###### plot SS 
set.seed(1234)                        
x <- seq(0,5,length=30)
y <- 3 + 5*x + rnorm(length(x),0,1)
x.df <- data.frame(y,x)               # make a data.frame
res <- lm(y~x,data=x.df)              # do linear modeling
summary(res)                          # show results 
## 
## Call:
## lm(formula = y ~ x, data = x.df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.0306 -0.5751 -0.2109  0.5522  2.7050 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   2.6800     0.3273   8.188 6.51e-09 ***
## x             5.0094     0.1124  44.562  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9189 on 28 degrees of freedom
## Multiple R-squared:  0.9861, Adjusted R-squared:  0.9856 
## F-statistic:  1986 on 1 and 28 DF,  p-value: < 2.2e-16

Karena nilai P lebih kecil dibanding significan code nya (2.2e-16 < 0.05). Kita bisa menerima data tersebut karena data tersebut memberikan keyakinan sebesar 98%.

a1 <- cov(x,y)/var(x)              # analytical OLS solution 
a0 <- mean(y) - a1*mean(x)
c(a0=a0,a1=a1)                     # show OLS estimators a0,a1
##       a0       a1 
## 2.680009 5.009426

Nilai a1 sebesar 2.68, didapat dari covariansi dari x dan y dibagi variansi dari x.

cor(x.df)                          # shows the Pearson  r.xy
##           y         x
## y 1.0000000 0.9930235
## x 0.9930235 1.0000000

Korelasi atau hubungan antara x dan y sebesar 99,3%.

sqrt(sum((y - predict(res))^2)/28) # residual standard error
## [1] 0.9188509

Besar residu standar errornya adalah 91,8%.

cor(x.df$y,predict(res))^2         # R2-value #1: cor(y,y.hat)^2; 
## [1] 0.9860958

Besar korelasi dari derajat kebebasan x dengan y sebesar 98,6%.

ss <- anova(res)
names(ss)                          # what's in ss?
## [1] "Df"      "Sum Sq"  "Mean Sq" "F value" "Pr(>F)"

Variabel yg ada di ss, seperti Degree of Freedom, sum square, mean square, nilai F, dan nilai p.

r2 <- ss[,2][1]/sum(ss[,2]) 
r2                              # R2-value #2: SS.model/ss.total
## [1] 0.9860958

Nilai model ss dibagi total ss sebesar 98,6%

F.test <- ss[,3][1]/ss[,3][2]   # Calculate F-value 
F.test
## [1] 1985.773

Nilai fnya sebesar 1985.773

1-pf(F.test,ss[1,1],ss[1,2] )      # Prob(F>F.test)|H0
## [1] 0

Peluang nilai F lebih besar dari uji F sebesar 0, sehingga tidak mungkin terjadi.

LS0tDQp0aXRsZTogIk9wdGltaXphdGlvbi1MYWIxMS1Ud28tSW50cm9kdWN0b3J5LUV4YW1wbGVzIg0KYXV0aG9yOiAiWW9uYXRoYW4gQW5nZ3JhaXdhbiINCmRhdGU6ICJgciBmb3JtYXQoU3lzLkRhdGUoKSwgJyVCICVkLCAlWScpYCINCm91dHB1dDogDQogIGh0bWxfZG9jdW1lbnQ6IA0KICAgIGhpZ2hsaWdodDogbW9ub2Nocm9tZQ0KICAgIHRoZW1lOiBzcGFjZWxhYg0KICAgIG51bWJlcl9zZWN0aW9uczogeWVzDQogICAgdG9jOiB5ZXMNCiAgICB0b2NfZmxvYXQ6IHllcw0KICAgIGNvZGVfZG93bmxvYWQ6IHllcw0KICAgIGNvZGVfZm9sZGluZzogaGlkZQ0KLS0tDQpgYGB7ciBMb2dvLGVjaG89RkFMU0UsZmlnLmFsaWduPSdjZW50ZXInLCBvdXQud2lkdGggPSAnNDAlJ30NCmtuaXRyOjppbmNsdWRlX2dyYXBoaWNzKCJDOi9Vc2Vycy9Zb25hdGhhbi9Eb3dubG9hZHMvbG9nb21hdGFuYS5qcGciKQ0KYGBgDQoNCmBgYHtyfQ0KIyMjIyMjIHBsb3QgU1MgDQpzZXQuc2VlZCgxMjM0KSAgICAgICAgICAgICAgICAgICAgICAgIA0KeCA8LSBzZXEoMCw1LGxlbmd0aD0zMCkNCnkgPC0gMyArIDUqeCArIHJub3JtKGxlbmd0aCh4KSwwLDEpDQp4LmRmIDwtIGRhdGEuZnJhbWUoeSx4KSAgICAgICAgICAgICAgICMgbWFrZSBhIGRhdGEuZnJhbWUNCnJlcyA8LSBsbSh5fngsZGF0YT14LmRmKSAgICAgICAgICAgICAgIyBkbyBsaW5lYXIgbW9kZWxpbmcNCnN1bW1hcnkocmVzKSAgICAgICAgICAgICAgICAgICAgICAgICAgIyBzaG93IHJlc3VsdHMgDQpgYGANCg0KS2FyZW5hIG5pbGFpIFAgbGViaWgga2VjaWwgZGliYW5kaW5nIHNpZ25pZmljYW4gY29kZSBueWEgKDIuMmUtMTYgPCAwLjA1KS4NCktpdGEgYmlzYSBtZW5lcmltYSBkYXRhIHRlcnNlYnV0IGthcmVuYSBkYXRhIHRlcnNlYnV0IG1lbWJlcmlrYW4ga2V5YWtpbmFuIHNlYmVzYXIgOTglLg0KDQpgYGB7cn0NCmExIDwtIGNvdih4LHkpL3Zhcih4KSAgICAgICAgICAgICAgIyBhbmFseXRpY2FsIE9MUyBzb2x1dGlvbiANCmEwIDwtIG1lYW4oeSkgLSBhMSptZWFuKHgpDQpjKGEwPWEwLGExPWExKSAgICAgICAgICAgICAgICAgICAgICMgc2hvdyBPTFMgZXN0aW1hdG9ycyBhMCxhMQ0KYGBgDQpOaWxhaSBhMSBzZWJlc2FyIDIuNjgsIGRpZGFwYXQgZGFyaSBjb3ZhcmlhbnNpIGRhcmkgeCBkYW4geSBkaWJhZ2kgdmFyaWFuc2kgZGFyaSB4Lg0KDQpgYGB7cn0NCmNvcih4LmRmKSAgICAgICAgICAgICAgICAgICAgICAgICAgIyBzaG93cyB0aGUgUGVhcnNvbiAgci54eQ0KYGBgDQpLb3JlbGFzaSBhdGF1IGh1YnVuZ2FuIGFudGFyYSB4IGRhbiB5IHNlYmVzYXIgOTksMyUuDQoNCmBgYHtyfQ0Kc3FydChzdW0oKHkgLSBwcmVkaWN0KHJlcykpXjIpLzI4KSAjIHJlc2lkdWFsIHN0YW5kYXJkIGVycm9yDQpgYGANCkJlc2FyIHJlc2lkdSBzdGFuZGFyIGVycm9ybnlhIGFkYWxhaCA5MSw4JS4NCg0KYGBge3J9DQpjb3IoeC5kZiR5LHByZWRpY3QocmVzKSleMiAgICAgICAgICMgUjItdmFsdWUgIzE6IGNvcih5LHkuaGF0KV4yOyANCmBgYA0KQmVzYXIga29yZWxhc2kgZGFyaSBkZXJhamF0IGtlYmViYXNhbiB4IGRlbmdhbiB5IHNlYmVzYXIgOTgsNiUuDQoNCmBgYHtyfQ0Kc3MgPC0gYW5vdmEocmVzKQ0KbmFtZXMoc3MpICAgICAgICAgICAgICAgICAgICAgICAgICAjIHdoYXQncyBpbiBzcz8NCmBgYA0KVmFyaWFiZWwgeWcgYWRhIGRpIHNzLCBzZXBlcnRpIERlZ3JlZSBvZiBGcmVlZG9tLCBzdW0gc3F1YXJlLCBtZWFuIHNxdWFyZSwgbmlsYWkgRiwgZGFuIG5pbGFpIHAuDQoNCmBgYHtyfQ0KcjIgPC0gc3NbLDJdWzFdL3N1bShzc1ssMl0pIA0KcjIgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAjIFIyLXZhbHVlICMyOiBTUy5tb2RlbC9zcy50b3RhbA0KYGBgDQpOaWxhaSBtb2RlbCBzcyBkaWJhZ2kgdG90YWwgc3Mgc2ViZXNhciA5OCw2JQ0KDQpgYGB7cn0NCkYudGVzdCA8LSBzc1ssM11bMV0vc3NbLDNdWzJdICAgIyBDYWxjdWxhdGUgRi12YWx1ZSANCkYudGVzdA0KYGBgDQpOaWxhaSBmbnlhIHNlYmVzYXIgMTk4NS43NzMNCg0KYGBge3J9DQoxLXBmKEYudGVzdCxzc1sxLDFdLHNzWzEsMl0gKSAgICAgICMgUHJvYihGPkYudGVzdCl8SDANCmBgYA0KUGVsdWFuZyBuaWxhaSBGIGxlYmloIGJlc2FyIGRhcmkgdWppIEYgc2ViZXNhciAwLCBzZWhpbmdnYSB0aWRhayBtdW5na2luIHRlcmphZGkuDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQo=