LEEP<- read.csv("C:/Users/u6032404/OneDrive/backup 9.9.19/MJ/LEEP/LEEP.csv",header = T)
newLEEP <- LEEP[-c(2,1), ]
vis_miss(newLEEP, cluster = TRUE)

prop_miss(newLEEP)
## [1] 0
prop_complete(newLEEP)
## [1] 1
miss_var_summary(newLEEP)
## # A tibble: 228 x 3
## variable n_miss pct_miss
## <chr> <int> <dbl>
## 1 StartDate 0 0
## 2 EndDate 0 0
## 3 Status 0 0
## 4 IPAddress 0 0
## 5 Progress 0 0
## 6 Duration..in.seconds. 0 0
## 7 Finished 0 0
## 8 RecordedDate 0 0
## 9 ResponseId 0 0
## 10 RecipientLastName 0 0
## # ... with 218 more rows
newLEEP$Duration..in.seconds.<-as.numeric(newLEEP$Duration..in.seconds.)
newLEEP$Minute <- newLEEP$Duration..in.seconds. %/% 60
summary(newLEEP$Minute)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 5.00 9.00 12.50 18.69 18.00 733.00
newLEEP %>%
filter(Minute < 120) %>%
ggplot(aes(x = Minute)) +
geom_histogram(bins = 30)+theme_minimal()+xlab("Minute") + ylab("Count")+ggtitle("Completion Duration (LEEP) ")

newLEEP$LocationLatitude<-as.numeric(newLEEP$LocationLatitude)
newLEEP$LocationLongitude<-as.numeric(newLEEP$LocationLongitude)
usa1 <- map_data("world") %>% filter(region=="USA")
data <- world.cities %>% filter(country.etc=="USA")
ggplot() +
geom_polygon(data = usa1, aes(x=long, y = lat, group = group), fill="blue",size=40,alpha=4)+geom_point(data = newLEEP, aes(x = LocationLongitude, y = LocationLatitude), col = "red", shape = 16, alpha = 1, size=1) + theme_void() + coord_map() +ggtitle("The Location of Participants in the LEEP Study")+ylim(25,50)+xlim(-150,-50)

ggsave("x1.png", width = 20, height = 20)