library(ggplot2)
library(dplyr)
library(flexdashboard)
library(tidyverse)
library(janitor)
library(usethis)
library(devtools)
library(plotly)
library(rlang)
library(sf)
library(sp)
library(spdep)
library(tmap)
library(tmaptools)
library(mapdeck)
library(cartography)
library(igraph)
library(rgdal)
library(shp2graph)
library(leaflet)
library(mapproj)
library(DCluster)
library(ggmap)
library(tidyverse)miami_grid_all <- st_read("D:/google_drive/00_city_logistics/01_production/shapefiles/eua/miami_grid_all.shp")
miami_ware <- st_read("D:/google_drive/00_city_logistics/01_production/shapefiles/eua/miami_ware.shp")
miami_poi <- st_read("D:/google_drive/00_city_logistics/01_production/shapefiles/eua/miami_poi.shp")
miami_road <- st_read("D:/google_drive/00_city_logistics/01_production/shapefiles/eua/miami_road.shp")
miami_grid_all <- miami_grid_all[,-c(1,2,3, 5, 6, 7, 8)]
names(miami_grid_all) <- c("id", "poi", "km", "wh", "avg_price", "sum_size", "avg_size", "geometry")
miami_grid_all <- mutate(miami_grid_all, ipoi = poi/12188)
miami_grid_all <- mutate(miami_grid_all, ikm = km/89618.46)
miami_grid_all <- mutate(miami_grid_all, iwh = wh/701)
miami_grid_all <- mutate(miami_grid_all, iprice = avg_price/1.111669)
miami_grid_all <- mutate(miami_grid_all, isize = avg_size/59538.14)
miami_grid_all <- mutate(miami_grid_all, wh_per_poi = wh/poi)
miami_grid_all <- mutate(miami_grid_all, wh_per_km = wh/km)#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 1.000 3.000 5.000 9.603 11.000 64.000
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 0.001427 0.004280 0.007133 0.013699 0.015692 0.091298
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 1.00 3.00 24.00 42.63 60.00 393.00
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 8.205e-05 2.461e-04 1.969e-03 3.498e-03 4.923e-03 3.224e-02
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 0.3765 31.4532 83.3221 160.3214 262.5628 617.7985
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 4.201e-06 3.510e-04 9.297e-04 1.789e-03 2.930e-03 6.894e-03
> Concentration of POI is much more intense than of km in miami.
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 0.6000 0.9675 1.1333 1.1117 1.2550 1.6850
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 0.5397 0.8703 1.0195 1.0000 1.1289 1.5157
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 0.000000 0.000000 0.000000 0.049529 0.007576 1.500000
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 0.000000 0.000000 0.000000 0.002755 0.000000 0.125249
library(corrplot)
#> corrplot 0.84 loaded
data <- miami_grid_all
st_geometry(data) <- NULL
data <- as.matrix(data)
str(data)
#> num [1:825, 1:14] 752 1002 328 1175 782 ...
#> - attr(*, "dimnames")=List of 2
#> ..$ : chr [1:825] "1" "2" "3" "4" ...
#> ..$ : chr [1:14] "id" "poi" "km" "wh" ...
corrplot(cor(data))lm1 <- lm(wh ~ km + avg_price, data=miami_grid_all)
summary(lm1)
#>
#> Call:
#> lm(formula = wh ~ km + avg_price, data = miami_grid_all)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -10.527 -0.282 0.189 0.335 55.668
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) -0.334888 0.176964 -1.892 0.0588 .
#> km 0.005187 0.001157 4.485 8.32e-06 ***
#> avg_price 6.314092 0.558799 11.299 < 2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 4.146 on 822 degrees of freedom
#> Multiple R-squared: 0.2851, Adjusted R-squared: 0.2833
#> F-statistic: 163.9 on 2 and 822 DF, p-value: < 2.2e-16lm2 <- lm(wh ~ avg_price, data=miami_grid_all)
summary(lm2)
#>
#> Call:
#> lm(formula = wh ~ avg_price, data = miami_grid_all)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -10.82 -0.08 -0.08 -0.08 56.74
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 0.0801 0.1526 0.525 0.6
#> avg_price 7.8238 0.4512 17.340 <2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 4.193 on 823 degrees of freedom
#> Multiple R-squared: 0.2676, Adjusted R-squared: 0.2667
#> F-statistic: 300.7 on 1 and 823 DF, p-value: < 2.2e-16lm3 <- lm(iwh ~ iprice, data=miami_grid_all)
summary(lm3)
#>
#> Call:
#> lm(formula = iwh ~ iprice, data = miami_grid_all)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -0.015429 -0.000114 -0.000114 -0.000114 0.080944
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 0.0001143 0.0002177 0.525 0.6
#> iprice 0.0124073 0.0007155 17.340 <2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 0.005982 on 823 degrees of freedom
#> Multiple R-squared: 0.2676, Adjusted R-squared: 0.2667
#> F-statistic: 300.7 on 1 and 823 DF, p-value: < 2.2e-16lm4 <- lm(iprice ~ ipoi, data=miami_grid_all)
summary(lm4)
#>
#> Call:
#> lm(formula = iprice ~ ipoi, data = miami_grid_all)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -1.13059 -0.05052 -0.04776 -0.04776 1.43216
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 0.04776 0.01001 4.773 2.14e-06 ***
#> ipoi 33.58136 2.85586 11.759 < 2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 0.2696 on 823 degrees of freedom
#> Multiple R-squared: 0.1438, Adjusted R-squared: 0.1428
#> F-statistic: 138.3 on 1 and 823 DF, p-value: < 2.2e-16lm5 <- lm(iprice ~ ikm, data=miami_grid_all)
summary(lm5)
#>
#> Call:
#> lm(formula = iprice ~ ikm, data = miami_grid_all)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -0.62298 -0.06074 0.01541 0.03334 1.28336
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) -0.033337 0.009862 -3.38 0.000758 ***
#> ikm 100.501564 4.642392 21.65 < 2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 0.2326 on 823 degrees of freedom
#> Multiple R-squared: 0.3628, Adjusted R-squared: 0.3621
#> F-statistic: 468.7 on 1 and 823 DF, p-value: < 2.2e-16lm6 <- lm(iprice ~ iwh + ikm +ipoi, data=miami_grid_all)
summary(lm6)
#>
#> Call:
#> lm(formula = iprice ~ iwh + ikm + ipoi, data = miami_grid_all)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -0.87382 -0.05358 0.00778 0.02341 1.24779
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) -0.023415 0.009261 -2.528 0.0116 *
#> iwh 13.502295 1.189419 11.352 <2e-16 ***
#> ikm 82.579687 5.969938 13.833 <2e-16 ***
#> ipoi -3.764524 3.025416 -1.244 0.2137
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 0.2165 on 821 degrees of freedom
#> Multiple R-squared: 0.4495, Adjusted R-squared: 0.4475
#> F-statistic: 223.5 on 3 and 821 DF, p-value: < 2.2e-16lm7 <- lm(iprice ~ iwh + ikm , data=miami_grid_all)
summary(lm7)
#>
#> Call:
#> lm(formula = iprice ~ iwh + ikm, data = miami_grid_all)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -0.86080 -0.05277 0.00754 0.02244 1.25512
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) -0.022441 0.009231 -2.431 0.0153 *
#> iwh 13.426614 1.188259 11.299 <2e-16 ***
#> ikm 78.085924 4.755255 16.421 <2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 0.2166 on 822 degrees of freedom
#> Multiple R-squared: 0.4485, Adjusted R-squared: 0.4472
#> F-statistic: 334.2 on 2 and 822 DF, p-value: < 2.2e-16Economies of agglomeration? infrastructure density?