Objetivo

Resolver cuestiones de casos de probabilidad en casos mediante la identificación de variables aleatorias, funciones de probabilidad, funciones acumuladas y visualización gráficas relacionados con variables discretas.

Descripción

Identificar casos relacionados con variables discretas para elaborar mediante programación R y markdown las variables discretas, las funciones de probabilidad de cada variable, la función acumulada y su visualización gráfica para su adecuada interpretación.

1. Cargar Librerías

library(ggplot2)
## Warning: package 'ggplot2' was built under R version 3.6.3
library(stringr)  # String
## Warning: package 'stringr' was built under R version 3.6.3
library(stringi)  # String
library(gtools)
## Warning: package 'gtools' was built under R version 3.6.3
library(dplyr)
## Warning: package 'dplyr' was built under R version 3.6.3
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(knitr)
## Warning: package 'knitr' was built under R version 3.6.3

2. Ejercicios

2.1. Ejercicio 1

Se venden 5000 billetes para una rifa a 1 euro cada uno. Existe un único premio de cierta cantidad, calcular los valores de las variables aleatorias y sus probabilidades para 0 para no gana y 1 para si gana cuando un comprador adquiere tres billetes. (Hero, n.d.)

Tabla de probabilidad

discretas <- c(0,1)   # 0 Que no gane, 1 que gane
n <- 5000
casos <- c(4997,3)
probabilidades <- casos / n

acumulada <- cumsum(probabilidades)   # Acumulada

tabla <- data.frame(x=discretas, 
                    casos = casos,
                    f.prob.x = probabilidades,
                    F.acum.x = acumulada)
tabla
##   x casos f.prob.x F.acum.x
## 1 0  4997   0.9994   0.9994
## 2 1     3   0.0006   1.0000

Gráfica de barra

ggplot(data = tabla, aes(x = x, y=f.prob.x)) +
  geom_bar(stat="identity")

Gráfica lineal acumulada

ggplot(data = tabla, aes(x = x, y=F.acum.x)) +
    geom_point() + 
  geom_line()

2.2. Ejercicio 2

Las ventas de automóviles de una empresa Durante los últimos 300 días de operación, los datos de ventas muestran que hubo

Tabla de probabilidad o Contingencia

discretas <- 0:5   # c(0,1,2,3,4,5)
n <- 300

casos <- c(54, 117, 72, 42, 12, 3)
probabilidades <- casos /n

acumulada <- cumsum(probabilidades)   # Acumulada

tabla <- data.frame(x=discretas, 
                    casos = casos,
                    f.prob.x = probabilidades,
                    F.acum.x = acumulada)
tabla
##   x casos f.prob.x F.acum.x
## 1 0    54     0.18     0.18
## 2 1   117     0.39     0.57
## 3 2    72     0.24     0.81
## 4 3    42     0.14     0.95
## 5 4    12     0.04     0.99
## 6 5     3     0.01     1.00

Gráfica de barra

ggplot(data = tabla, aes(x = x, y=f.prob.x)) +
  #geom_bar(stat="identity")
  geom_bar(stat="identity")

Gráfica lineal acumulada

ggplot(data = tabla, aes(x = x, y=F.acum.x)) +
  geom_point() + 
  geom_line() 

2.3. Ejercicio 3

En Estados Unidos un porcentaje de los niños de cuarto grado no pueden leer un libro adecuado a su edad. La tabla siguiente muestra, de acuerdo con las edades de entre 6 y 14 años, el número de niños que tienen problemas de lectura. La mayoría de estos niños tienen problemas de lectura que debieron ser detectados y corregidos antes del tercer grado.(Anderson et al., 2008)

Tabla de probabilidad o Contingencia

discretas <- 6:14
#n <- '?'

casos <- c(37369, 87436, 160840,239719,286719,306533,310787,302604,289168)

n <- sum(casos)
probabilidades <- casos /n

acumulada <- cumsum(probabilidades)   # Acumulada

tabla <- data.frame(x=discretas, 
                    casos = casos,
                    f.prob.x = probabilidades,
                    F.acum.x = acumulada)
tabla
##    x  casos   f.prob.x   F.acum.x
## 1  6  37369 0.01848875 0.01848875
## 2  7  87436 0.04325998 0.06174874
## 3  8 160840 0.07957747 0.14132621
## 4  9 239719 0.11860378 0.25992999
## 5 10 286719 0.14185758 0.40178757
## 6 11 306533 0.15166079 0.55344837
## 7 12 310787 0.15376551 0.70721387
## 8 13 302604 0.14971687 0.85693075
## 9 14 289168 0.14306925 1.00000000

Gráfica debarra

ggplot(data = tabla, aes(x = x, y=f.prob.x)) +
  geom_bar(stat="identity")

Gráfica lineal acumulada

ggplot(data = tabla, aes(x = x, y=F.acum.x)) +
  geom_point() + 
  geom_line()

#### 2.4. Ejercicio 4.

Se muestra la distribución de frecuencias porcentuales para las puntuaciones dadas a la satisfacción con el trabajo por una muestra de directivos en sistemas de información de nivel alto y de nivel medio. Las puntuaciones van de 1 (muy insatisfecho) a 5 (muy satisfecho).(Anderson et al., 2008)

include_graphics("descarga.jpg")

Tabla de probabilidad o Contingencia

Para directivos de alto nivel

discretas <- 1:5
#n <- '?'

casos <- c(5,9,3,42,41)

n <- sum(casos)
probabilidades <- casos /n

acumulada <- cumsum(probabilidades)   


tabla1 <- data.frame(x=discretas, 
                    casos = casos,
                    f.prob.x = probabilidades,
                    F.acum.x = acumulada)
tabla1
##   x casos f.prob.x F.acum.x
## 1 1     5     0.05     0.05
## 2 2     9     0.09     0.14
## 3 3     3     0.03     0.17
## 4 4    42     0.42     0.59
## 5 5    41     0.41     1.00
paste("La probabilidad de que un ejecutivo de nivel alto dé una puntuación de 4 o 5 a su satisfacción con el trabajo es:", round(sum(tabla1$f.prob.x[4], tabla1$f.prob.x[5]) * 100, 2), "%")
## [1] "La probabilidad de que un ejecutivo de nivel alto dé una puntuación de 4 o 5 a su satisfacción con el trabajo es: 83 %"

Grafica de barras

ggplot(data = tabla1, aes(x = x, y=f.prob.x, fill=x)) + 
  geom_bar(stat="identity")

Grafica lineal acumulada

ggplot(data = tabla1, aes(x = x, y=F.acum.x)) +
  geom_point(colour="blue") + 
  geom_line(colour="red")

Para directivos de nivel medio

discretas <- 1:5
#n <- '?'

casos <- c(4, 10, 12, 46, 28)

n <- sum(casos)
probabilidades <- casos /n

acumulada <- cumsum(probabilidades)   


tabla2 <- data.frame(x=discretas, 
                    casos = casos,
                    f.prob.x = probabilidades,
                    F.acum.x = acumulada)
tabla2
##   x casos f.prob.x F.acum.x
## 1 1     4     0.04     0.04
## 2 2    10     0.10     0.14
## 3 3    12     0.12     0.26
## 4 4    46     0.46     0.72
## 5 5    28     0.28     1.00
paste(" La probabilidad de que un ejecutivo de nivel medio esté muy satisfecho es:", round(tabla2$f.prob.x[5] * 100, 2), "%")
## [1] " La probabilidad de que un ejecutivo de nivel medio esté muy satisfecho es: 28 %"

Grafica de barras

ggplot(data = tabla2, aes(x = x, y=f.prob.x, fill=x)) + 
  geom_bar(stat="identity")

Grafica lineal acumulada

ggplot(data = tabla2, aes(x = x, y=F.acum.x)) +
  geom_point(colour="blue") + 
  geom_line(colour="red")

* Observando las gráficas de barras y las tablas de probabilidad, los directivos de alto nivel están más satisfechos con el trabajo.

2.5. Ejercicio 5.

La prueba de un número de componentes electrónicos se prueban tres componentes electrónicos, el espacio muestral que ofrece una descripción detallada de cada posible resultado se escribe como:

S <- c("NNN", "NND", "NDN", "DNN", 
        "NDD", "DND", "DDN", "DDD")
S
## [1] "NNN" "NND" "NDN" "DNN" "NDD" "DND" "DDN" "DDD"

Los valores son de las variables x con cantidades aleatorias determinadas por el resultado del experimento. Se determina como valores que toma la variable aleatoria X, es decir, el número de artículos defectuosos cuando se prueban tres componentes electrónicos.

Tabla de probabilidad o Contingencia

discretas <- 0:3
#n <- '?'

casos <- c(1,3,3,1)

n <- sum(casos)
probabilidades <- casos /n

acumulada <- cumsum(probabilidades)   # Acumulada

tabla <- data.frame(x=discretas, 
                    casos = casos,
                    f.prob.x = probabilidades,
                    F.acum.x = acumulada)
tabla
##   x casos f.prob.x F.acum.x
## 1 0     1    0.125    0.125
## 2 1     3    0.375    0.500
## 3 2     3    0.375    0.875
## 4 3     1    0.125    1.000
x <- 1  
paste("La probabilidad de que haya 1 defecto es: ",round(tabla$f.prob.x[x+1] * 100, 2), "%")
## [1] "La probabilidad de que haya 1 defecto es:  37.5 %"
x <- 2 
paste("La probabilidad de que haya 2 defectos o mas es: ",round(sum(tabla$f.prob.x[x+1], tabla$f.prob.x[x+2]) * 100, 2), "%")
## [1] "La probabilidad de que haya 2 defectos o mas es:  50 %"

Grafica de barra

ggplot(data = tabla, aes(x = x, y=f.prob.x)) +
  #geom_bar(stat="identity")
  geom_bar(stat="identity")

Grafica lineal acumulada

ggplot(data = tabla, aes(x = x, y=F.acum.x)) +
  geom_point() + 
  geom_line() 

#### 3. Interpretación de cada caso

3.1. ¿Cuál es la variable aleatoria y su significado en el contexto? Es una función que asigna un valor, usualmente numérico, al resultado de un experimento aleatorio. 3.2. ¿Qué valores puede tomar la variable aleatoria? El que sea mientras esté en el rango inicial 3.3. ¿Cuál es el espacio muestral?, todos los elementos Los billetes 3.4. ¿Cuántos elementos hay en espacio muestral (S)? Es el conjunto de todos los posibles resultados de un experimento 3.5. ¿Cuántos casos hay de cada valor de cada variable aleatoria? 3 3.6. ¿Cuáles son las probabilidades más altas de cada variable aleatoria?

3.7. Resolver lo que se solicita encontrando al menos dos probabilidades de variables aleatorias.

3.7.1. Que sea exactamente igual a un valor de variable aleatoria

3.7.2. Qué sea menor o igual

3.7.3. Que sea mayor o igual

3.7.4. Alguna otra pregunta del caso.

3.8. ¿Que significado tiene el gráfico de barra? Es una forma de representar gráficamente un conjunto de datos o valores mediante barras rectangulares de longitud proporcional a los valores representados. 3.9. ¿Qué significado tiene el gráfico lineal acumulado?