外国語教育メディア学会(LET)関西支部 メソドロジー研究部会 報告論集第6号 住 政二郎(2014)「PROX法と同時最尤推定法の概説」で使用したコードです。
dat <- read.csv("http://lang-tech.net/doc/jmle.csv", header = T, sep=",", na.strings="NA", dec=".", strip.white=TRUE, fileEncoding = "CP932")
dat # データの確認
## Observed item.1 item.2 item.3 item.4 item.5
## 1 person 1 1 1 1 1 0
## 2 person 2 1 1 0 0 1
## 3 person 3 1 1 0 1 0
## 4 person 4 1 0 1 0 0
## 5 person 5 0 1 0 0 0
TAMパッケージについて(http://cran.r-project.org/web/packages/TAM/TAM.pdf), 同時最尤推定法については p.72参照
install.packages("TAM", repos="http://cran.rstudio.com/")
##
## The downloaded binary packages are in
## /var/folders/r3/71p2ncyj3zxg9cc0r5jqvwv00000gn/T//RtmpsvzDnL/downloaded_packages
library(TAM)
## Loading required package: CDM
## Loading required package: mvtnorm
## **********************************
## ** CDM 4.2-12 (2015-02-23) **
## ** Cognitive Diagnostic Models **
## **********************************
##
## Loading required package: MASS
## ::...........................::
## :: TAM 1.5-2 (2015-02-24) ::
## :: Test Analysis Modules ::
## ::...........................::
mod1a <- tam.jml(dat[, -1])
## ....................................................
## Iteration 1 2015-03-28 14:43:56
##
## MLE/WLE estimation |----
## Item parameter estimation |----
## Deviance = 22.4997
## Mean WLE change: -0.087669
## Maximum parameter change: 0.372634
## ....................................................
## Iteration 2 2015-03-28 14:43:56
##
## MLE/WLE estimation |---
## Item parameter estimation |---
## Deviance = 22.4177 | Deviance change: 0.082
## Mean WLE change: -0.004482
## Maximum parameter change: 0.086368
## ....................................................
## Iteration 3 2015-03-28 14:43:56
##
## MLE/WLE estimation |---
## Item parameter estimation |--
## Deviance = 22.4121 | Deviance change: 0.0056
## Mean WLE change: -0.001488
## Maximum parameter change: 0.023742
## ....................................................
## Iteration 4 2015-03-28 14:43:57
##
## MLE/WLE estimation |--
## Item parameter estimation |--
## Deviance = 22.4117 | Deviance change: 4e-04
## Mean WLE change: -0.000453
## Maximum parameter change: 0.006789
## ....................................................
## Iteration 5 2015-03-28 14:43:57
##
## MLE/WLE estimation |--
## Item parameter estimation |--
## Deviance = 22.4117 | Deviance change: 0
## Mean WLE change: -0.000133
## Maximum parameter change: 0.001964
## ....................................................
## Iteration 6 2015-03-28 14:43:57
##
## MLE/WLE estimation |--
## Item parameter estimation |--
## Deviance = 22.4116 | Deviance change: 0
## Mean WLE change: -3.9e-05
## Maximum parameter change: 0.00057
## ....................................................
## Iteration 7 2015-03-28 14:43:57
##
## MLE/WLE estimation |--
## Item parameter estimation |--
## Deviance = 22.4116 | Deviance change: 0
## Mean WLE change: -1.1e-05
## Maximum parameter change: 0.000165
## ....................................................
## Iteration 8 2015-03-28 14:43:57
##
## MLE/WLE estimation |--
## Item parameter estimation |-
## Deviance = 22.4116 | Deviance change: 0
## Mean WLE change: 1.6e-05
## Maximum parameter change: 5.2e-05
##
## MLE/WLE estimation |-------
## ....................................................
##
## Start: 2015-03-28 14:43:56
## End: 2015-03-28 14:43:57
## Time difference of 0.02493 secs
summary(mod1a)
## ------------------------------------------------------------
## TAM 1.5-2 (2015-02-24)
##
## Start of Analysis: 2015-03-28 14:43:56
## End of Analysis: 2015-03-28 14:43:57
## Time difference of 0.02493 secs
## Computation time: 0.02493
## R version 3.0.3 (2014-03-06) x86_64, darwin10.8.0 | nodename = Seijiros-iMac.local | login = iMac
##
## Joint Maximum Likelihood Estimation in TAM
##
## IRT Model
## ------------------------------------------------------------
## Number of iterations = 8
##
## Deviance = 22.41 | Log Likelihood = -11.21
## Number of persons = 5
## Number of items = 5
##
## Item Parameters Xsi
## xsi.label xsi.index xsi se.xsi
## 1 item.1 1 -1.503 1.287
## 2 item.2 2 -1.503 1.287
## 3 item.3 3 0.485 1.058
## 4 item.4 4 0.485 1.058
## 5 item.5 5 1.487 1.229
mod1a$theta
## [1] 1.8449146 0.5224688 0.5224688 -0.7360080 -2.1538441