## 
## Call:
## lm(formula = y ~ x, data = x.df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.0306 -0.5751 -0.2109  0.5522  2.7050 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   2.6800     0.3273   8.188 6.51e-09 ***
## x             5.0094     0.1124  44.562  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9189 on 28 degrees of freedom
## Multiple R-squared:  0.9861, Adjusted R-squared:  0.9856 
## F-statistic:  1986 on 1 and 28 DF,  p-value: < 2.2e-16

set.seed used to Generate same set of random numbers. where x seq (generates a sequence of numbers). res is lm y~x. So p-value < alpha where (2.2e-16 < 0.05), then H0 will be rejected.

##       a0       a1 
## 2.680009 5.009426

a1 is 2.68, we got it from the covariance of two variables x and y in data set divided by x variance

##           y         x
## y 1.0000000 0.9930235
## x 0.9930235 1.0000000

correlation between x and y equal to 0.9930235 or 99,3%

## [1] 0.9188509

the residual standard error obtained is 0.9188509 or 91,8%

## [1] 0.9860958

The magnitude of the correlation between degrees of freedom x and y is 98.6%

## [1] "Df"      "Sum Sq"  "Mean Sq" "F value" "Pr(>F)"

variables contained in ss namely sums of squares, mean squares, F-test, and p-value.

## [1] 0.9860958

R-aquared is ss divided by sum of ss, so we get 98,6%

## [1] 1985.773

Calculate F-value is 1985.773

## [1] 0

The probability of the F value is greater than the F test of 0.

LS0tDQp0aXRsZTogIk9wdGltaXphdGlvbiBXZWVrMTEiDQphdXRob3I6ICJUaGVvZG9yYSBQdXRyaW5hIEdlYSINCmRhdGU6ICJgciBmb3JtYXQoU3lzLkRhdGUoKSwgJyVCICVkLCAlWScpYCINCm91dHB1dDogDQogIGh0bWxfZG9jdW1lbnQ6IA0KICAgIGhpZ2hsaWdodDogbW9ub2Nocm9tZQ0KICAgIHRoZW1lOiBzcGFjZWxhYg0KICAgIG51bWJlcl9zZWN0aW9uczogeWVzDQogICAgdG9jOiB5ZXMNCiAgICB0b2NfZmxvYXQ6IHllcw0KICAgIGNvZGVfZG93bmxvYWQ6IHllcw0KICAgIGNvZGVfZm9sZGluZzogaGlkZQ0KLS0tDQpgYGB7ciBMb2dvLCBlY2hvPUZBTFNFLGZpZy5hbGlnbj0nY2VudGVyJywgb3V0LndpZHRoID0gJzQwJSd9DQprbml0cjo6aW5jbHVkZV9ncmFwaGljcygiaHR0cHM6Ly9naXRodWIuY29tL0Jha3RpLVNpcmVnYXIvaW1hZ2VzL2Jsb2IvbWFzdGVyL2xvZ28ucG5nP3Jhdz10cnVlIikNCmBgYA0KDQpgYGB7cn0NCiMjIyMjIyBwbG90IFNTIA0Kc2V0LnNlZWQoMTIzNCkgICAgICAgICAgICAgICAgICAgICAgICANCnggPC0gc2VxKDAsNSxsZW5ndGg9MzApDQp5IDwtIDMgKyA1KnggKyBybm9ybShsZW5ndGgoeCksMCwxKQ0KeC5kZiA8LSBkYXRhLmZyYW1lKHkseCkgICAgICAgICAgICAgICAjIG1ha2UgYSBkYXRhLmZyYW1lDQpyZXMgPC0gbG0oeX54LGRhdGE9eC5kZikgICAgICAgICAgICAgICMgZG8gbGluZWFyIG1vZGVsaW5nDQpzdW1tYXJ5KHJlcykgICAgICAgICAgICAgICAgICAgICAgICAgICMgc2hvdyByZXN1bHRzIA0KYGBgDQoNCnNldC5zZWVkIHVzZWQgdG8gR2VuZXJhdGUgc2FtZSBzZXQgb2YgcmFuZG9tIG51bWJlcnMuIHdoZXJlIHggc2VxIChnZW5lcmF0ZXMgYSBzZXF1ZW5jZSBvZiBudW1iZXJzKS4gcmVzIGlzIGxtIHl+eC4NClNvIHAtdmFsdWUgPCBhbHBoYSB3aGVyZSAoMi4yZS0xNiA8IDAuMDUpLCB0aGVuIEgwIHdpbGwgYmUgcmVqZWN0ZWQuDQoNCmBgYHtyfQ0KYTEgPC0gY292KHgseSkvdmFyKHgpICAgICAgICAgICAgICAjIGFuYWx5dGljYWwgT0xTIHNvbHV0aW9uIA0KYTAgPC0gbWVhbih5KSAtIGExKm1lYW4oeCkNCmMoYTA9YTAsYTE9YTEpICAgICAgICAgICAgICAgICAgICAgIyBzaG93IE9MUyBlc3RpbWF0b3JzIGEwLGExDQpgYGANCmExIGlzIDIuNjgsIHdlIGdvdCBpdCBmcm9tIHRoZSBjb3ZhcmlhbmNlIG9mIHR3byB2YXJpYWJsZXMgeCBhbmQgeSBpbiBkYXRhIHNldCBkaXZpZGVkIGJ5IHggdmFyaWFuY2UNCg0KYGBge3J9DQpjb3IoeC5kZikgICAgICAgICAgICAgICAgICAgICAgICAgICMgc2hvd3MgdGhlIFBlYXJzb24gIHIueHkNCmBgYA0KY29ycmVsYXRpb24gYmV0d2VlbiB4IGFuZCB5IGVxdWFsIHRvIDAuOTkzMDIzNSBvciA5OSwzJQ0KDQpgYGB7cn0NCnNxcnQoc3VtKCh5IC0gcHJlZGljdChyZXMpKV4yKS8yOCkgIyByZXNpZHVhbCBzdGFuZGFyZCBlcnJvcg0KYGBgDQp0aGUgcmVzaWR1YWwgc3RhbmRhcmQgZXJyb3Igb2J0YWluZWQgaXMgMC45MTg4NTA5IG9yIDkxLDglDQoNCmBgYHtyfQ0KY29yKHguZGYkeSxwcmVkaWN0KHJlcykpXjIgICAgICAgICAjIFIyLXZhbHVlICMxOiBjb3IoeSx5LmhhdCleMjsgDQpgYGANClRoZSBtYWduaXR1ZGUgb2YgdGhlIGNvcnJlbGF0aW9uIGJldHdlZW4gZGVncmVlcyBvZiBmcmVlZG9tIHggYW5kIHkgaXMgOTguNiUNCg0KYGBge3J9DQpzcyA8LSBhbm92YShyZXMpDQpuYW1lcyhzcykgICAgICAgICAgICAgICAgICAgICAgICAgICMgd2hhdCdzIGluIHNzPw0KYGBgDQp2YXJpYWJsZXMgY29udGFpbmVkIGluIHNzIG5hbWVseSBzdW1zIG9mIHNxdWFyZXMsIG1lYW4gc3F1YXJlcywgRi10ZXN0LCBhbmQgcC12YWx1ZS4NCg0KYGBge3J9DQpyMiA8LSBzc1ssMl1bMV0vc3VtKHNzWywyXSkgDQpyMiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICMgUjItdmFsdWUgIzI6IFNTLm1vZGVsL3NzLnRvdGFsDQpgYGANClItYXF1YXJlZCBpcyBzcyBkaXZpZGVkIGJ5IHN1bSBvZiBzcywgc28gd2UgZ2V0IDk4LDYlDQoNCmBgYHtyfQ0KRi50ZXN0IDwtIHNzWywzXVsxXS9zc1ssM11bMl0gICAjIENhbGN1bGF0ZSBGLXZhbHVlIA0KRi50ZXN0DQpgYGANCkNhbGN1bGF0ZSBGLXZhbHVlIGlzIDE5ODUuNzczDQoNCmBgYHtyfQ0KMS1wZihGLnRlc3Qsc3NbMSwxXSxzc1sxLDJdICkgICAgICAjIFByb2IoRj5GLnRlc3QpfEgwDQpgYGANClRoZSBwcm9iYWJpbGl0eSBvZiB0aGUgRiB2YWx1ZSBpcyBncmVhdGVyIHRoYW4gdGhlIEYgdGVzdCBvZiAwLg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg==