Determinar la probabilidad mediante regla de Bayes de varios ejercicios
Al disponer de probabilidades de varios conjuntos se requiere determinar la probabilidad en utilizando la fórmula de regla de Bayes.
Prob.Servi <- 0.40
Prob.Salud <- 0.35
Prob.Otros <- 0.25
cat("Las probabilidades por cada servicio")
## Las probabilidades por cada servicio
## Las probabilidades por cada servicio
Prob.Servi; Prob.Salud; Prob.Otros
## [1] 0.4
## [1] 0.35
## [1] 0.25
Se dan las probabilidades de que sea de algún género en fucnón del servicio.
PServ.Mujer <- 0.30
PServ.Hombre <- 0.70
PSalud.Mujer <- 0.60
PSalud.Hombre <- 0.40
PSalud.Mujer; PSalud.Hombre
## [1] 0.6
## [1] 0.4
POtros.Mujer <- 0.45
POtros.Hombre <- 0.55
POtros.Mujer; POtros.Hombre
## [1] 0.45
## [1] 0.55
ProbServ.I.Mujer <- Prob.Servi * PServ.Mujer
ProbServ.I.Hombre <- Prob.Servi * PServ.Hombre
ProbServ.I.Mujer ; ProbServ.I.Hombre
## [1] 0.12
## [1] 0.28
ProbSalud.I.Mujer <- Prob.Salud * PSalud.Mujer
ProbSalud.I.Hombre <- Prob.Salud * PSalud.Hombre
ProbSalud.I.Mujer ; ProbSalud.I.Hombre
## [1] 0.21
## [1] 0.14
ProbOtros.I.Mujer <- Prob.Otros * POtros.Mujer
ProbOtros.I.Hombre <- Prob.Otros * POtros.Hombre
ProbOtros.I.Mujer ; ProbOtros.I.Hombre
## [1] 0.1125
## [1] 0.1375
TBResult <- ProbSalud.I.Hombre / (ProbServ.I.Hombre + ProbSalud.I.Hombre + ProbOtros.I.Hombre)
TBResult
## [1] 0.2511211
cat ("1. Prob(Salud | Hombre): Persona que sea del sector Salud y que sea hombre es: ", TBResult)
## 1. Prob(Salud | Hombre): Persona que sea del sector Salud y que sea hombre es: 0.2511211
Se concluye que en el experimento de elegir a una persona al azar y que ya se conoce que ‘Hombre’, entonces se determina mediante el Teorema y la Fórmula de Bayes la probababilidad de que una persona sea del sector ‘Salud’ dado que sea apriori ‘Hombre’
Sect.Salud.Mujer<- ProbSalud.I.Mujer/(ProbServ.I.Mujer+ProbSalud.I.Mujer+ProbOtros.I.Mujer)
Sect.Salud.Mujer
## [1] 0.4745763
cat ("2.- Prob(Salud | Mujer): Persona que sea del sector Salud y que sea Mujer es: ", round(Sect.Salud.Mujer*100,2),"%")
## 2.- Prob(Salud | Mujer): Persona que sea del sector Salud y que sea Mujer es: 47.46 %
Sect.Servicios.Hombre<- ProbServ.I.Hombre/(ProbSalud.I.Hombre+ProbServ.I.Hombre+ProbOtros.I.Hombre)
Sect.Servicios.Hombre
## [1] 0.5022422
cat ("3.- Prob(Servicios | Hombre): Persona que sea del sector Servicios y que sea hombre es: ", round(Sect.Servicios.Hombre*100,2),"%")
## 3.- Prob(Servicios | Hombre): Persona que sea del sector Servicios y que sea hombre es: 50.22 %
Sector.Servicios.Mujer<- ProbServ.I.Mujer/(ProbSalud.I.Mujer+ProbServ.I.Mujer+ProbOtros.I.Mujer)
Sector.Servicios.Mujer
## [1] 0.2711864
cat ("4.- Prob(Servicios | Mujer): Persona que sea del sector Servicios y que sea Mujer es: ", round(Sector.Servicios.Mujer*100,2),"%")
## 4.- Prob(Servicios | Mujer): Persona que sea del sector Servicios y que sea Mujer es: 27.12 %
En ete caso se dio uso de la regla de byes la cual entiende la probabilidad de forma inversa al teorema de la probabilidad total, esta nos dice que podemos calcular ka probabilidad de un suceso A, sabiendo ademas que ese A cumple ciertas caracteristicas que condiciona su probabilidad, anque tambien dicho metodo es custionado por su mala aplicacion ya que mientras en el porblema que se plantea cumpla con los supuestos sucesos disjuntos o exhaustivos dicho teorem es totalmente valido. Se dan respuesta a las cuatro preguntas aplicadas en dicho cuestionamiento: 1.- Que la persona sea del sector de salud y sea hombre: esto da como resultado del 25.11% 2.- Que la persona sea del sector de salud y sea mujer: esto da como ressultado del 47.46% 3.- Que la persona sea del sector de servicio y sea hombre: esto da como resultado del 50.22% 4.- Que la persona sea del sector de servicio y sea mujer: esto da como resultado del 27.12%