt yourself without wanting to die. For example, cutting yourself or burning your skin to reduce emotional stress, hitting yourself on purpose, punching a wall or picking a fight with someone so you could feel physical pain.
##      n
## 1 5492
## 2  708
secondgun %>%
  count(sb_9)
##                                                                                                                                                                                                                                           sb_9
## 1 Purposely hurt yourself without wanting to die. For example, cutting yourself or burning your skin to reduce emotional stress, hitting yourself on purpose, punching a wall or picking a fight with someone so you could feel physical pain.
## 2                                                                                                                                                                                                                                            0
##      n
## 1  338
## 2 3162
new_data %>%
  count(sb_9)
##                                                                                                                                                                                                                                            sb_9
## 1:                                                                                                                                                                                                                                            0
## 2: Purposely hurt yourself without wanting to die. For example, cutting yourself or burning your skin to reduce emotional stress, hitting yourself on purpose, punching a wall or picking a fight with someone so you could feel physical pain.
##       n
## 1: 8654
## 2: 1046
# sbtimetime_1
firstgun %>%
  count(sbtime_1)
##                sbtime_1    n
## 1                     0 5522
## 2  More than 1 year ago  366
## 3  Within the past year  174
## 4 Within the past month  138
secondgun %>%
  count(sbtime_1)
##                sbtime_1    n
## 1  More than 1 year ago  214
## 2  Within the past year  125
## 3 Within the past month   43
## 4                     0 3118
new_data %>%
  count(sbtime_1)
##                 sbtime_1    n
## 1:                     0 8640
## 2:  More than 1 year ago  580
## 3:  Within the past year  299
## 4: Within the past month  181
# sbtime_2
firstgun %>%
  count(sbtime_2)
##                sbtime_2    n
## 1                     0 5844
## 2  More than 1 year ago  158
## 3  Within the past year  127
## 4 Within the past month   71
secondgun %>%
  count(sbtime_2)
##                sbtime_2    n
## 1  More than 1 year ago  107
## 2  Within the past year   99
## 3 Within the past month   32
## 4                     0 3262
new_data %>%
  count(sbtime_2)
##                 sbtime_2    n
## 1:                     0 9106
## 2:  More than 1 year ago  265
## 3:  Within the past year  226
## 4: Within the past month  103
# sbtime_3
firstgun %>%
  count(sbtime_3)
##                sbtime_3    n
## 1                     0 5733
## 2  More than 1 year ago  243
## 3  Within the past year  146
## 4 Within the past month   78
secondgun %>%
  count(sbtime_3)
##                sbtime_3    n
## 1  More than 1 year ago  144
## 2  Within the past year  106
## 3 Within the past month   42
## 4                     0 3208
new_data %>%
  count(sbtime_3)
##                 sbtime_3    n
## 1:                     0 8941
## 2:  More than 1 year ago  387
## 3:  Within the past year  252
## 4: Within the past month  120
# sbtime_4
firstgun %>%
  count(sbtime_4)
##                sbtime_4    n
## 1                     0 5915
## 2  More than 1 year ago  152
## 3  Within the past year   88
## 4 Within the past month   45
secondgun %>%
  count(sbtime_4)
##                sbtime_4    n
## 1  More than 1 year ago   99
## 2  Within the past year   80
## 3 Within the past month   28
## 4                     0 3293
new_data %>%
  count(sbtime_4)
##                 sbtime_4    n
## 1:                     0 9208
## 2:  More than 1 year ago  251
## 3:  Within the past year  168
## 4: Within the past month   73
# sbtime_5
firstgun %>%
  count(sbtime_5)
##                sbtime_5    n
## 1                     0 6006
## 2  More than 1 year ago  111
## 3  Within the past year   51
## 4 Within the past month   32
secondgun %>%
  count(sbtime_5)
##                sbtime_5    n
## 1  More than 1 year ago   70
## 2  Within the past year   56
## 3 Within the past month   23
## 4                     0 3351
new_data %>%
  count(sbtime_5)
##                 sbtime_5    n
## 1:                     0 9357
## 2:  More than 1 year ago  181
## 3:  Within the past year  107
## 4: Within the past month   55
# sbtime_6
firstgun %>%
  count(sbtime_6)
##                sbtime_6    n
## 1                     0 6060
## 2  More than 1 year ago   83
## 3  Within the past year   26
## 4 Within the past month   31
secondgun %>%
  count(sbtime_6)
##                sbtime_6    n
## 1  More than 1 year ago   48
## 2  Within the past year   48
## 3 Within the past month   17
## 4                     0 3387
new_data %>%
  count(sbtime_6)
##                 sbtime_6    n
## 1:                     0 9447
## 2:  More than 1 year ago  131
## 3:  Within the past year   74
## 4: Within the past month   48
# sbtime_7
firstgun %>%
  count(sbtime_7)
##                sbtime_7    n
## 1                     0 6033
## 2  More than 1 year ago  115
## 3  Within the past year   29
## 4 Within the past month   23
secondgun %>%
  count(sbtime_7)
##                sbtime_7    n
## 1  More than 1 year ago   65
## 2  Within the past year   33
## 3 Within the past month   18
## 4                     0 3384
new_data %>%
  count(sbtime_7)
##                 sbtime_7    n
## 1:                     0 9417
## 2:  More than 1 year ago  180
## 3:  Within the past year   62
## 4: Within the past month   41
# sbtime_8
firstgun %>%
  count(sbtime_8)
##                sbtime_8    n
## 1                     0 6070
## 2  More than 1 year ago   77
## 3  Within the past year   29
## 4 Within the past month   24
secondgun %>%
  count(sbtime_8)
##                sbtime_8    n
## 1  More than 1 year ago   44
## 2  Within the past year   23
## 3 Within the past month   10
## 4                     0 3423
new_data %>%
  count(sbtime_8)
##                 sbtime_8    n
## 1:                     0 9493
## 2:  More than 1 year ago  121
## 3:  Within the past year   52
## 4: Within the past month   34
# sbtime_9
firstgun %>%
  count(sbtime_9)
##                sbtime_9    n
## 1                     0 5492
## 2  More than 1 year ago  415
## 3  Within the past year  172
## 4 Within the past month  121
secondgun %>%
  count(sbtime_9)
##                sbtime_9    n
## 1  More than 1 year ago  195
## 2  Within the past year   79
## 3 Within the past month   59
## 4                     0 3167
new_data %>%
  count(sbtime_9)
##                 sbtime_9    n
## 1:                     0 8659
## 2:  More than 1 year ago  610
## 3:  Within the past year  251
## 4: Within the past month  180
# married
firstgun %>%
  count(married)
##   married    n
## 1      No 2013
## 2     Yes 4187
firstgun %>%
  summarise(weight = NROW(married))
##   weight
## 1   6200
secondgun %>%
  count(married)
##   married    n
## 1      No 1246
## 2     Yes 2253
## 3    <NA>    1
secondgun %>%
  summarise(weight = NROW(married))
##   weight
## 1   3500
new_data %>%
  count(married)
##    married    n
## 1:      No 3259
## 2:     Yes 6440
## 3:    <NA>    1
new_data %>%
  summarise(weight = NROW(married))
##   weight
## 1   9700
# adults
firstgun %>%
  count(adults)
##        adults    n
## 1           0  352
## 2           1 1155
## 3  10 or more    5
## 4           2 3289
## 5           3  868
## 6           4  374
## 7           5  110
## 8           6   33
## 9           7   11
## 10          8    1
## 11          9    2
firstgun %>%
  summarise(weight = NROW(adults))
##   weight
## 1   6200
secondgun %>%
  count(adults)
##        adults    n
## 1           0  199
## 2           1  713
## 3           2 1791
## 4           3  485
## 5           4  221
## 6           5   56
## 7           6   23
## 8           7    6
## 9           8    2
## 10          9    1
## 11 10 or more    2
## 12       <NA>    1
secondgun %>%
  summarise(weight = NROW(adults))
##   weight
## 1   3500
new_data %>%
  count(adults)
##         adults    n
##  1:          0  551
##  2:          1 1868
##  3: 10 or more    7
##  4:          2 5080
##  5:          3 1353
##  6:          4  595
##  7:          5  166
##  8:          6   56
##  9:          7   17
## 10:          8    3
## 11:          9    3
## 12:       <NA>    1
new_data %>%
  summarise(weight = NROW(adults))
##   weight
## 1   9700
# children
firstgun %>%
  count(children)
##      children    n
## 1           0 3842
## 2           1 1080
## 3  10 or more    2
## 4           2  856
## 5           3  272
## 6           4  104
## 7           5   31
## 8           6    7
## 9           7    2
## 10          8    3
## 11          9    1
firstgun %>%
  summarise(weight = NROW(children))
##   weight
## 1   6200
secondgun %>%
  count(children)
##      children    n
## 1           0 2178
## 2           1  616
## 3           2  478
## 4           3  145
## 5           4   44
## 6           5   12
## 7           6    3
## 8           7    3
## 9           8    5
## 10          9    1
## 11 10 or more    2
## 12       <NA>   13
secondgun %>%
  summarise(weight = NROW(children))
##   weight
## 1   3500
new_data %>%
  count(children)
##       children    n
##  1:          0 6020
##  2:          1 1696
##  3: 10 or more    4
##  4:          2 1334
##  5:          3  417
##  6:          4  148
##  7:          5   43
##  8:          6   10
##  9:          7    5
## 10:          8    8
## 11:          9    2
## 12:       <NA>   13
new_data %>%
  summarise(weight = NROW(children))
##   weight
## 1   9700
# state
firstgun %>%
  count(state)
##                   state   n
## 1               Alabama  89
## 2                Alaska   9
## 3               Arizona 134
## 4              Arkansas  56
## 5            California 662
## 6              Colorado  90
## 7           Connecticut  69
## 8              Delaware  32
## 9  District of Columbia  18
## 10              Florida 486
## 11              Georgia 245
## 12               Hawaii  37
## 13                Idaho  19
## 14             Illinois 238
## 15              Indiana 134
## 16                 Iowa  35
## 17               Kansas  61
## 18             Kentucky  88
## 19            Louisiana  67
## 20                Maine  20
## 21             Maryland  95
## 22        Massachusetts 122
## 23             Michigan 172
## 24            Minnesota  90
## 25          Mississippi  41
## 26             Missouri 110
## 27              Montana  11
## 28             Nebraska  19
## 29               Nevada  63
## 30        New Hampshire  20
## 31           New Jersey 198
## 32           New Mexico  30
## 33             New York 443
## 34       North Carolina 198
## 35         North Dakota  15
## 36                 Ohio 240
## 37             Oklahoma  78
## 38               Oregon  86
## 39         Pennsylvania 267
## 40         Rhode Island  17
## 41       South Carolina 111
## 42         South Dakota  13
## 43            Tennessee 112
## 44                Texas 518
## 45                 Utah  52
## 46              Vermont   9
## 47             Virginia 174
## 48           Washington 132
## 49        West Virginia  31
## 50            Wisconsin  97
## 51              Wyoming   6
## 52                 <NA>  41
firstgun %>%
  summarise(weight = NROW(state))
##   weight
## 1   6200
secondgun %>%
  count(state)
##                   state   n
## 1               Alabama  57
## 2                Alaska   7
## 3               Arizona  68
## 4              Arkansas  25
## 5            California 360
## 6              Colorado  36
## 7           Connecticut  45
## 8              Delaware  14
## 9  District of Columbia  10
## 10              Florida 293
## 11              Georgia 136
## 12               Hawaii  22
## 13                Idaho  11
## 14             Illinois 159
## 15              Indiana  48
## 16                 Iowa  15
## 17               Kansas  25
## 18             Kentucky  34
## 19            Louisiana  48
## 20                Maine   7
## 21             Maryland  76
## 22        Massachusetts  64
## 23             Michigan  83
## 24            Minnesota  39
## 25          Mississippi  29
## 26             Missouri  51
## 27              Montana   5
## 28             Nebraska  16
## 29               Nevada  40
## 30        New Hampshire   9
## 31           New Jersey 127
## 32           New Mexico  15
## 33             New York 315
## 34       North Carolina 130
## 35         North Dakota   9
## 36                 Ohio 106
## 37             Oklahoma  42
## 38               Oregon  44
## 39         Pennsylvania 174
## 40          Puerto Rico   3
## 41         Rhode Island  13
## 42       South Carolina  60
## 43         South Dakota  10
## 44            Tennessee  67
## 45                Texas 296
## 46                 Utah  21
## 47              Vermont   4
## 48             Virginia  84
## 49           Washington  58
## 50        West Virginia  15
## 51            Wisconsin  67
## 52              Wyoming   6
## 53                 <NA>   2
secondgun %>%
  summarise(weight = NROW(state))
##   weight
## 1   3500
new_data %>%
  count(state)
##                    state    n
##  1:              Alabama  146
##  2:               Alaska   16
##  3:              Arizona  202
##  4:             Arkansas   81
##  5:           California 1022
##  6:             Colorado  126
##  7:          Connecticut  114
##  8:             Delaware   46
##  9: District of Columbia   28
## 10:              Florida  779
## 11:              Georgia  381
## 12:               Hawaii   59
## 13:                Idaho   30
## 14:             Illinois  397
## 15:              Indiana  182
## 16:                 Iowa   50
## 17:               Kansas   86
## 18:             Kentucky  122
## 19:            Louisiana  115
## 20:                Maine   27
## 21:             Maryland  171
## 22:        Massachusetts  186
## 23:             Michigan  255
## 24:            Minnesota  129
## 25:          Mississippi   70
## 26:             Missouri  161
## 27:              Montana   16
## 28:             Nebraska   35
## 29:               Nevada  103
## 30:        New Hampshire   29
## 31:           New Jersey  325
## 32:           New Mexico   45
## 33:             New York  758
## 34:       North Carolina  328
## 35:         North Dakota   24
## 36:                 Ohio  346
## 37:             Oklahoma  120
## 38:               Oregon  130
## 39:         Pennsylvania  441
## 40:          Puerto Rico    3
## 41:         Rhode Island   30
## 42:       South Carolina  171
## 43:         South Dakota   23
## 44:            Tennessee  179
## 45:                Texas  814
## 46:                 Utah   73
## 47:              Vermont   13
## 48:             Virginia  258
## 49:           Washington  190
## 50:        West Virginia   46
## 51:            Wisconsin  164
## 52:              Wyoming   12
## 53:                 <NA>   43
##                    state    n
new_data %>%
  summarise(weight = NROW(state))
##   weight
## 1   9700
# zip
firstgun %>%
  summarise(weight = NROW(zip))
##   weight
## 1   6200
secondgun %>%
  summarise(weight = NROW(zip))
##   weight
## 1   3500
new_data %>%
  summarise(weight = NROW(zip))
##   weight
## 1   9700
# military_1
firstgun %>%
  count(military_1)
##         military_1    n
## 1 Army active duty  300
## 2                0 5900
secondgun %>%
  count(military_1)
##         military_1    n
## 1 Army active duty  216
## 2                0 3284
new_data %>%
  count(military_1)
##          military_1    n
## 1: Army active duty  516
## 2:                0 9184
# military_2
firstgun %>%
  count(military_2)
##            military_2    n
## 1 Army National Guard  139
## 2                   0 6061
secondgun %>%
  count(military_2)
##            military_2    n
## 1 Army National Guard   89
## 2                   0 3411
new_data %>%
  count(military_2)
##             military_2    n
## 1: Army National Guard  228
## 2:                   0 9472
# military_3
firstgun %>%
  count(military_3)
##     military_3    n
## 1 Army Reserve   94
## 2            0 6106
secondgun %>%
  count(military_3)
##     military_3    n
## 1 Army Reserve   58
## 2            0 3442
new_data %>%
  count(military_3)
##      military_3    n
## 1: Army Reserve  152
## 2:            0 9548
# military_4
firstgun %>%
  count(military_4)
##         military_4    n
## 1 Navy active duty  151
## 2                0 6049
secondgun %>%
  count(military_4)
##         military_4    n
## 1 Navy active duty   85
## 2                0 3415
new_data %>%
  count(military_4)
##          military_4    n
## 1: Navy active duty  236
## 2:                0 9464
# military_5
firstgun %>%
  count(military_5)
##     military_5    n
## 1 Navy Reserve   52
## 2            0 6148
secondgun %>%
  count(military_5)
##     military_5    n
## 1 Navy Reserve   37
## 2            0 3463
new_data %>%
  count(military_5)
##      military_5    n
## 1: Navy Reserve   89
## 2:            0 9611
# military_6
firstgun %>%
  count(military_6)
##            military_6    n
## 1 Marines active duty   94
## 2                   0 6106
secondgun %>%
  count(military_6)
##            military_6    n
## 1 Marines active duty   41
## 2                   0 3459
new_data %>%
  count(military_6)
##             military_6    n
## 1: Marines active duty  135
## 2:                   0 9565
# military_7
firstgun %>%
  count(military_7)
##        military_7    n
## 1 Marines Reserve   32
## 2               0 6168
secondgun %>%
  count(military_7)
##        military_7    n
## 1 Marines Reserve   25
## 2               0 3475
new_data %>%
  count(military_7)
##         military_7    n
## 1: Marines Reserve   57
## 2:               0 9643
# military_8
firstgun %>%
  count(military_8)
##              military_8    n
## 1 Air Force active duty  141
## 2                     0 6059
secondgun %>%
  count(military_8)
##              military_8    n
## 1 Air Force active duty   79
## 2                     0 3421
new_data %>%
  count(military_8)
##               military_8    n
## 1: Air Force active duty  220
## 2:                     0 9480
# military_9
firstgun %>%
  count(military_9)
##           military_9    n
## 1 Air National Guard   36
## 2                  0 6164
secondgun %>%
  count(military_9)
##           military_9    n
## 1 Air National Guard   28
## 2                  0 3472
new_data %>%
  count(military_9)
##            military_9    n
## 1: Air National Guard   64
## 2:                  0 9636
# military_10
firstgun %>%
  count(military_10)
##         military_10    n
## 1 Air Force Reserve   34
## 2                 0 6166
secondgun %>%
  count(military_10)
##         military_10    n
## 1 Air Force Reserve   19
## 2                 0 3481
new_data %>%
  count(military_10)
##          military_10    n
## 1: Air Force Reserve   53
## 2:                 0 9647
# military_11
firstgun %>%
  count(military_11)
##               military_11    n
## 1 Coast Guard active duty   16
## 2                       0 6184
secondgun %>%
  count(military_11)
##               military_11    n
## 1 Coast Guard active duty   11
## 2                       0 3489
new_data %>%
  count(military_11)
##                military_11    n
## 1: Coast Guard active duty   27
## 2:                       0 9673
# military_12
firstgun %>%
  count(military_12)
##           military_12    n
## 1 Coast Guard Reserve   10
## 2                   0 6190
secondgun %>%
  count(military_12)
##           military_12    n
## 1 Coast Guard Reserve   15
## 2                   0 3485
new_data %>%
  count(military_12)
##            military_12    n
## 1: Coast Guard Reserve   25
## 2:                   0 9675
# vertcoll_1
firstgun %>%
  count(vertcoll_1)
##   vertcoll_1    n
## 1          1  121
## 2          2  102
## 3          3  202
## 4          4  619
## 5          5  968
## 6          6 1397
## 7          7 2791
firstgun %>%
  summarise(weight = NROW(vertcoll_1))
##   weight
## 1   6200
secondgun %>%
  count(vertcoll_1)
##   vertcoll_1    n
## 1          1   79
## 2          2  106
## 3          3  176
## 4          4  412
## 5          5  565
## 6          6  820
## 7          7 1335
## 8       <NA>    7
secondgun %>%
  summarise(weight = NROW(vertcoll_1))
##   weight
## 1   3500
new_data %>%
  count(vertcoll_1)
##    vertcoll_1    n
## 1:          1  200
## 2:          2  208
## 3:          3  378
## 4:          4 1031
## 5:          5 1533
## 6:          6 2217
## 7:          7 4126
## 8:       <NA>    7
new_data %>%
  summarise(weight = NROW(vertcoll_1))
##   weight
## 1   9700
# vertcoll_2
firstgun %>%
  count(vertcoll_2)
##   vertcoll_2    n
## 1          1  135
## 2          2  162
## 3          3  307
## 4          4  856
## 5          5 1128
## 6          6 1540
## 7          7 2072
firstgun %>%
  summarise(weight = NROW(vertcoll_2))
##   weight
## 1   6200
secondgun %>%
  count(vertcoll_2)
##   vertcoll_2    n
## 1          1  111
## 2          2  131
## 3          3  238
## 4          4  525
## 5          5  687
## 6          6  771
## 7          7 1027
## 8       <NA>   10
secondgun %>%
  summarise(weight = NROW(vertcoll_2))
##   weight
## 1   3500
new_data %>%
  count(vertcoll_2)
##    vertcoll_2    n
## 1:          1  246
## 2:          2  293
## 3:          3  545
## 4:          4 1381
## 5:          5 1815
## 6:          6 2311
## 7:          7 3099
## 8:       <NA>   10
new_data %>%
  summarise(weight = NROW(vertcoll_2))
##   weight
## 1   9700
# vertcoll_3
#firstgun %>%
#  count(vertcoll_3)
#firstgun %>%
#  summarise(weight = NROW(vertcoll_3))
#secondgun %>%
 # count(vertcoll_3)
#secondgun %>%
 # summarise(weight = NROW(vertcoll_3))
#new_data %>%
 # count(vertcoll_3)
#new_data %>%
 # summarise(weight = NROW(vertcoll_3))

# vertcoll_4
firstgun %>%
  count(vertcoll_4)
##   vertcoll_4    n
## 1          1   80
## 2          2   76
## 3          3  162
## 4          4  684
## 5          5 1153
## 6          6 1783
## 7          7 2262
firstgun %>%
  summarise(weight = NROW(vertcoll_4))
##   weight
## 1   6200
secondgun %>%
  count(vertcoll_4)
##   vertcoll_4   n
## 1          1  80
## 2          2 105
## 3          3 248
## 4          4 706
## 5          5 840
## 6          6 789
## 7          7 723
## 8       <NA>   9
secondgun %>%
  summarise(weight = NROW(vertcoll_4))
##   weight
## 1   3500
new_data %>%
  count(vertcoll_4)
##    vertcoll_4    n
## 1:          1  160
## 2:          2  181
## 3:          3  410
## 4:          4 1390
## 5:          5 1993
## 6:          6 2572
## 7:          7 2985
## 8:       <NA>    9
new_data %>%
  summarise(weight = NROW(vertcoll_4))
##   weight
## 1   9700
# vertcoll_5
firstgun %>%
  count(vertcoll_5)
##   vertcoll_5    n
## 1          1  168
## 2          2  214
## 3          3  381
## 4          4 1130
## 5          5 1366
## 6          6 1464
## 7          7 1477
firstgun %>%
  summarise(weight = NROW(vertcoll_5))
##   weight
## 1   6200
secondgun %>%
  count(vertcoll_5)
##   vertcoll_5    n
## 1          1   47
## 2          2   62
## 3          3  148
## 4          4  418
## 5          5  691
## 6          6  910
## 7          7 1214
## 8       <NA>   10
secondgun %>%
  summarise(weight = NROW(vertcoll_5))
##   weight
## 1   3500
new_data %>%
  count(vertcoll_5)
##    vertcoll_5    n
## 1:          1  215
## 2:          2  276
## 3:          3  529
## 4:          4 1548
## 5:          5 2057
## 6:          6 2374
## 7:          7 2691
## 8:       <NA>   10
new_data %>%
  summarise(weight = NROW(vertcoll_5))
##   weight
## 1   9700
# vertcoll_6
firstgun %>%
  count(vertcoll_6)
##   vertcoll_6    n
## 1          1   87
## 2          2   92
## 3          3  190
## 4          4  898
## 5          5 1424
## 6          6 1763
## 7          7 1746
firstgun %>%
  summarise(weight = NROW(vertcoll_6))
##   weight
## 1   6200
secondgun %>%
  count(vertcoll_6)
##   vertcoll_6   n
## 1          1 103
## 2          2 146
## 3          3 303
## 4          4 632
## 5          5 761
## 6          6 750
## 7          7 797
## 8       <NA>   8
secondgun %>%
  summarise(weight = NROW(vertcoll_6))
##   weight
## 1   3500
new_data %>%
  count(vertcoll_6)
##    vertcoll_6    n
## 1:          1  190
## 2:          2  238
## 3:          3  493
## 4:          4 1530
## 5:          5 2185
## 6:          6 2513
## 7:          7 2543
## 8:       <NA>    8
new_data %>%
  summarise(weight = NROW(vertcoll_6))
##   weight
## 1   9700
# crime_1
firstgun %>%
  count(crime_1)
##                                                                                                                                                                                       crime_1
## 1                                                                                                                                                                                           0
## 2 Someone broke into your home or attempted to break into your home by forcing a window, pushing past someone, jimmying a lock, cutting a screen, or entering through an open door of window.
##      n
## 1 4868
## 2 1332
secondgun %>%
  count(crime_1)
##                                                                                                                                                                                       crime_1
## 1                                                                                                                                                                                           0
## 2 Someone broke into your home or attempted to break into your home by forcing a window, pushing past someone, jimmying a lock, cutting a screen, or entering through an open door of window.
##      n
## 1 2686
## 2  814
new_data %>%
  count(crime_1)
##                                                                                                                                                                                        crime_1
## 1:                                                                                                                                                                                           0
## 2: Someone broke into your home or attempted to break into your home by forcing a window, pushing past someone, jimmying a lock, cutting a screen, or entering through an open door of window.
##       n
## 1: 7554
## 2: 2146
# crime_2
firstgun %>%
  count(crime_2)
##                                                                                                          crime_2
## 1                                                                                                              0
## 2 Someone illegally got into or tried to get into a hotel or motel room or vacation home where you were staying.
##      n
## 1 5889
## 2  311
secondgun %>%
  count(crime_2)
##                                                                                                          crime_2
## 1 Someone illegally got into or tried to get into a hotel or motel room or vacation home where you were staying.
## 2                                                                                                              0
##      n
## 1  245
## 2 3255
new_data %>%
  count(crime_2)
##                                                                                                           crime_2
## 1:                                                                                                              0
## 2: Someone illegally got into or tried to get into a hotel or motel room or vacation home where you were staying.
##       n
## 1: 9144
## 2:  556
# crime_3
firstgun %>%
  count(crime_3)
##                                                                            crime_3
## 1                                                                                0
## 2 Someone illegally got into or tried to get into a garage, shed, or storage room.
##      n
## 1 5584
## 2  616
secondgun %>%
  count(crime_3)
##                                                                            crime_3
## 1 Someone illegally got into or tried to get into a garage, shed, or storage room.
## 2                                                                                0
##      n
## 1  395
## 2 3105
new_data %>%
  count(crime_3)
##                                                                             crime_3
## 1:                                                                                0
## 2: Someone illegally got into or tried to get into a garage, shed, or storage room.
##       n
## 1: 8689
## 2: 1011
# crime_4
firstgun %>%
  count(crime_4)
##                                                       crime_4    n
## 1                                                           0 5598
## 2 Someone stole or used your motor vehicle without permission  602
secondgun %>%
  count(crime_4)
##                                                       crime_4    n
## 1 Someone stole or used your motor vehicle without permission  406
## 2                                                           0 3094
new_data %>%
  count(crime_4)
##                                                        crime_4    n
## 1:                                                           0 8692
## 2: Someone stole or used your motor vehicle without permission 1008
# crime_5
firstgun %>%
  count(crime_5)
##                                                              crime_5    n
## 1                                                                  0 5477
## 2 Someone stole or attempted to steal parts attached to your vehicle  723
secondgun %>%
  count(crime_5)
##                                                              crime_5    n
## 1 Someone stole or attempted to steal parts attached to your vehicle  448
## 2                                                                  0 3052
new_data %>%
  count(crime_5)
##                                                               crime_5    n
## 1:                                                                  0 8529
## 2: Someone stole or attempted to steal parts attached to your vehicle 1171
# crime_6
firstgun %>%
  count(crime_6)
##                                                                                                              crime_6
## 1                                                                                                                  0
## 2 Someone assaulted or attacked you without a weapon (for example, by hitting, slapping, kicking, or beating you up)
##      n
## 1 5362
## 2  838
secondgun %>%
  count(crime_6)
##                                                                                                              crime_6
## 1 Someone assaulted or attacked you without a weapon (for example, by hitting, slapping, kicking, or beating you up)
## 2                                                                                                                  0
##      n
## 1  588
## 2 2912
new_data %>%
  count(crime_6)
##                                                                                                               crime_6
## 1:                                                                                                                  0
## 2: Someone assaulted or attacked you without a weapon (for example, by hitting, slapping, kicking, or beating you up)
##       n
## 1: 8274
## 2: 1426
# crime_7
firstgun %>%
  count(crime_7)
##                                                                                                               crime_7
## 1                                                                                                                   0
## 2 Someone assaulted or attacked you with a weapon (for example, with a firearm, knife, baseball bat, or another item)
##      n
## 1 5807
## 2  393
secondgun %>%
  count(crime_7)
##                                                                                                               crime_7
## 1 Someone assaulted or attacked you with a weapon (for example, with a firearm, knife, baseball bat, or another item)
## 2                                                                                                                   0
##      n
## 1  289
## 2 3211
new_data %>%
  count(crime_7)
##                                                                                                                crime_7
## 1:                                                                                                                   0
## 2: Someone assaulted or attacked you with a weapon (for example, with a firearm, knife, baseball bat, or another item)
##       n
## 1: 9018
## 2:  682
# crime_8
firstgun %>%
  count(crime_8)
##                                                                               crime_8
## 1                                                                                   0
## 2 Someone you didn't know forced or coerced you to engage in unwanted sexual activity
##      n
## 1 5907
## 2  293
secondgun %>%
  count(crime_8)
##                                                                               crime_8
## 1 Someone you didn't know forced or coerced you to engage in unwanted sexual activity
## 2                                                                                   0
##      n
## 1  203
## 2 3297
new_data %>%
  count(crime_8)
##                                                                                crime_8
## 1:                                                                                   0
## 2: Someone you didn't know forced or coerced you to engage in unwanted sexual activity
##       n
## 1: 9204
## 2:  496
# crime_9
firstgun %>%
  count(crime_9)
##                                                                             crime_9
## 1                                                                                 0
## 2 Someone you know well forced or coerced you to engage in unwanted sexual activity
##      n
## 1 5674
## 2  526
secondgun %>%
  count(crime_9)
##                                                                             crime_9
## 1 Someone you know well forced or coerced you to engage in unwanted sexual activity
## 2                                                                                 0
##      n
## 1  331
## 2 3169
new_data %>%
  count(crime_9)
##                                                                              crime_9
## 1:                                                                                 0
## 2: Someone you know well forced or coerced you to engage in unwanted sexual activity
##       n
## 1: 8843
## 2:  857
# crime_10
firstgun %>%
  count(crime_10)
##                                                                            crime_10
## 1                                                                                 0
## 2 A casual acquaintance forced or coerced you to engage in unwanted sexual activity
##      n
## 1 5799
## 2  401
secondgun %>%
  count(crime_10)
##                                                                            crime_10
## 1 A casual acquaintance forced or coerced you to engage in unwanted sexual activity
## 2                                                                                 0
##      n
## 1  208
## 2 3292
new_data %>%
  count(crime_10)
##                                                                             crime_10
## 1:                                                                                 0
## 2: A casual acquaintance forced or coerced you to engage in unwanted sexual activity
##       n
## 1: 9091
## 2:  609
# defense_1
firstgun %>%
  count(defense_1)
##                                                                                       defense_1
## 1                                                                                             0
## 2 Hitting, kicking, slapping, pushing, or otherwise using physical bodily force towards someone
##      n
## 1 4493
## 2 1707
secondgun %>%
  count(defense_1)
##                                                                                       defense_1
## 1 Hitting, kicking, slapping, pushing, or otherwise using physical bodily force towards someone
## 2                                                                                             0
##      n
## 1  979
## 2 2521
new_data %>%
  count(defense_1)
##                                                                                        defense_1
## 1:                                                                                             0
## 2: Hitting, kicking, slapping, pushing, or otherwise using physical bodily force towards someone
##       n
## 1: 7014
## 2: 2686
# defense_2
firstgun %>%
  count(defense_2)
##                                                                      defense_2
## 1                                                                            0
## 2 Telling someone you had a knife, baseball bat, or another non-firearm weapon
##      n
## 1 5638
## 2  562
secondgun %>%
  count(defense_2)
##                                                                      defense_2
## 1 Telling someone you had a knife, baseball bat, or another non-firearm weapon
## 2                                                                            0
##      n
## 1  334
## 2 3166
new_data %>%
  count(defense_2)
##                                                                       defense_2
## 1:                                                                            0
## 2: Telling someone you had a knife, baseball bat, or another non-firearm weapon
##       n
## 1: 8804
## 2:  896
# defense_3
firstgun %>%
  count(defense_3)
##                                                                                              defense_3
## 1                                                                                                    0
## 2 Showing someone that you had a knife, baseball bat, or another non-firearm weapon in your possession
##      n
## 1 5647
## 2  553
secondgun %>%
  count(defense_3)
##                                                                                              defense_3
## 1 Showing someone that you had a knife, baseball bat, or another non-firearm weapon in your possession
## 2                                                                                                    0
##      n
## 1  343
## 2 3157
new_data %>%
  count(defense_3)
##                                                                                               defense_3
## 1:                                                                                                    0
## 2: Showing someone that you had a knife, baseball bat, or another non-firearm weapon in your possession
##       n
## 1: 8804
## 2:  896
# defense_4
firstgun %>%
  count(defense_4)
##                                                               defense_4    n
## 1                                                                     0 5917
## 2 Using a knife, baseball bat, or another non-firearm weapon on someone  283
secondgun %>%
  count(defense_4)
##                                                               defense_4    n
## 1 Using a knife, baseball bat, or another non-firearm weapon on someone  242
## 2                                                                     0 3258
new_data %>%
  count(defense_4)
##                                                                defense_4    n
## 1:                                                                     0 9175
## 2: Using a knife, baseball bat, or another non-firearm weapon on someone  525
# defense_5
firstgun %>%
  count(defense_5)
##                                defense_5    n
## 1                                      0 5729
## 2 Telling someone that you had a firearm  471
secondgun %>%
  count(defense_5)
##                                defense_5    n
## 1 Telling someone that you had a firearm  315
## 2                                      0 3185
new_data %>%
  count(defense_5)
##                                 defense_5    n
## 1:                                      0 8914
## 2: Telling someone that you had a firearm  786
# defense_6
firstgun %>%
  count(defense_6)
##                                                   defense_6    n
## 1                                                         0 5882
## 2 Showing someone that you had a firearm in your possession  318
secondgun %>%
  count(defense_6)
##                                                   defense_6    n
## 1 Showing someone that you had a firearm in your possession  224
## 2                                                         0 3276
new_data %>%
  count(defense_6)
##                                                    defense_6    n
## 1:                                                         0 9158
## 2: Showing someone that you had a firearm in your possession  542
# defense_7
firstgun %>%
  count(defense_7)
##                       defense_7    n
## 1                             0 5963
## 2 Pointing a firearm at someone  237
secondgun %>%
  count(defense_7)
##                       defense_7    n
## 1 Pointing a firearm at someone  194
## 2                             0 3306
new_data %>%
  count(defense_7)
##                        defense_7    n
## 1:                             0 9269
## 2: Pointing a firearm at someone  431
# defense_8
firstgun %>%
  count(defense_8)
##                                                                                                                              defense_8
## 1                                                                                                                                    0
## 2 Shooting or discharging a firearm in the air or another direction that would not hit or injure someone (for example, a warning shot)
##      n
## 1 6034
## 2  166
secondgun %>%
  count(defense_8)
##                                                                                                                              defense_8
## 1 Shooting or discharging a firearm in the air or another direction that would not hit or injure someone (for example, a warning shot)
## 2                                                                                                                                    0
##      n
## 1  128
## 2 3372
new_data %>%
  count(defense_8)
##                                                                                                                               defense_8
## 1:                                                                                                                                    0
## 2: Shooting or discharging a firearm in the air or another direction that would not hit or injure someone (for example, a warning shot)
##       n
## 1: 9406
## 2:  294
# defense_9
firstgun %>%
  count(defense_9)
##                                      defense_9    n
## 1                                            0 6095
## 2 Shooting or discharging a firearm at someone  105
secondgun %>%
  count(defense_9)
##                                      defense_9    n
## 1 Shooting or discharging a firearm at someone   75
## 2                                            0 3425
new_data %>%
  count(defense_9)
##                                       defense_9    n
## 1:                                            0 9520
## 2: Shooting or discharging a firearm at someone  180
# homereasons2
firstgun %>%
  count(homereasons2)
##                                                homereasons2    n
## 1                    I received it as a gift or inheritance  290
## 2                                           Family heirloom  153
## 3                     Personal safety or protection at home 1105
## 4              Personal safety or protection away from home  148
## 5                                           For competition   30
## 6                                               For hunting  234
## 7                            For other recreational reasons   79
## 8                                     To express my freedom   36
## 9  The firearm(s) belongs to someone else who lives with me   32
## 10    I don't know how or where to get rid of my firearm(s)   17
## 11                                                    Other   35
## 12                                                     <NA> 4041
secondgun %>%
  count(homereasons2)
##                                                homereasons2    n
## 1                    I received it as a gift or inheritance  173
## 2                                           Family heirloom   80
## 3                     Personal safety or protection at home  581
## 4              Personal safety or protection away from home   96
## 5                                           For competition   20
## 6                                               For hunting   98
## 7                            For other recreational reasons   40
## 8                                     To express my freedom   22
## 9  The firearm(s) belongs to someone else who lives with me   22
## 10    I don't know how or where to get rid of my firearm(s)   15
## 11                                                    Other   14
## 12                                                     <NA> 2339
new_data %>%
  count(homereasons2)
##                                                 homereasons2    n
##  1:                   I received it as a gift or inheritance  463
##  2:                                          Family heirloom  233
##  3:                    Personal safety or protection at home 1686
##  4:             Personal safety or protection away from home  244
##  5:                                          For competition   50
##  6:                                              For hunting  332
##  7:                           For other recreational reasons  119
##  8:                                    To express my freedom   58
##  9: The firearm(s) belongs to someone else who lives with me   54
## 10:    I don't know how or where to get rid of my firearm(s)   32
## 11:                                                    Other   49
## 12:                                                     <NA> 6380
# homesafety_1
firstgun %>%
  count(homesafety_1)
##                                homesafety_1    n
## 1                                         0 2884
## 2 Knob locks or lever handle locks in doors 3316
secondgun %>%
  count(homesafety_1)
##                                homesafety_1    n
## 1 Knob locks or lever handle locks in doors 1764
## 2                                         0 1736
new_data %>%
  count(homesafety_1)
##                                 homesafety_1    n
## 1:                                         0 4620
## 2: Knob locks or lever handle locks in doors 5080
# homesafety_2
firstgun %>%
  count(homesafety_2)
##                                 homesafety_2    n
## 1                                          0 2588
## 2 Deadbolts, chains, or slide locks on doors 3612
secondgun %>%
  count(homesafety_2)
##                                 homesafety_2    n
## 1 Deadbolts, chains, or slide locks on doors 1856
## 2                                          0 1644
new_data %>%
  count(homesafety_2)
##                                  homesafety_2    n
## 1:                                          0 4232
## 2: Deadbolts, chains, or slide locks on doors 5468
# homesafety_3
firstgun %>%
  count(homesafety_3)
##   homesafety_3    n
## 1            0 2322
## 2 Window locks 3878
firstgun %>%
  summarise(weight = NROW(homesafety_3))
##   weight
## 1   6200
secondgun %>%
  count(homesafety_3)
##   homesafety_3    n
## 1 Window locks 2051
## 2            0 1449
secondgun %>%
  summarise(weight = NROW(homesafety_3))
##   weight
## 1   3500
new_data %>%
  count(homesafety_3)
##    homesafety_3    n
## 1:            0 3771
## 2: Window locks 5929
new_data %>%
  summarise(weight = NROW(homesafety_3))
##   weight
## 1   9700
# homesafety_4
firstgun %>%
  count(homesafety_4)
##                                                              homesafety_4    n
## 1                                                                       0 4990
## 2 Bar, rod, or other device that prevents windows/doors from sliding open 1210
secondgun %>%
  count(homesafety_4)
##                                                              homesafety_4    n
## 1 Bar, rod, or other device that prevents windows/doors from sliding open  673
## 2                                                                       0 2827
new_data %>%
  count(homesafety_4)
##                                                               homesafety_4    n
## 1:                                                                       0 7817
## 2: Bar, rod, or other device that prevents windows/doors from sliding open 1883
# homesafety_5
firstgun %>%
  count(homesafety_5)
##                     homesafety_5    n
## 1                              0 5873
## 2 Bars over doors and/or windows  327
secondgun %>%
  count(homesafety_5)
##                     homesafety_5    n
## 1 Bars over doors and/or windows  234
## 2                              0 3266
new_data %>%
  count(homesafety_5)
##                      homesafety_5    n
## 1:                              0 9139
## 2: Bars over doors and/or windows  561
# homesafety_6
firstgun %>%
  count(homesafety_6)
##   homesafety_6    n
## 1            0 4422
## 2 Alarm system 1778
secondgun %>%
  count(homesafety_6)
##   homesafety_6    n
## 1 Alarm system  964
## 2            0 2536
new_data %>%
  count(homesafety_6)
##    homesafety_6    n
## 1:            0 6958
## 2: Alarm system 2742
# homesafety_7
firstgun %>%
  count(homesafety_7)
##                        homesafety_7    n
## 1                                 0 4615
## 2 Security cameras or video devices 1585
secondgun %>%
  count(homesafety_7)
##                        homesafety_7    n
## 1 Security cameras or video devices  895
## 2                                 0 2605
new_data %>%
  count(homesafety_7)
##                         homesafety_7    n
## 1:                                 0 7220
## 2: Security cameras or video devices 2480
# homesafety_8
firstgun %>%
  count(homesafety_8)
##                                              homesafety_8    n
## 1                                                       0 5174
## 2 Signs or stickers indicating the use of an alarm system 1026
secondgun %>%
  count(homesafety_8)
##                                              homesafety_8    n
## 1 Signs or stickers indicating the use of an alarm system  526
## 2                                                       0 2974
new_data %>%
  count(homesafety_8)
##                                               homesafety_8    n
## 1:                                                       0 8148
## 2: Signs or stickers indicating the use of an alarm system 1552
# homesafety_9
firstgun %>%
  count(homesafety_9)
##            homesafety_9    n
## 1                     0 5500
## 2 "Beware of dog" signs  700
secondgun %>%
  count(homesafety_9)
##            homesafety_9    n
## 1 "Beware of dog" signs  404
## 2                     0 3096
new_data %>%
  count(homesafety_9)
##             homesafety_9    n
## 1:                     0 8596
## 2: "Beware of dog" signs 1104
# homesafety_9
firstgun %>%
  count(homesafety_9)
##            homesafety_9    n
## 1                     0 5500
## 2 "Beware of dog" signs  700
secondgun %>%
  count(homesafety_9)
##            homesafety_9    n
## 1 "Beware of dog" signs  404
## 2                     0 3096
new_data %>%
  count(homesafety_9)
##             homesafety_9    n
## 1:                     0 8596
## 2: "Beware of dog" signs 1104
# homesafety_10
firstgun %>%
  count(homesafety_10)
##             homesafety_10    n
## 1                       0 5724
## 2 "Do not trespass" signs  476
secondgun %>%
  count(homesafety_10)
##             homesafety_10    n
## 1 "Do not trespass" signs  298
## 2                       0 3202
new_data %>%
  count(homesafety_10)
##              homesafety_10    n
## 1:                       0 8926
## 2: "Do not trespass" signs  774
# homesafety_11
firstgun %>%
  count(homesafety_11)
##        homesafety_11    n
## 1                  0 4276
## 2 Dogs or other pets 1924
secondgun %>%
  count(homesafety_11)
##        homesafety_11    n
## 1 Dogs or other pets  920
## 2                  0 2580
new_data %>%
  count(homesafety_11)
##         homesafety_11    n
## 1:                  0 6856
## 2: Dogs or other pets 2844
# homesafety_12
firstgun %>%
  count(homesafety_12)
##   homesafety_12    n
## 1             0 4626
## 2       Fencing 1574
secondgun %>%
  summarise(weight = NROW(homesafety_12))
##   weight
## 1   3500
# homesafety_13
firstgun %>%
  count(homesafety_13)
##                                           homesafety_13    n
## 1                                                     0 4955
## 2 Blunt objects like baseball bats, hockey sticks, etc. 1245
secondgun %>%
  count(homesafety_13)
##                                           homesafety_13    n
## 1 Blunt objects like baseball bats, hockey sticks, etc.  641
## 2                                                     0 2859
new_data %>%
  count(homesafety_13)
##                                            homesafety_13    n
## 1:                                                     0 7814
## 2: Blunt objects like baseball bats, hockey sticks, etc. 1886
# homesafety_14
firstgun %>%
  count(homesafety_14)
##   homesafety_14    n
## 1             0 4592
## 2      Firearms 1608
secondgun %>%
  count(homesafety_14)
##   homesafety_14    n
## 1      Firearms  773
## 2             0 2727
new_data %>%
  count(homesafety_14)
##    homesafety_14    n
## 1:             0 7319
## 2:      Firearms 2381
# homesafety_15
firstgun %>%
  count(homesafety_15)
##   homesafety_15    n
## 1             0 5680
## 2  Martial arts  520
secondgun %>%
  count(homesafety_15)
##   homesafety_15    n
## 1  Martial arts  245
## 2             0 3255
new_data %>%
  count(homesafety_15)
##    homesafety_15    n
## 1:             0 8935
## 2:  Martial arts  765
# homesafety_16
firstgun %>%
  count(homesafety_16)
##               homesafety_16    n
## 1                         0 4632
## 2 Sharp objects like knives 1568
secondgun %>%
  count(homesafety_16)
##               homesafety_16    n
## 1 Sharp objects like knives  786
## 2                         0 2714
new_data %>%
  count(homesafety_16)
##                homesafety_16    n
## 1:                         0 7346
## 2: Sharp objects like knives 2354
# homesafety_17
firstgun %>%
  count(homesafety_17)
##   homesafety_17    n
## 1             0 6078
## 2  Other method  122
secondgun %>%
  count(homesafety_17)
##   homesafety_17    n
## 1  Other method   42
## 2             0 3458
new_data %>%
  count(homesafety_17)
##    homesafety_17    n
## 1:             0 9536
## 2:  Other method  164
# cos_1
firstgun %>%
  count(cos_1)
##   cos_1    n
## 1     1 2133
## 2     2 1456
## 3     3  769
## 4     4  691
## 5     5  452
## 6     6  354
## 7     7  345
secondgun %>%
  count(cos_1)
##   cos_1    n
## 1     1 1133
## 2     2  672
## 3     3  428
## 4     4  450
## 5     5  314
## 6     6  260
## 7     7  236
## 8  <NA>    7
new_data %>%
  count(cos_1)
##    cos_1    n
## 1:     1 3266
## 2:     2 2128
## 3:     3 1197
## 4:     4 1141
## 5:     5  766
## 6:     6  614
## 7:     7  581
## 8:  <NA>    7
# cos_2
firstgun %>%
  count(cos_2)
##   cos_2    n
## 1     1  134
## 2     2  180
## 3     3  319
## 4     4  837
## 5     5 1298
## 6     6 1560
## 7     7 1872
secondgun %>%
  count(cos_2)
##   cos_2    n
## 1     1   90
## 2     2  118
## 3     3  222
## 4     4  510
## 5     5  761
## 6     6  771
## 7     7 1020
## 8  <NA>    8
new_data %>%
  count(cos_2)
##    cos_2    n
## 1:     1  224
## 2:     2  298
## 3:     3  541
## 4:     4 1347
## 5:     5 2059
## 6:     6 2331
## 7:     7 2892
## 8:  <NA>    8
# cos_3
firstgun %>%
  count(cos_3)
##   cos_3    n
## 1     1 1868
## 2     2 1312
## 3     3  794
## 4     4  762
## 5     5  573
## 6     6  449
## 7     7  442
secondgun %>%
  count(cos_3)
##   cos_3   n
## 1     1 984
## 2     2 621
## 3     3 458
## 4     4 462
## 5     5 404
## 6     6 264
## 7     7 300
## 8  <NA>   7
new_data %>%
  count(cos_3)
##    cos_3    n
## 1:     1 2852
## 2:     2 1933
## 3:     3 1252
## 4:     4 1224
## 5:     5  977
## 6:     6  713
## 7:     7  742
## 8:  <NA>    7
# gun1stshot
firstgun %>%
  count(gun1stshot)
##                    gun1stshot    n
## 1 I have never shot a firearm 2273
## 2          Under 10 years old  742
## 3             11-15 years old 1314
## 4             16-25 years old 1336
## 5             26-30 years old  272
## 6           Over 30 years old  263
secondgun %>%
  count(gun1stshot)
##                    gun1stshot    n
## 1 I have never shot a firearm 1385
## 2          Under 10 years old  435
## 3             11-15 years old  695
## 4             16-25 years old  695
## 5             26-30 years old  148
## 6           Over 30 years old  139
## 7                        <NA>    3
new_data %>%
  count(gun1stshot)
##                     gun1stshot    n
## 1: I have never shot a firearm 3658
## 2:          Under 10 years old 1177
## 3:             11-15 years old 2009
## 4:             16-25 years old 2031
## 5:             26-30 years old  420
## 6:           Over 30 years old  402
## 7:                        <NA>    3
# gun1stacquire
firstgun %>%
  count(gun1stacquire)
##                     gun1stacquire    n
## 1 I have never acquired a firearm 3626
## 2              Under 10 years old  172
## 3                 11-15 years old  456
## 4                 16-25 years old 1111
## 5                 26-30 years old  382
## 6               Over 30 years old  453
secondgun %>%
  count(gun1stacquire)
##                     gun1stacquire    n
## 1 I have never acquired a firearm 2072
## 2              Under 10 years old  149
## 3                 11-15 years old  239
## 4                 16-25 years old  596
## 5                 26-30 years old  222
## 6               Over 30 years old  220
## 7                            <NA>    2
new_data %>%
  count(gun1stacquire)
##                      gun1stacquire    n
## 1: I have never acquired a firearm 5698
## 2:              Under 10 years old  321
## 3:                 11-15 years old  695
## 4:                 16-25 years old 1707
## 5:                 26-30 years old  604
## 6:               Over 30 years old  673
## 7:                            <NA>    2
# acquire
firstgun %>%
  count(acquire)
##                                     acquire    n
## 1 I received it from someone else as a gift  862
## 2                     I purchased it myself 1254
## 3                                I found it  102
## 4                            I inherited it  272
## 5                      Prefer not to answer   84
## 6                                      <NA> 3626
secondgun %>%
  count(acquire)
##                                     acquire    n
## 1 I received it from someone else as a gift  502
## 2                     I purchased it myself  676
## 3                                I found it   76
## 4                            I inherited it  145
## 5                      Prefer not to answer   26
## 6                                      <NA> 2075
new_data %>%
  count(acquire)
##                                      acquire    n
## 1: I received it from someone else as a gift 1364
## 2:                     I purchased it myself 1930
## 3:                                I found it  178
## 4:                            I inherited it  417
## 5:                      Prefer not to answer  110
## 6:                                      <NA> 5701
# gunchild
firstgun %>%
  count(gunchild)
##               gunchild    n
## 1                   No 3318
## 2                  Yes 2372
## 3         I don't know  436
## 4 Prefer not to answer   74
secondgun %>%
  count(gunchild)
##               gunchild    n
## 1                   No 1901
## 2                  Yes 1339
## 3         I don't know  247
## 4 Prefer not to answer   10
## 5                 <NA>    3
new_data %>%
  count(gunchild)
##                gunchild    n
## 1:                   No 5219
## 2:                  Yes 3711
## 3:         I don't know  683
## 4: Prefer not to answer   84
## 5:                 <NA>    3
# acquirereason_1
firstgun %>%
  count(acquirereason_1)
##                         acquirereason_1    n
## 1 Personal safety or protection at home 1058
## 2                                     0 5142
secondgun %>%
  count(acquirereason_1)
##                         acquirereason_1    n
## 1 Personal safety or protection at home  633
## 2                                     0 2867
new_data %>%
  count(acquirereason_1)
##                          acquirereason_1    n
## 1: Personal safety or protection at home 1691
## 2:                                     0 8009
# acquirereason_2
firstgun %>%
  count(acquirereason_2)
##                                acquirereason_2    n
## 1 Personal safety or protection away from home  605
## 2                                            0 5595
secondgun %>%
  count(acquirereason_2)
##                                acquirereason_2    n
## 1 Personal safety or protection away from home  277
## 2                                            0 3223
new_data %>%
  count(acquirereason_2)
##                                 acquirereason_2    n
## 1: Personal safety or protection away from home  882
## 2:                                            0 8818
# acquirereason_3
firstgun %>%
  count(acquirereason_3)
##   acquirereason_3    n
## 1 For competition  181
## 2               0 6019
secondgun %>%
  count(acquirereason_3)
##   acquirereason_3    n
## 1 For competition   96
## 2               0 3404
new_data %>%
  count(acquirereason_3)
##    acquirereason_3    n
## 1: For competition  277
## 2:               0 9423
# acquirereason_4
firstgun %>%
  count(acquirereason_4)
##   acquirereason_4    n
## 1     For hunting  729
## 2               0 5471
secondgun %>%
  count(acquirereason_4)
##   acquirereason_4    n
## 1     For hunting  346
## 2               0 3154
new_data %>%
  count(acquirereason_4)
##    acquirereason_4    n
## 1:     For hunting 1075
## 2:               0 8625
# acquirereason_5
firstgun %>%
  count(acquirereason_5)
##                  acquirereason_5    n
## 1 For other recreational reasons  456
## 2                              0 5744
secondgun %>%
  count(acquirereason_5)
##                  acquirereason_5    n
## 1 For other recreational reasons  188
## 2                              0 3312
new_data %>%
  count(acquirereason_5)
##                   acquirereason_5    n
## 1: For other recreational reasons  644
## 2:                              0 9056
# acquirereason_6
firstgun %>%
  count(acquirereason_6)
##         acquirereason_6    n
## 1 To express my freedom  178
## 2                     0 6022
secondgun %>%
  count(acquirereason_6)
##         acquirereason_6    n
## 1 To express my freedom   58
## 2                     0 3442
new_data %>%
  count(acquirereason_6)
##          acquirereason_6    n
## 1: To express my freedom  236
## 2:                     0 9464
# acquirereason_7
firstgun %>%
  count(acquirereason_7)
##   acquirereason_7    n
## 1           Other   96
## 2               0 6104
secondgun %>%
  count(acquirereason_7)
##   acquirereason_7    n
## 1           Other   56
## 2               0 3444
new_data %>%
  count(acquirereason_7)
##    acquirereason_7    n
## 1:           Other  152
## 2:               0 9548
# acquiremore (missing is high-more than 50%)
firstgun %>%
  count(acquiremore)
##            acquiremore    n
## 1                   No 1251
## 2                  Yes 1267
## 3 Prefer not to answer   56
## 4                 <NA> 3626
secondgun %>%
  count(acquiremore)
##            acquiremore    n
## 1                   No  669
## 2                  Yes  723
## 3 Prefer not to answer   31
## 4                 <NA> 2077
new_data %>%
  count(acquiremore)
##             acquiremore    n
## 1:                   No 1920
## 2:                  Yes 1990
## 3: Prefer not to answer   87
## 4:                 <NA> 5703
# guns_no_1
firstgun %>%
  count(guns_no_1)
##     guns_no_1    n
## 1           0  729
## 2           1 1102
## 3           2  387
## 4           3  160
## 5           4   81
## 6           5   37
## 7           6   23
## 8           7    8
## 9           8   10
## 10          9    8
## 11 10 or more   29
## 12       <NA> 3626
secondgun %>%
  count(guns_no_1)
##     guns_no_1    n
## 1           0  399
## 2           1  631
## 3           2  193
## 4           3   83
## 5           4   38
## 6           5   22
## 7           6   12
## 8           7    9
## 9           8    5
## 10 10 or more   21
## 11       <NA> 2087
new_data %>%
  count(guns_no_1)
##      guns_no_1    n
##  1:          0 1128
##  2:          1 1733
##  3:          2  580
##  4:          3  243
##  5:          4  119
##  6:          5   59
##  7:          6   35
##  8:          7   17
##  9:          8   15
## 10:          9    8
## 11: 10 or more   50
## 12:       <NA> 5713
# guns_no_2
firstgun %>%
  count(guns_no_2)
##     guns_no_2    n
## 1           0 1417
## 2           1  678
## 3           2  260
## 4           3   82
## 5           4   60
## 6           5   28
## 7           6   19
## 8           7    4
## 9           8    7
## 10          9    2
## 11 10 or more   17
## 12       <NA> 3626
secondgun %>%
  count(guns_no_2)
##     guns_no_2    n
## 1           0  765
## 2           1  378
## 3           2  129
## 4           3   63
## 5           4   27
## 6           5   19
## 7           6    8
## 8           7    5
## 9           8    2
## 10          9    1
## 11 10 or more   16
## 12       <NA> 2087
new_data %>%
  count(guns_no_2)
##      guns_no_2    n
##  1:          0 2182
##  2:          1 1056
##  3:          2  389
##  4:          3  145
##  5:          4   87
##  6:          5   47
##  7:          6   27
##  8:          7    9
##  9:          8    9
## 10:          9    3
## 11: 10 or more   33
## 12:       <NA> 5713
# guns_no_3
firstgun %>%
  count(guns_no_3)
##     guns_no_3    n
## 1           0 1382
## 2           1  640
## 3           2  237
## 4           3  110
## 5           4   63
## 6           5   50
## 7           6   29
## 8           7   17
## 9           8   10
## 10          9    7
## 11 10 or more   29
## 12       <NA> 3626
secondgun %>%
  count(guns_no_3)
##     guns_no_3    n
## 1           0  784
## 2           1  333
## 3           2  109
## 4           3   67
## 5           4   36
## 6           5   18
## 7           6   16
## 8           7    8
## 9           8   10
## 10          9    3
## 11 10 or more   25
## 12       <NA> 2091
new_data %>%
  count(guns_no_3)
##      guns_no_3    n
##  1:          0 2166
##  2:          1  973
##  3:          2  346
##  4:          3  177
##  5:          4   99
##  6:          5   68
##  7:          6   45
##  8:          7   25
##  9:          8   20
## 10:          9   10
## 11: 10 or more   54
## 12:       <NA> 5717
# homereasons_1
firstgun %>%
  count(homereasons_1)
##                            homereasons_1    n
## 1                                      0 5542
## 2 I received it as a gift or inheritance  658
secondgun %>%
  count(homereasons_1)
##                            homereasons_1    n
## 1 I received it as a gift or inheritance  351
## 2                                      0 3149
new_data %>%
  count(homereasons_1)
##                             homereasons_1    n
## 1:                                      0 8691
## 2: I received it as a gift or inheritance 1009
# homereasons_2
firstgun %>%
  count(homereasons_2)
##     homereasons_2    n
## 1               0 5751
## 2 Family heirloom  449
secondgun %>%
  count(homereasons_2)
##     homereasons_2    n
## 1 Family heirloom  239
## 2               0 3261
new_data %>%
  count(homereasons_2)
##      homereasons_2    n
## 1:               0 9012
## 2: Family heirloom  688
# homereasons_3
firstgun %>%
  count(homereasons_3)
##                           homereasons_3    n
## 1                                     0 4678
## 2 Personal safety or protection at home 1522
secondgun %>%
  count(homereasons_3)
##                           homereasons_3    n
## 1 Personal safety or protection at home  773
## 2                                     0 2727
new_data %>%
  count(homereasons_3)
##                            homereasons_3    n
## 1:                                     0 7405
## 2: Personal safety or protection at home 2295
# homereasons_4
firstgun %>%
  count(homereasons_4)
##                                  homereasons_4    n
## 1                                            0 5514
## 2 Personal safety or protection away from home  686
secondgun %>%
  count(homereasons_4)
##                                  homereasons_4    n
## 1 Personal safety or protection away from home  343
## 2                                            0 3157
new_data %>%
  count(homereasons_4)
##                                   homereasons_4    n
## 1:                                            0 8671
## 2: Personal safety or protection away from home 1029
# homereasons_5
firstgun %>%
  count(homereasons_5)
##     homereasons_5    n
## 1               0 6046
## 2 For competition  154
secondgun %>%
  count(homereasons_5)
##     homereasons_5    n
## 1 For competition   95
## 2               0 3405
new_data %>%
  count(homereasons_5)
##      homereasons_5    n
## 1:               0 9451
## 2: For competition  249
# homereasons_6
firstgun %>%
  count(homereasons_6)
##   homereasons_6    n
## 1             0 5590
## 2   For hunting  610
secondgun %>%
  count(homereasons_6)
##   homereasons_6    n
## 1   For hunting  287
## 2             0 3213
new_data %>%
  count(homereasons_6)
##    homereasons_6    n
## 1:             0 8803
## 2:   For hunting  897
# homereasons_7
firstgun %>%
  count(homereasons_7)
##                    homereasons_7    n
## 1                              0 5718
## 2 For other recreational reasons  482
secondgun %>%
  count(homereasons_7)
##                    homereasons_7    n
## 1 For other recreational reasons  198
## 2                              0 3302
new_data %>%
  count(homereasons_7)
##                     homereasons_7    n
## 1:                              0 9020
## 2: For other recreational reasons  680
# homereasons_8
firstgun %>%
  count(homereasons_8)
##           homereasons_8    n
## 1                     0 5909
## 2 To express my freedom  291
secondgun %>%
  count(homereasons_8)
##           homereasons_8    n
## 1 To express my freedom  146
## 2                     0 3354
new_data %>%
  count(homereasons_8)
##            homereasons_8    n
## 1:                     0 9263
## 2: To express my freedom  437
# homereasons_9
firstgun %>%
  count(homereasons_9)
##                                              homereasons_9    n
## 1                                                        0 6029
## 2 The firearm(s) belongs to someone else who lives with me  171
secondgun %>%
  count(homereasons_9)
##                                              homereasons_9    n
## 1 The firearm(s) belongs to someone else who lives with me   78
## 2                                                        0 3422
new_data %>%
  count(homereasons_9)
##                                               homereasons_9    n
## 1:                                                        0 9451
## 2: The firearm(s) belongs to someone else who lives with me  249
# homereasons_10
firstgun %>%
  count(homereasons_10)
##                                          homereasons_10    n
## 1                                                     0 6166
## 2 I don't know how or where to get rid of my firearm(s)   34
secondgun %>%
  count(homereasons_10)
##                                          homereasons_10    n
## 1 I don't know how or where to get rid of my firearm(s)   19
## 2                                                     0 3481
new_data %>%
  count(homereasons_10)
##                                           homereasons_10    n
## 1:                                                     0 9647
## 2: I don't know how or where to get rid of my firearm(s)   53
# homereasons_11
firstgun %>%
  count(homereasons_11)
##   homereasons_11    n
## 1              0 6145
## 2          Other   55
secondgun %>%
  count(homereasons_11)
##   homereasons_11    n
## 1          Other   25
## 2              0 3475
new_data %>%
  count(homereasons_11)
##    homereasons_11    n
## 1:              0 9620
## 2:          Other   80
# gunstorage_1
firstgun %>%
  count(gunstorage_1)
##   gunstorage_1    n
## 1     Gun safe 1092
## 2            0 5108
secondgun %>%
  count(gunstorage_1)
##   gunstorage_1    n
## 1     Gun safe  601
## 2            0 2899
new_data %>%
  count(gunstorage_1)
##    gunstorage_1    n
## 1:     Gun safe 1693
## 2:            0 8007
# gunstorage_2
firstgun %>%
  count(gunstorage_2)
##   gunstorage_2    n
## 1  Gun cabinet  440
## 2            0 5760
secondgun %>%
  count(gunstorage_2)
##   gunstorage_2    n
## 1  Gun cabinet  256
## 2            0 3244
new_data %>%
  count(gunstorage_2)
##    gunstorage_2    n
## 1:  Gun cabinet  696
## 2:            0 9004
# gunstorage_3
firstgun %>%
  count(gunstorage_3)
##                                      gunstorage_3    n
## 1 Locking device (e.g., trigger lock, cable lock)  533
## 2                                               0 5667
secondgun %>%
  count(gunstorage_3)
##                                      gunstorage_3    n
## 1 Locking device (e.g., trigger lock, cable lock)  366
## 2                                               0 3134
new_data %>%
  count(gunstorage_3)
##                                       gunstorage_3    n
## 1: Locking device (e.g., trigger lock, cable lock)  899
## 2:                                               0 8801
# gunstorage_4
firstgun %>%
  count(gunstorage_4)
##                       gunstorage_4    n
## 1 Hard cases (e.g., Pelican cases)  457
## 2                                0 5743
secondgun %>%
  count(gunstorage_4)
##                       gunstorage_4    n
## 1 Hard cases (e.g., Pelican cases)  243
## 2                                0 3257
new_data %>%
  count(gunstorage_4)
##                        gunstorage_4    n
## 1: Hard cases (e.g., Pelican cases)  700
## 2:                                0 9000
# gunstorage_5
firstgun %>%
  count(gunstorage_5)
##                         gunstorage_5    n
## 1 Hide in closet or drawer, unloaded  515
## 2                                  0 5685
secondgun %>%
  count(gunstorage_5)
##                         gunstorage_5    n
## 1 Hide in closet or drawer, unloaded  241
## 2                                  0 3259
new_data %>%
  count(gunstorage_5)
##                          gunstorage_5    n
## 1: Hide in closet or drawer, unloaded  756
## 2:                                  0 8944
# gunstorage_6
firstgun %>%
  count(gunstorage_6)
##                       gunstorage_6    n
## 1 Hide in closet or drawer, loaded  344
## 2                                0 5856
secondgun %>%
  count(gunstorage_6)
##                       gunstorage_6    n
## 1 Hide in closet or drawer, loaded  195
## 2                                0 3305
new_data %>%
  count(gunstorage_6)
##                        gunstorage_6    n
## 1: Hide in closet or drawer, loaded  539
## 2:                                0 9161
# gunstorage_7
firstgun %>%
  count(gunstorage_7)
##             gunstorage_7    n
## 1 Other safety procedure  120
## 2                      0 6080
secondgun %>%
  count(gunstorage_7)
##             gunstorage_7    n
## 1 Other safety procedure   42
## 2                      0 3458
new_data %>%
  count(gunstorage_7)
##              gunstorage_7    n
## 1: Other safety procedure  162
## 2:                      0 9538
# acquireplan
firstgun %>%
  count(acquireplan)
##            acquireplan    n
## 1                   No 4043
## 2                  Yes  793
## 3  Haven't decided yet 1292
## 4 Prefer not to answer   72
secondgun %>%
  count(acquireplan)
##            acquireplan    n
## 1                   No 2365
## 2                  Yes  516
## 3  Haven't decided yet  596
## 4 Prefer not to answer   16
## 5                 <NA>    7
new_data %>%
  count(acquireplan)
##             acquireplan    n
## 1:                   No 6408
## 2:                  Yes 1309
## 3:  Haven't decided yet 1888
## 4: Prefer not to answer   88
## 5:                 <NA>    7
# acquireplan2_1
firstgun %>%
  count(acquireplan2_1)
##                          acquireplan2_1    n
## 1 Personal safety or protection at home 1477
## 2                                     0 4723
secondgun %>%
  count(acquireplan2_1)
##                          acquireplan2_1    n
## 1 Personal safety or protection at home  779
## 2                                     0 2721
new_data %>%
  count(acquireplan2_1)
##                           acquireplan2_1    n
## 1: Personal safety or protection at home 2256
## 2:                                     0 7444
# acquireplan2_2
firstgun %>%
  count(acquireplan2_2)
##                                 acquireplan2_2    n
## 1 Personal safety or protection away from home  818
## 2                                            0 5382
secondgun %>%
  count(acquireplan2_2)
##                                 acquireplan2_2    n
## 1 Personal safety or protection away from home  426
## 2                                            0 3074
new_data %>%
  count(acquireplan2_2)
##                                  acquireplan2_2    n
## 1: Personal safety or protection away from home 1244
## 2:                                            0 8456
# acquireplan2_3
firstgun %>%
  count(acquireplan2_3)
##    acquireplan2_3    n
## 1 For competition  155
## 2               0 6045
secondgun %>%
  count(acquireplan2_3)
##    acquireplan2_3    n
## 1 For competition  100
## 2               0 3400
new_data %>%
  count(acquireplan2_3)
##     acquireplan2_3    n
## 1: For competition  255
## 2:               0 9445
# acquireplan2_4
firstgun %>%
  count(acquireplan2_4)
##   acquireplan2_4    n
## 1    For hunting  363
## 2              0 5837
secondgun %>%
  count(acquireplan2_4)
##   acquireplan2_4    n
## 1    For hunting  150
## 2              0 3350
new_data %>%
  count(acquireplan2_4)
##    acquireplan2_4    n
## 1:    For hunting  513
## 2:              0 9187
# acquireplan2_5
firstgun %>%
  count(acquireplan2_5)
##                   acquireplan2_5    n
## 1 For other recreational reasons  423
## 2                              0 5777
secondgun %>%
  count(acquireplan2_5)
##                   acquireplan2_5    n
## 1 For other recreational reasons  132
## 2                              0 3368
new_data %>%
  count(acquireplan2_5)
##                    acquireplan2_5    n
## 1: For other recreational reasons  555
## 2:                              0 9145
# acquireplan2_6
firstgun %>%
  count(acquireplan2_6)
##          acquireplan2_6    n
## 1 To express my freedom  312
## 2                     0 5888
secondgun %>%
  count(acquireplan2_6)
##          acquireplan2_6    n
## 1 To express my freedom   97
## 2                     0 3403
new_data %>%
  count(acquireplan2_6)
##           acquireplan2_6    n
## 1: To express my freedom  409
## 2:                     0 9291
# acquireplan2_7
firstgun %>%
  count(acquireplan2_7)
##   acquireplan2_7    n
## 1          Other   83
## 2              0 6117
secondgun %>%
  count(acquireplan2_7)
##   acquireplan2_7    n
## 1          Other   38
## 2              0 3462
new_data %>%
  count(acquireplan2_7)
##    acquireplan2_7    n
## 1:          Other  121
## 2:              0 9579
# panas_1
firstgun %>%
  count(panas_1)
##                       panas_1    n
## 1 Very slightly or not at all  431
## 2                    A little  876
## 3                  Moderately 1821
## 4                 Quite a bit 1882
## 5                   Extremely 1190
secondgun %>%
  count(panas_1)
##   panas_1    n
## 1   empty 3500
new_data %>%
  count(panas_1)
##                        panas_1    n
## 1: Very slightly or not at all  431
## 2:                    A little  876
## 3:                  Moderately 1821
## 4:                 Quite a bit 1882
## 5:                   Extremely 1190
## 6:                       empty 3500
# panas_2
firstgun %>%
  count(panas_2)
##                       panas_2    n
## 1 Very slightly or not at all  455
## 2                    A little  749
## 3                  Moderately 1864
## 4                 Quite a bit 2143
## 5                   Extremely  989
secondgun %>%
  count(panas_2)
##   panas_2    n
## 1   empty 3500
new_data %>%
  count(panas_2)
##                        panas_2    n
## 1: Very slightly or not at all  455
## 2:                    A little  749
## 3:                  Moderately 1864
## 4:                 Quite a bit 2143
## 5:                   Extremely  989
## 6:                       empty 3500
# panas_3
firstgun %>%
  count(panas_3)
##                       panas_3    n
## 1 Very slightly or not at all  481
## 2                    A little  775
## 3                  Moderately 1740
## 4                 Quite a bit 2018
## 5                   Extremely 1186
secondgun %>%
  count(panas_3)
##   panas_3    n
## 1   empty 3500
new_data %>%
  count(panas_3)
##                        panas_3    n
## 1: Very slightly or not at all  481
## 2:                    A little  775
## 3:                  Moderately 1740
## 4:                 Quite a bit 2018
## 5:                   Extremely 1186
## 6:                       empty 3500
# panas_4
firstgun %>%
  count(panas_4)
##                       panas_4    n
## 1 Very slightly or not at all  747
## 2                    A little 1210
## 3                  Moderately 1957
## 4                 Quite a bit 1444
## 5                   Extremely  842
secondgun %>%
  count(panas_4)
##   panas_4    n
## 1   empty 3500
new_data %>%
  count(panas_4)
##                        panas_4    n
## 1: Very slightly or not at all  747
## 2:                    A little 1210
## 3:                  Moderately 1957
## 4:                 Quite a bit 1444
## 5:                   Extremely  842
## 6:                       empty 3500
# panas_5
firstgun %>%
  count(panas_5)
##                       panas_5    n
## 1 Very slightly or not at all  509
## 2                    A little 1004
## 3                  Moderately 1898
## 4                 Quite a bit 1750
## 5                   Extremely 1039
secondgun %>%
  count(panas_5)
##   panas_5    n
## 1   empty 3500
new_data %>%
  count(panas_5)
##                        panas_5    n
## 1: Very slightly or not at all  509
## 2:                    A little 1004
## 3:                  Moderately 1898
## 4:                 Quite a bit 1750
## 5:                   Extremely 1039
## 6:                       empty 3500
# panas_6
firstgun %>%
  count(panas_6)
##                       panas_6    n
## 1 Very slightly or not at all 3247
## 2                    A little 1362
## 3                  Moderately  835
## 4                 Quite a bit  483
## 5                   Extremely  273
secondgun %>%
  count(panas_6)
##   panas_6    n
## 1   empty 3500
new_data %>%
  count(panas_6)
##                        panas_6    n
## 1: Very slightly or not at all 3247
## 2:                    A little 1362
## 3:                  Moderately  835
## 4:                 Quite a bit  483
## 5:                   Extremely  273
## 6:                       empty 3500
# panas_7
firstgun %>%
  count(panas_7)
##                       panas_7    n
## 1 Very slightly or not at all 2144
## 2                    A little 1711
## 3                  Moderately 1120
## 4                 Quite a bit  785
## 5                   Extremely  440
secondgun %>%
  count(panas_7)
##   panas_7    n
## 1   empty 3500
new_data %>%
  count(panas_7)
##                        panas_7    n
## 1: Very slightly or not at all 2144
## 2:                    A little 1711
## 3:                  Moderately 1120
## 4:                 Quite a bit  785
## 5:                   Extremely  440
## 6:                       empty 3500
# panas_8
firstgun %>%
  count(panas_8)
##                       panas_8    n
## 1 Very slightly or not at all 1952
## 2                    A little 1938
## 3                  Moderately 1161
## 4                 Quite a bit  708
## 5                   Extremely  441
secondgun %>%
  count(panas_8)
##   panas_8    n
## 1   empty 3500
new_data %>%
  count(panas_8)
##                        panas_8    n
## 1: Very slightly or not at all 1952
## 2:                    A little 1938
## 3:                  Moderately 1161
## 4:                 Quite a bit  708
## 5:                   Extremely  441
## 6:                       empty 3500
# panas_9
firstgun %>%
  count(panas_9)
##                       panas_9    n
## 1 Very slightly or not at all 3689
## 2                    A little 1115
## 3                  Moderately  734
## 4                 Quite a bit  404
## 5                   Extremely  258
secondgun %>%
  count(panas_9)
##   panas_9    n
## 1   empty 3500
new_data %>%
  count(panas_9)
##                        panas_9    n
## 1: Very slightly or not at all 3689
## 2:                    A little 1115
## 3:                  Moderately  734
## 4:                 Quite a bit  404
## 5:                   Extremely  258
## 6:                       empty 3500
# panas_10
firstgun %>%
  count(panas_10)
##                      panas_10    n
## 1 Very slightly or not at all 3657
## 2                    A little 1118
## 3                  Moderately  836
## 4                 Quite a bit  379
## 5                   Extremely  210
secondgun %>%
  count(panas_10)
##   panas_10    n
## 1    empty 3500
new_data %>%
  count(panas_10)
##                       panas_10    n
## 1: Very slightly or not at all 3657
## 2:                    A little 1118
## 3:                  Moderately  836
## 4:                 Quite a bit  379
## 5:                   Extremely  210
## 6:                       empty 3500
# PurchaseWhen (NA ???)
firstgun %>%
  count(PurchaseWhen)
##   PurchaseWhen    n
## 1        empty 6200
secondgun %>%
  count(PurchaseWhen)
##         PurchaseWhen    n
## 1          Next week   38
## 2   1 month from now   90
## 3  3 months from now  161
## 4  6 months from now  227
## 5  9 months from now   95
## 6 12 months from now  507
## 7               <NA> 2382
new_data %>%
  count(PurchaseWhen)
##          PurchaseWhen    n
## 1:              empty 6200
## 2:          Next week   38
## 3:   1 month from now   90
## 4:  3 months from now  161
## 5:  6 months from now  227
## 6:  9 months from now   95
## 7: 12 months from now  507
## 8:               <NA> 2382
# C_19SS_D_1
firstgun %>%
  count(C_19SS_D_1)
##   C_19SS_D_1    n
## 1      empty 6200
secondgun %>%
  count(C_19SS_D_1)
##   C_19SS_D_1   n
## 1 Not at all 466
## 2   Slightly 786
## 3 Moderately 952
## 4       Very 638
## 5  Extremely 650
## 6       <NA>   8
new_data %>%
  count(C_19SS_D_1)
##    C_19SS_D_1    n
## 1:      empty 6200
## 2: Not at all  466
## 3:   Slightly  786
## 4: Moderately  952
## 5:       Very  638
## 6:  Extremely  650
## 7:       <NA>    8
# C_19SS_D_2
firstgun %>%
  count(C_19SS_D_2)
##   C_19SS_D_2    n
## 1      empty 6200
secondgun %>%
  count(C_19SS_D_2)
##   C_19SS_D_2   n
## 1 Not at all 663
## 2   Slightly 784
## 3 Moderately 960
## 4       Very 633
## 5  Extremely 453
## 6       <NA>   7
new_data %>%
  count(C_19SS_D_2)
##    C_19SS_D_2    n
## 1:      empty 6200
## 2: Not at all  663
## 3:   Slightly  784
## 4: Moderately  960
## 5:       Very  633
## 6:  Extremely  453
## 7:       <NA>    7
# C_19SS_D_3
firstgun %>%
  count(C_19SS_D_3)
##   C_19SS_D_3    n
## 1      empty 6200
secondgun %>%
  count(C_19SS_D_3)
##   C_19SS_D_3   n
## 1 Not at all 588
## 2   Slightly 708
## 3 Moderately 914
## 4       Very 686
## 5  Extremely 594
## 6       <NA>  10
new_data %>%
  count(C_19SS_D_3)
##    C_19SS_D_3    n
## 1:      empty 6200
## 2: Not at all  588
## 3:   Slightly  708
## 4: Moderately  914
## 5:       Very  686
## 6:  Extremely  594
## 7:       <NA>   10
# C_19SS_D_4
firstgun %>%
  count(C_19SS_D_4)
##   C_19SS_D_4    n
## 1      empty 6200
secondgun %>%
  count(C_19SS_D_4)
##   C_19SS_D_4   n
## 1 Not at all 544
## 2   Slightly 705
## 3 Moderately 899
## 4       Very 730
## 5  Extremely 609
## 6       <NA>  13
new_data %>%
  count(C_19SS_D_4)
##    C_19SS_D_4    n
## 1:      empty 6200
## 2: Not at all  544
## 3:   Slightly  705
## 4: Moderately  899
## 5:       Very  730
## 6:  Extremely  609
## 7:       <NA>   13
# C_19SS_D_5
firstgun %>%
  count(C_19SS_D_5)
##   C_19SS_D_5    n
## 1      empty 6200
secondgun %>%
  count(C_19SS_D_5)
##   C_19SS_D_5   n
## 1 Not at all 563
## 2   Slightly 650
## 3 Moderately 887
## 4       Very 752
## 5  Extremely 636
## 6       <NA>  12
new_data %>%
  count(C_19SS_D_5)
##    C_19SS_D_5    n
## 1:      empty 6200
## 2: Not at all  563
## 3:   Slightly  650
## 4: Moderately  887
## 5:       Very  752
## 6:  Extremely  636
## 7:       <NA>   12
# C_19SS_D_6
firstgun %>%
  count(C_19SS_D_6)
##   C_19SS_D_6    n
## 1      empty 6200
secondgun %>%
  count(C_19SS_D_6)
##   C_19SS_D_6   n
## 1 Not at all 584
## 2   Slightly 757
## 3 Moderately 905
## 4       Very 688
## 5  Extremely 550
## 6       <NA>  16
new_data %>%
  count(C_19SS_D_6)
##    C_19SS_D_6    n
## 1:      empty 6200
## 2: Not at all  584
## 3:   Slightly  757
## 4: Moderately  905
## 5:       Very  688
## 6:  Extremely  550
## 7:       <NA>   16
# C_19SS_SESC_1
firstgun %>%
  count(C_19SS_SESC_1)
##   C_19SS_SESC_1    n
## 1         empty 6200
secondgun %>%
  count(C_19SS_SESC_1)
##   C_19SS_SESC_1    n
## 1    Not at all 1238
## 2      Slightly  773
## 3    Moderately  728
## 4          Very  408
## 5     Extremely  341
## 6          <NA>   12
new_data %>%
  count(C_19SS_SESC_1)
##    C_19SS_SESC_1    n
## 1:         empty 6200
## 2:    Not at all 1238
## 3:      Slightly  773
## 4:    Moderately  728
## 5:          Very  408
## 6:     Extremely  341
## 7:          <NA>   12
# C_19SS_SESC_2
firstgun %>%
  count(C_19SS_SESC_2)
##   C_19SS_SESC_2    n
## 1         empty 6200
secondgun %>%
  count(C_19SS_SESC_2)
##   C_19SS_SESC_2    n
## 1    Not at all 1303
## 2      Slightly  734
## 3    Moderately  687
## 4          Very  457
## 5     Extremely  306
## 6          <NA>   13
new_data %>%
  count(C_19SS_SESC_2)
##    C_19SS_SESC_2    n
## 1:         empty 6200
## 2:    Not at all 1303
## 3:      Slightly  734
## 4:    Moderately  687
## 5:          Very  457
## 6:     Extremely  306
## 7:          <NA>   13
# C_19SS_SESC_3
firstgun %>%
  count(C_19SS_SESC_3)
##   C_19SS_SESC_3    n
## 1         empty 6200
secondgun %>%
  count(C_19SS_SESC_3)
##   C_19SS_SESC_3    n
## 1    Not at all 1229
## 2      Slightly  738
## 3    Moderately  736
## 4          Very  437
## 5     Extremely  347
## 6          <NA>   13
new_data %>%
  count(C_19SS_SESC_3)
##    C_19SS_SESC_3    n
## 1:         empty 6200
## 2:    Not at all 1229
## 3:      Slightly  738
## 4:    Moderately  736
## 5:          Very  437
## 6:     Extremely  347
## 7:          <NA>   13
# C_19SS_SESC_4
firstgun %>%
  count(C_19SS_SESC_4)
##   C_19SS_SESC_4    n
## 1         empty 6200
secondgun %>%
  count(C_19SS_SESC_4)
##   C_19SS_SESC_4    n
## 1    Not at all 1444
## 2      Slightly  634
## 3    Moderately  616
## 4          Very  457
## 5     Extremely  338
## 6          <NA>   11
new_data %>%
  count(C_19SS_SESC_4)
##    C_19SS_SESC_4    n
## 1:         empty 6200
## 2:    Not at all 1444
## 3:      Slightly  634
## 4:    Moderately  616
## 5:          Very  457
## 6:     Extremely  338
## 7:          <NA>   11
# C_19SS_SESC_5
firstgun %>%
  count(C_19SS_SESC_5)
##   C_19SS_SESC_5    n
## 1         empty 6200
secondgun %>%
  count(C_19SS_SESC_5)
##   C_19SS_SESC_5   n
## 1    Not at all 857
## 2      Slightly 766
## 3    Moderately 751
## 4          Very 651
## 5     Extremely 463
## 6          <NA>  12
new_data %>%
  count(C_19SS_SESC_5)
##    C_19SS_SESC_5    n
## 1:         empty 6200
## 2:    Not at all  857
## 3:      Slightly  766
## 4:    Moderately  751
## 5:          Very  651
## 6:     Extremely  463
## 7:          <NA>   12
# C_19SS_SESC_6
firstgun %>%
  count(C_19SS_SESC_6)
##   C_19SS_SESC_6    n
## 1         empty 6200
secondgun %>%
  count(C_19SS_SESC_6)
##   C_19SS_SESC_6    n
## 1    Not at all 1404
## 2      Slightly  630
## 3    Moderately  661
## 4          Very  434
## 5     Extremely  360
## 6          <NA>   11
new_data %>%
  count(C_19SS_SESC_6)
##    C_19SS_SESC_6    n
## 1:         empty 6200
## 2:    Not at all 1404
## 3:      Slightly  630
## 4:    Moderately  661
## 5:          Very  434
## 6:     Extremely  360
## 7:          <NA>   11
# C_19SS_1
firstgun %>%
  count(C_19SS_1)
##   C_19SS_1    n
## 1    empty 6200
secondgun %>%
  count(C_19SS_1)
##     C_19SS_1    n
## 1 Not at all 1248
## 2   Slightly  737
## 3 Moderately  700
## 4       Very  418
## 5  Extremely  384
## 6       <NA>   13
new_data %>%
  count(C_19SS_1)
##      C_19SS_1    n
## 1:      empty 6200
## 2: Not at all 1248
## 3:   Slightly  737
## 4: Moderately  700
## 5:       Very  418
## 6:  Extremely  384
## 7:       <NA>   13
# C_19SS_2
firstgun %>%
  count(C_19SS_2)
##   C_19SS_2    n
## 1    empty 6200
secondgun %>%
  count(C_19SS_2)
##     C_19SS_2    n
## 1 Not at all 1213
## 2   Slightly  819
## 3 Moderately  694
## 4       Very  459
## 5  Extremely  303
## 6       <NA>   12
new_data %>%
  count(C_19SS_2)
##      C_19SS_2    n
## 1:      empty 6200
## 2: Not at all 1213
## 3:   Slightly  819
## 4: Moderately  694
## 5:       Very  459
## 6:  Extremely  303
## 7:       <NA>   12
# C_19SS_X_3
firstgun %>%
  count(C_19SS_X_3)
##   C_19SS_X_3    n
## 1      empty 6200
secondgun %>%
  count(C_19SS_X_3)
##   C_19SS_X_3    n
## 1 Not at all 1319
## 2   Slightly  747
## 3 Moderately  679
## 4       Very  435
## 5  Extremely  304
## 6       <NA>   16
new_data %>%
  count(C_19SS_X_3)
##    C_19SS_X_3    n
## 1:      empty 6200
## 2: Not at all 1319
## 3:   Slightly  747
## 4: Moderately  679
## 5:       Very  435
## 6:  Extremely  304
## 7:       <NA>   16
# C_19SS_X_4
firstgun %>%
  count(C_19SS_X_4)
##   C_19SS_X_4    n
## 1      empty 6200
secondgun %>%
  count(C_19SS_X_4)
##   C_19SS_X_4    n
## 1 Not at all 1771
## 2   Slightly  530
## 3 Moderately  530
## 4       Very  387
## 5  Extremely  268
## 6       <NA>   14
new_data %>%
  count(C_19SS_X_4)
##    C_19SS_X_4    n
## 1:      empty 6200
## 2: Not at all 1771
## 3:   Slightly  530
## 4: Moderately  530
## 5:       Very  387
## 6:  Extremely  268
## 7:       <NA>   14
# C_19SS_X_5
firstgun %>%
  count(C_19SS_X_5)
##   C_19SS_X_5    n
## 1      empty 6200
secondgun %>%
  count(C_19SS_X_5)
##   C_19SS_X_5    n
## 1 Not at all 1667
## 2   Slightly  573
## 3 Moderately  584
## 4       Very  387
## 5  Extremely  277
## 6       <NA>   12
new_data %>%
  count(C_19SS_X_5)
##    C_19SS_X_5    n
## 1:      empty 6200
## 2: Not at all 1667
## 3:   Slightly  573
## 4: Moderately  584
## 5:       Very  387
## 6:  Extremely  277
## 7:       <NA>   12
# C_19SS_X_6
firstgun %>%
  count(C_19SS_X_6)
##   C_19SS_X_6    n
## 1      empty 6200
secondgun %>%
  count(C_19SS_X_6)
##   C_19SS_X_6    n
## 1 Not at all 1192
## 2   Slightly  855
## 3 Moderately  658
## 4       Very  438
## 5  Extremely  343
## 6       <NA>   14
new_data %>%
  count(C_19SS_X_6)
##    C_19SS_X_6    n
## 1:      empty 6200
## 2: Not at all 1192
## 3:   Slightly  855
## 4: Moderately  658
## 5:       Very  438
## 6:  Extremely  343
## 7:       <NA>   14
# C_19SS_Con_1
firstgun %>%
  count(C_19SS_Con_1)
##   C_19SS_Con_1    n
## 1        empty 6200
secondgun %>%
  count(C_19SS_Con_1)
##   C_19SS_Con_1    n
## 1   Not at all  643
## 2     Slightly 1006
## 3   Moderately  890
## 4         Very  539
## 5    Extremely  411
## 6         <NA>   11
new_data %>%
  count(C_19SS_Con_1)
##    C_19SS_Con_1    n
## 1:        empty 6200
## 2:   Not at all  643
## 3:     Slightly 1006
## 4:   Moderately  890
## 5:         Very  539
## 6:    Extremely  411
## 7:         <NA>   11
# C_19SS_Con_2
firstgun %>%
  count(C_19SS_Con_2)
##   C_19SS_Con_2    n
## 1        empty 6200
secondgun %>%
  count(C_19SS_Con_2)
##   C_19SS_Con_2   n
## 1   Not at all 635
## 2     Slightly 988
## 3   Moderately 882
## 4         Very 564
## 5    Extremely 421
## 6         <NA>  10
new_data %>%
  count(C_19SS_Con_2)
##    C_19SS_Con_2    n
## 1:        empty 6200
## 2:   Not at all  635
## 3:     Slightly  988
## 4:   Moderately  882
## 5:         Very  564
## 6:    Extremely  421
## 7:         <NA>   10
# C_19SS_Con_3
firstgun %>%
  count(C_19SS_Con_3)
##   C_19SS_Con_3    n
## 1        empty 6200
secondgun %>%
  count(C_19SS_Con_3)
##   C_19SS_Con_3   n
## 1   Not at all 419
## 2     Slightly 861
## 3   Moderately 888
## 4         Very 740
## 5    Extremely 578
## 6         <NA>  14
new_data %>%
  count(C_19SS_Con_3)
##    C_19SS_Con_3    n
## 1:        empty 6200
## 2:   Not at all  419
## 3:     Slightly  861
## 4:   Moderately  888
## 5:         Very  740
## 6:    Extremely  578
## 7:         <NA>   14
# C_19SS_Con_4
firstgun %>%
  count(C_19SS_Con_4)
##   C_19SS_Con_4    n
## 1        empty 6200
secondgun %>%
  count(C_19SS_Con_4)
##   C_19SS_Con_4   n
## 1   Not at all 818
## 2     Slightly 913
## 3   Moderately 812
## 4         Very 559
## 5    Extremely 386
## 6         <NA>  12
new_data %>%
  count(C_19SS_Con_4)
##    C_19SS_Con_4    n
## 1:        empty 6200
## 2:   Not at all  818
## 3:     Slightly  913
## 4:   Moderately  812
## 5:         Very  559
## 6:    Extremely  386
## 7:         <NA>   12
# C_19SS_Con_5
firstgun %>%
  count(C_19SS_Con_5)
##   C_19SS_Con_5    n
## 1        empty 6200
secondgun %>%
  count(C_19SS_Con_5)
##   C_19SS_Con_5   n
## 1   Not at all 934
## 2     Slightly 829
## 3   Moderately 782
## 4         Very 551
## 5    Extremely 391
## 6         <NA>  13
new_data %>%
  count(C_19SS_Con_5)
##    C_19SS_Con_5    n
## 1:        empty 6200
## 2:   Not at all  934
## 3:     Slightly  829
## 4:   Moderately  782
## 5:         Very  551
## 6:    Extremely  391
## 7:         <NA>   13
# C_19SS_Con_6
firstgun %>%
  count(C_19SS_Con_6)
##   C_19SS_Con_6    n
## 1        empty 6200
secondgun %>%
  count(C_19SS_Con_6)
##   C_19SS_Con_6    n
## 1   Not at all 1226
## 2     Slightly  776
## 3   Moderately  694
## 4         Very  466
## 5    Extremely  326
## 6         <NA>   12
new_data %>%
  count(C_19SS_Con_6)
##    C_19SS_Con_6    n
## 1:        empty 6200
## 2:   Not at all 1226
## 3:     Slightly  776
## 4:   Moderately  694
## 5:         Very  466
## 6:    Extremely  326
## 7:         <NA>   12
# C_19SS_TS_1
firstgun %>%
  count(C_19SS_TS_1)
##   C_19SS_TS_1    n
## 1       empty 6200
secondgun %>%
  count(C_19SS_TS_1)
##     C_19SS_TS_1    n
## 1         Never 1634
## 2        Rarely  690
## 3     Sometimes  641
## 4         Often  287
## 5 Almost Always  236
## 6          <NA>   12
new_data %>%
  count(C_19SS_TS_1)
##      C_19SS_TS_1    n
## 1:         empty 6200
## 2:         Never 1634
## 3:        Rarely  690
## 4:     Sometimes  641
## 5:         Often  287
## 6: Almost Always  236
## 7:          <NA>   12
# C_19SS_TS_2
firstgun %>%
  count(C_19SS_TS_2)
##   C_19SS_TS_2    n
## 1       empty 6200
secondgun %>%
  count(C_19SS_TS_2)
##     C_19SS_TS_2    n
## 1         Never 2007
## 2        Rarely  472
## 3     Sometimes  483
## 4         Often  328
## 5 Almost Always  199
## 6          <NA>   11
new_data %>%
  count(C_19SS_TS_2)
##      C_19SS_TS_2    n
## 1:         empty 6200
## 2:         Never 2007
## 3:        Rarely  472
## 4:     Sometimes  483
## 5:         Often  328
## 6: Almost Always  199
## 7:          <NA>   11
# C_19SS_TS_3
firstgun %>%
  count(C_19SS_TS_3)
##   C_19SS_TS_3    n
## 1       empty 6200
secondgun %>%
  count(C_19SS_TS_3)
##     C_19SS_TS_3    n
## 1         Never 1342
## 2        Rarely  709
## 3     Sometimes  786
## 4         Often  406
## 5 Almost Always  241
## 6          <NA>   16
new_data %>%
  count(C_19SS_TS_3)
##      C_19SS_TS_3    n
## 1:         empty 6200
## 2:         Never 1342
## 3:        Rarely  709
## 4:     Sometimes  786
## 5:         Often  406
## 6: Almost Always  241
## 7:          <NA>   16
# C_19SS_TS_4
firstgun %>%
  count(C_19SS_TS_4)
##   C_19SS_TS_4    n
## 1       empty 6200
secondgun %>%
  count(C_19SS_TS_4)
##     C_19SS_TS_4    n
## 1         Never 1877
## 2        Rarely  544
## 3     Sometimes  545
## 4         Often  311
## 5 Almost Always  212
## 6          <NA>   11
new_data %>%
  count(C_19SS_TS_4)
##      C_19SS_TS_4    n
## 1:         empty 6200
## 2:         Never 1877
## 3:        Rarely  544
## 4:     Sometimes  545
## 5:         Often  311
## 6: Almost Always  212
## 7:          <NA>   11
# C_19SS_TS_5
firstgun %>%
  count(C_19SS_TS_5)
##   C_19SS_TS_5    n
## 1       empty 6200
secondgun %>%
  count(C_19SS_TS_5)
##     C_19SS_TS_5    n
## 1         Never 1786
## 2        Rarely  596
## 3     Sometimes  580
## 4         Often  332
## 5 Almost Always  193
## 6          <NA>   13
new_data %>%
  count(C_19SS_TS_5)
##      C_19SS_TS_5    n
## 1:         empty 6200
## 2:         Never 1786
## 3:        Rarely  596
## 4:     Sometimes  580
## 5:         Often  332
## 6: Almost Always  193
## 7:          <NA>   13
# C_19SS_TS_6
firstgun %>%
  count(C_19SS_TS_6)
##   C_19SS_TS_6    n
## 1       empty 6200
secondgun %>%
  count(C_19SS_TS_6)
##     C_19SS_TS_6    n
## 1         Never 2021
## 2        Rarely  477
## 3     Sometimes  498
## 4         Often  308
## 5 Almost Always  182
## 6          <NA>   14
new_data %>%
  count(C_19SS_TS_6)
##      C_19SS_TS_6    n
## 1:         empty 6200
## 2:         Never 2021
## 3:        Rarely  477
## 4:     Sometimes  498
## 5:         Often  308
## 6: Almost Always  182
## 7:          <NA>   14
# C_19SS_Check_1
firstgun %>%
  count(C_19SS_Check_1)
##   C_19SS_Check_1    n
## 1          empty 6200
secondgun %>%
  count(C_19SS_Check_1)
##   C_19SS_Check_1    n
## 1          Never 1026
## 2         Rarely  612
## 3      Sometimes  943
## 4          Often  569
## 5  Almost Always  338
## 6           <NA>   12
new_data %>%
  count(C_19SS_Check_1)
##    C_19SS_Check_1    n
## 1:          empty 6200
## 2:          Never 1026
## 3:         Rarely  612
## 4:      Sometimes  943
## 5:          Often  569
## 6:  Almost Always  338
## 7:           <NA>   12
# C_19SS_Check_2
firstgun %>%
  count(C_19SS_Check_2)
##   C_19SS_Check_2    n
## 1          empty 6200
secondgun %>%
  count(C_19SS_Check_2)
##   C_19SS_Check_2    n
## 1          Never 1604
## 2         Rarely  534
## 3      Sometimes  671
## 4          Often  423
## 5  Almost Always  258
## 6           <NA>   10
new_data %>%
  count(C_19SS_Check_2)
##    C_19SS_Check_2    n
## 1:          empty 6200
## 2:          Never 1604
## 3:         Rarely  534
## 4:      Sometimes  671
## 5:          Often  423
## 6:  Almost Always  258
## 7:           <NA>   10
# C_19SS_Check_3
firstgun %>%
  count(C_19SS_Check_3)
##   C_19SS_Check_3    n
## 1          empty 6200
secondgun %>%
  count(C_19SS_Check_3)
##   C_19SS_Check_3    n
## 1          Never 1268
## 2         Rarely  667
## 3      Sometimes  823
## 4          Often  465
## 5  Almost Always  265
## 6           <NA>   12
new_data %>%
  count(C_19SS_Check_3)
##    C_19SS_Check_3    n
## 1:          empty 6200
## 2:          Never 1268
## 3:         Rarely  667
## 4:      Sometimes  823
## 5:          Often  465
## 6:  Almost Always  265
## 7:           <NA>   12
# C_19SS_Check_4
firstgun %>%
  count(C_19SS_Check_4)
##   C_19SS_Check_4    n
## 1          empty 6200
secondgun %>%
  count(C_19SS_Check_4)
##   C_19SS_Check_4    n
## 1          Never 1087
## 2         Rarely  653
## 3      Sometimes  882
## 4          Often  574
## 5  Almost Always  295
## 6           <NA>    9
new_data %>%
  count(C_19SS_Check_4)
##    C_19SS_Check_4    n
## 1:          empty 6200
## 2:          Never 1087
## 3:         Rarely  653
## 4:      Sometimes  882
## 5:          Often  574
## 6:  Almost Always  295
## 7:           <NA>    9
# C_19SS_Check_5
firstgun %>%
  count(C_19SS_Check_5)
##   C_19SS_Check_5    n
## 1          empty 6200
secondgun %>%
  count(C_19SS_Check_5)
##   C_19SS_Check_5    n
## 1          Never 1592
## 2         Rarely  587
## 3      Sometimes  700
## 4          Often  381
## 5  Almost Always  231
## 6           <NA>    9
new_data %>%
  count(C_19SS_Check_5)
##    C_19SS_Check_5    n
## 1:          empty 6200
## 2:          Never 1592
## 3:         Rarely  587
## 4:      Sometimes  700
## 5:          Often  381
## 6:  Almost Always  231
## 7:           <NA>    9
# C_19SS_Check_6
firstgun %>%
  count(C_19SS_Check_6)
##   C_19SS_Check_6    n
## 1          empty 6200
secondgun %>%
  count(C_19SS_Check_6)
##   C_19SS_Check_6    n
## 1          Never 1508
## 2         Rarely  599
## 3      Sometimes  657
## 4          Often  467
## 5  Almost Always  260
## 6           <NA>    9
new_data %>%
  count(C_19SS_Check_6)
##    C_19SS_Check_6    n
## 1:          empty 6200
## 2:          Never 1508
## 3:         Rarely  599
## 4:      Sometimes  657
## 5:          Often  467
## 6:  Almost Always  260
## 7:           <NA>    9

```