\[ g(x) = x^2+x-4 \]
\[ \begin{aligned} x^2+x-4 & = x \\ x^2 - 4 &= 0 \\ x &= \pm 2 \end{aligned} \]
fxdpt <- function(g,x0,m) {
# g = iterating function
# x0 = initial value
# m = number of iterations
# Start by displaying initial value
cat("n = ", 0,",", "x(n) = ", x0, "\n")
# Fixed point iteration loop
for(n in 1:m) {
x1 <- g(x0)
x0 <- x1
cat("n = ", n,",", "x(n) = ", x1, "\n") }
}
g <- function(x)
{x-(x^3+4*x^2-10)/(3*x^2+8*x)}
fxdpt(g,4,8)
n = 0 , x(n) = 4
n = 1 , x(n) = 2.525
n = 2 , x(n) = 1.721454
n = 3 , x(n) = 1.414551
n = 4 , x(n) = 1.366381
n = 5 , x(n) = 1.365231
n = 6 , x(n) = 1.36523
n = 7 , x(n) = 1.36523
n = 8 , x(n) = 1.36523
g <- function(x)
{sqrt(10/(4+x))}
fxdpt(g,4,8)
n = 0 , x(n) = 4
n = 1 , x(n) = 1.118034
n = 2 , x(n) = 1.397811
n = 3 , x(n) = 1.361104
n = 4 , x(n) = 1.365755
n = 5 , x(n) = 1.365163
n = 6 , x(n) = 1.365239
n = 7 , x(n) = 1.365229
n = 8 , x(n) = 1.36523
g <- function(x)
{0.5*sqrt(10 - x^3)}
fxdpt(g,1,8)
n = 0 , x(n) = 1
n = 1 , x(n) = 1.5
n = 2 , x(n) = 1.286954
n = 3 , x(n) = 1.402541
n = 4 , x(n) = 1.345458
n = 5 , x(n) = 1.37517
n = 6 , x(n) = 1.360094
n = 7 , x(n) = 1.367847
n = 8 , x(n) = 1.363887
g <- function(x)
{x-x^3-4*x^2+10}
fxdpt(g,1.2,8)
n = 0 , x(n) = 1.2
n = 1 , x(n) = 3.712
n = 2 , x(n) = -92.55122
n = 3 , x(n) = 758423
n = 4 , x(n) = -4.362514e+17
n = 5 , x(n) = 8.302532e+52
n = 6 , x(n) = -5.723105e+158
n = 7 , x(n) = NaN
n = 8 , x(n) = NaN
g <- function(x)
{x-x^3-4*x^2+10}
fxdpt(g,1.36,8)
n = 0 , x(n) = 1.36
n = 1 , x(n) = 1.446144
n = 2 , x(n) = 0.05644622
n = 3 , x(n) = 10.04352
n = 4 , x(n) = -1396.559
n = 5 , x(n) = 2716014862
n = 6 , x(n) = -2.003533e+28
n = 7 , x(n) = 8.042467e+84
n = 8 , x(n) = -5.20197e+254
g <- function(x)
{x-x^3-4*x^2+10}
fxdpt(g,1.36523,8)
n = 0 , x(n) = 1.36523
n = 1 , x(n) = 1.36523
n = 2 , x(n) = 1.365227
n = 3 , x(n) = 1.36528
n = 4 , x(n) = 1.364453
n = 5 , x(n) = 1.377278
n = 6 , x(n) = 1.177141
n = 7 , x(n) = 4.003382
n = 8 , x(n) = -114.2673
g <- function(x)
{x-x^3-4*x^2+10}
fxdpt(g,1.36523001341410,8)
n = 0 , x(n) = 1.36523
n = 1 , x(n) = 1.36523
n = 2 , x(n) = 1.36523
n = 3 , x(n) = 1.36523
n = 4 , x(n) = 1.36523
n = 5 , x(n) = 1.36523
n = 6 , x(n) = 1.36523
n = 7 , x(n) = 1.365229
n = 8 , x(n) = 1.36524
g <- function(x){2-0.5*x^2}
fxdpt(g,1,8)
n = 0 , x(n) = 1
n = 1 , x(n) = 1.5
n = 2 , x(n) = 0.875
n = 3 , x(n) = 1.617188
n = 4 , x(n) = 0.6923523
n = 5 , x(n) = 1.760324
n = 6 , x(n) = 0.4506294
n = 7 , x(n) = 1.898467
n = 8 , x(n) = 0.1979124
If \( g \) is a function on \( [a,b] \) with:
Then:
For this example,
\[ \begin{aligned} g(x) &= x^2 + x - 4 \\ g'(x) &= 2x \\ \end{aligned} \]
Then \( g \) is continuous on \( [-2,2] \) with
\[ \begin{aligned} g(x) & \notin [-2,2] \\ \max_{x \in [-2,2]} & |g'(x)| = 4 > 1 & \end{aligned} \]
FPT doesn't guarantee convergence
Here \[ g(x) = x-\frac{x^3+4x^2-10}{3x^2+8x} \]
Then \( g \) is continuous on \( [0,5] \) with
\[ \begin{aligned} g(x) & \notin [0,5] \\ g'(x) &= \frac{(6x + 8)(x^3 + 4 x^2 -10)}{x^2(3 x + 8)^2} \\ \max_{x \in [0,5]} &|g'(x)| \geq k > 1 \end{aligned} \]
FPT doesn't guarantee convergence
g <- function(x)
{x-(x^3+4*x^2-10)/(3*x^2+8*x)}
fxdpt(g,4,8)
n = 0 , x(n) = 4
n = 1 , x(n) = 2.525
n = 2 , x(n) = 1.721454
n = 3 , x(n) = 1.414551
n = 4 , x(n) = 1.366381
n = 5 , x(n) = 1.365231
n = 6 , x(n) = 1.36523
n = 7 , x(n) = 1.36523
n = 8 , x(n) = 1.36523
In this example, \[ g(x) = \sqrt{\frac{10}{4+x}} \]
Then \( g \) is continuous on \( [0,2] \) with
\[ \begin{aligned} g(x) & \in [0,2] \\ g'(x) &= -\frac{5}{\sqrt{10}}(4+x)^{-3/2} \\ \max_{x \in [0,2]} &|g'(x)| \leq k = 0.2 \in [0,1) \end{aligned} \]
FPT guarantees convergence
g <- function(x)
{sqrt(10/(4+x))}
fxdpt(g,4,8)
n = 0 , x(n) = 4
n = 1 , x(n) = 1.118034
n = 2 , x(n) = 1.397811
n = 3 , x(n) = 1.361104
n = 4 , x(n) = 1.365755
n = 5 , x(n) = 1.365163
n = 6 , x(n) = 1.365239
n = 7 , x(n) = 1.365229
n = 8 , x(n) = 1.36523
For this example,
\[ g(x) = 0.5\sqrt{10-x^3} \]
Then \( g \) is continuous on \( [0,2] \) with
\[ \begin{aligned} g(x) & \in [0,2] \\ g'(x) &= - \frac{3}{4}x^2(10-x^3)^{-1/2} \\ \max_{x \in [0,2]} &|g'(x)| > 1 \\ \max_{x \in [0,1.5]} & |g'(x)| < 0.66 = k < 1 \end{aligned} \]
g <- function(x)
{0.5*sqrt(10 - x^3)}
fxdpt(g,1,8)
n = 0 , x(n) = 1
n = 1 , x(n) = 1.5
n = 2 , x(n) = 1.286954
n = 3 , x(n) = 1.402541
n = 4 , x(n) = 1.345458
n = 5 , x(n) = 1.37517
n = 6 , x(n) = 1.360094
n = 7 , x(n) = 1.367847
n = 8 , x(n) = 1.363887
For this example,
\[ g(x) = x-x^3-4x^2+10 \]
Then \( g \) is continuous on \( [0,2] \) with
\[ \begin{aligned} g(x) & \notin [0,2] \\ g'(x) &= 1 - 3x^2 - 8x \\ \max_{x \in [0,2]} &|g'(x)| \geq k > 1 \end{aligned} \]
FPT doesn't guarantee convergence
g <- function(x)
{x-x^3-4*x^2+10}
fxdpt(g,1.2,8)
n = 0 , x(n) = 1.2
n = 1 , x(n) = 3.712
n = 2 , x(n) = -92.55122
n = 3 , x(n) = 758423
n = 4 , x(n) = -4.362514e+17
n = 5 , x(n) = 8.302532e+52
n = 6 , x(n) = -5.723105e+158
n = 7 , x(n) = NaN
n = 8 , x(n) = NaN
If \( g \) is a function on \( [a,b] \) with:
Then:
\[ \small{\max_{x \in [a,b]} |g'(x)| \leq k < 1 } \]
\[ \small{\begin{aligned} g'(c) & = \frac{g(x_n) - g(p)}{x_n - p} \\ c &\in [x_n, p] \end{aligned}} \]
\[ \small{ \begin{aligned} g(x_n) & = x_{n+1} \\ g(p) &= p \end{aligned} } \]
\[ \small{ \begin{aligned} g'(c) & = \frac{g(x_n) - g(p)}{x_n - p} \\ g(x_n) & = x_{n+1} \\ g(p) &= p \end{aligned} } \]
\[ \small{ \begin{aligned} E_{n+1} &= |x_{n+1} - p| \\ &= |g'(c)|\cdot |x_n - p| \\ & \mbox{ } \leq k |x_n - p| \end{aligned} } \]
\[ \small{ \begin{aligned} E_{n+1} & \leq k^2|x_{n-1} - p| \\ & \vdots \\ & \leq k^{n+1} |x_0 - p| \end{aligned}} \]
Suppose \( g \) is a function on \( [a,b] \) with
If the slope of \( g \) at \( p \) satisfies
\[ \small{|g'(p)| = 0 } \]
then \( \small{~ x_n \rightarrow p ~ } \) much faster than if
\[ \small{|g'(p)| \neq 0 } \]
n = 0 , x(n) = 1.9
n = 1 , x(n) = 1.465924
n = 2 , x(n) = 1.369859
n = 3 , x(n) = 1.36524
n = 4 , x(n) = 1.36523
n = 5 , x(n) = 1.36523
n = 6 , x(n) = 1.36523
n = 7 , x(n) = 1.36523
n = 0 , x(n) = 1.9
n = 1 , x(n) = 0.8861433
n = 2 , x(n) = 1.525136
n = 3 , x(n) = 1.270086
n = 4 , x(n) = 1.409894
n = 5 , x(n) = 1.3414
n = 6 , x(n) = 1.377166
n = 7 , x(n) = 1.359052
\[ g(x) = x - f(x). \]
\[ f(x)=0. \]
\[ \begin{aligned} p & = p - f(p) \\ & \Leftrightarrow \\ f(p) & = 0 \end{aligned} \]
\[ \begin{aligned} f(x) &= 4 - x^2 \\ x & \in [-2,2] \end{aligned} \]
\[ \begin{aligned} g(x) & = x - f(x) \\ & = x - (4-x^2) \\ & = x^2+x-4 \end{aligned} \]
\[ f(x) = x^3+4x^2-10 \]
\[ p = 1.36523 \]
\[ \small{ \begin{aligned} f(x) &= x^3+4x^2-10 \\ g(x) & = x - \frac{f(x)}{f'(x)} \\ &= x-\frac{x^3+4x^2-10}{3x^2+8x} \end{aligned} } \]
\[ |g'(p)| = 0 \]
g <- function(x)
{x-(x^3+4*x^2-10)/(3*x^2+8*x)}
fxdpt(g,4,8)
n = 0 , x(n) = 4
n = 1 , x(n) = 2.525
n = 2 , x(n) = 1.721454
n = 3 , x(n) = 1.414551
n = 4 , x(n) = 1.366381
n = 5 , x(n) = 1.365231
n = 6 , x(n) = 1.36523
n = 7 , x(n) = 1.36523
n = 8 , x(n) = 1.36523
\[ \begin{aligned} x^3+4x^2-10 &= 0 \\ x^2(x+4) &= 10 \\ x & = \sqrt{\frac{10}{4+x}} \\ x &= g(x) \end{aligned} \]
\[ 0 < |g'(p)| = k_3 < 1 \]
g <- function(x)
{sqrt(10/(4+x))}
fxdpt(g,4,8)
n = 0 , x(n) = 4
n = 1 , x(n) = 1.118034
n = 2 , x(n) = 1.397811
n = 3 , x(n) = 1.361104
n = 4 , x(n) = 1.365755
n = 5 , x(n) = 1.365163
n = 6 , x(n) = 1.365239
n = 7 , x(n) = 1.365229
n = 8 , x(n) = 1.36523
\[ \begin{aligned} x^3+4x^2-10 &= 0 \\ 4x^2 &= 10 - x^3 \\ x^2 & = \frac{1}{4}(\sqrt{10-x^3}) \\ x & = 0.5\sqrt{10-x^3} \\ x &= g(x) \end{aligned} \]
\[ 0 < k_3 < |g'(p)| = k_4 < 1 \]
g <- function(x)
{0.5*sqrt(10 - x^3)}
fxdpt(g,1,8)
n = 0 , x(n) = 1
n = 1 , x(n) = 1.5
n = 2 , x(n) = 1.286954
n = 3 , x(n) = 1.402541
n = 4 , x(n) = 1.345458
n = 5 , x(n) = 1.37517
n = 6 , x(n) = 1.360094
n = 7 , x(n) = 1.367847
n = 8 , x(n) = 1.363887
\[ \begin{aligned} x^3+4x^2-10 &= 0 \\ x +(x^3+4x^2-10) &= x \\ x & = x -x^3-4x^2+10 \\ x &= x - f(x) \\ x &= g(x) \end{aligned} \]
\[ |g'(p)| \gg 1 \]
g <- function(x)
{x-x^3-4*x^2+10}
fxdpt(g,1.2,8)
n = 0 , x(n) = 1.2
n = 1 , x(n) = 3.712
n = 2 , x(n) = -92.55122
n = 3 , x(n) = 758423
n = 4 , x(n) = -4.362514e+17
n = 5 , x(n) = 8.302532e+52
n = 6 , x(n) = -5.723105e+158
n = 7 , x(n) = NaN
n = 8 , x(n) = NaN
g <- function(x)
{x-(x^3+4*x^2-10)/(3*x^2+8*x)}
fxdpt(g,4,8)
n = 0 , x(n) = 4
n = 1 , x(n) = 2.525
n = 2 , x(n) = 1.721454
n = 3 , x(n) = 1.414551
n = 4 , x(n) = 1.366381
n = 5 , x(n) = 1.365231
n = 6 , x(n) = 1.36523
n = 7 , x(n) = 1.36523
n = 8 , x(n) = 1.36523
\[ \small{ \begin{aligned} f(x) &= x^3+4x^2-10 \\ g(x) & = x - \frac{f(x)}{f'(x)} \\ &= x-\frac{x^3+4x^2-10}{3x^2+8x} \end{aligned} } \]
\[ |g'(p)| = 0 \]
\[ |g'(p)| = 0 \]
\[ \small{ \begin{aligned} f(x) &= 0 \Rightarrow \\ g(x) & = x - \frac{f(x)}{f'(x)} \\ g'(x) & = 1 - \frac{f'(x)f'(x)-f(x)f''(x)}{\left[f'(x)\right]^2} \\ & = \frac{f(x)f''(x)}{\left[f'(x)\right]^2} \\ \\ g'(p) &= 0, \,\, \text{since $~f(p)=0$} \end{aligned} } \]
\[ \small{ f(x) = f(x_n) + f'(x_n)(x-x_n) + \frac{f''(c)}{2}(x-x_n)^2}, \,\, c \in [x_n,x] \]
\[ \small{ \begin{aligned} 0 &\cong f(x_n) + f'(x_n)(p-x_n) \\ p-x_n &\cong -\frac{f(x_n)}{f'(x_n)} \\ p & \cong x_n - \frac{f(x_n)}{f'(x_n)} \\ x_{n+1} & = x_n - \frac{f(x_n)}{f'(x_n)} = g(x_n) \end{aligned} } \]
g <- function(x)
{x-(x^3+4*x^2-10)/(3*x^2+8*x)}
fxdpt(g,4,8)
n = 0 , x(n) = 4
n = 1 , x(n) = 2.525
n = 2 , x(n) = 1.721454
n = 3 , x(n) = 1.414551
n = 4 , x(n) = 1.366381
n = 5 , x(n) = 1.365231
n = 6 , x(n) = 1.36523
n = 7 , x(n) = 1.36523
n = 8 , x(n) = 1.36523
\[ \small{ \begin{aligned} f(x) &= \cos(x) \\ g(x) & = x - \frac{f(x)}{f'(x)} \\ & = x - \frac{\cos(x)}{(-\sin(x))} \\ & = x + \cot(x) \end{aligned} } \]
\[ |g'(p)| = 0 \]
g <- function(x)
{x+cos(x)/sin(x)}
fxdpt(g,0.5,8)
n = 0 , x(n) = 0.5
n = 1 , x(n) = 2.330488
n = 2 , x(n) = 1.380623
n = 3 , x(n) = 1.573123
n = 4 , x(n) = 1.570796
n = 5 , x(n) = 1.570796
n = 6 , x(n) = 1.570796
n = 7 , x(n) = 1.570796
n = 8 , x(n) = 1.570796
g <- function(x)
{x+cos(x)/sin(x)}
fxdpt(g,0.3,8)
n = 0 , x(n) = 0.3
n = 1 , x(n) = 3.532728
n = 2 , x(n) = 5.957659
n = 3 , x(n) = 2.994993
n = 4 , x(n) = -3.777389
n = 5 , x(n) = -5.132347
n = 6 , x(n) = -4.685825
n = 7 , x(n) = -4.712395
n = 8 , x(n) = -4.712389
\[ \small{ f(x) = \cos(x), \,\, g(x) = x + \frac{\cos(x)}{\sin(x)} } \]
\[ \small{ f(x) = \cos(x), \,\, g(x) = x + \frac{\cos(x)}{\sin(x)} } \]
\[ \small{ \begin{aligned} g(x) &= x - \frac{f(x)}{f'(x)} \end{aligned} } \]
\[ \small{ \begin{aligned} f'(x_n) & = 0 \\ f'(p) & = 0 \\ |p - x_0 | & \gg 0 \end{aligned} } \]
\[ \small{ \begin{aligned} g(x) &= x - \frac{f(x)}{f'(x)} \end{aligned} } \]
g <- function(x)
{x-(x^3+4*x^2-10)/(3*x^2+8*x)}
fxdpt(g,-2.7,8)
n = 0 , x(n) = -2.7
n = 1 , x(n) = -0.762963
n = 2 , x(n) = -2.625483
n = 3 , x(n) = -4.244654
n = 4 , x(n) = -3.527627
n = 5 , x(n) = -3.07526
n = 6 , x(n) = -2.742458
n = 7 , x(n) = -1.873374
n = 8 , x(n) = -2.442309
\[ \small{ \begin{aligned} g(x) &= x - \frac{f(x)}{f'(x)} \end{aligned} } \]
g <- function(x)
{x-(x^3+4*x^2-10)/(3*x^2+8*x)}
fxdpt(g,-2.8,8)
n = 0 , x(n) = -2.8
n = 1 , x(n) = -2.271429
n = 2 , x(n) = -2.673034
n = 3 , x(n) = 7.485308
n = 4 , x(n) = 4.70637
n = 5 , x(n) = 2.949942
n = 6 , x(n) = 1.934381
n = 7 , x(n) = 1.477257
n = 8 , x(n) = 1.370916
\[ \small{ \begin{aligned} g(x) &= x + \frac{f(x)}{f'(x)} \end{aligned} } \]
g <- function(x)
{x-(x^3+4*x^2-10)/(3*x^2+8*x)}
fxdpt(g,-2.9,8)
n = 0 , x(n) = -2.9
n = 1 , x(n) = -2.531034
n = 2 , x(n) = -3.103542
n = 3 , x(n) = -2.767878
n = 4 , x(n) = -2.100915
n = 5 , x(n) = -2.554597
n = 6 , x(n) = -3.21517
n = 7 , x(n) = -2.858506
n = 8 , x(n) = -2.449547
\[ \small{ \begin{aligned} g(x) &= x - \frac{f(x)}{f'(x)} \end{aligned} } \]
g <- function(x)
{x-(x^3+4*x^2-10)/(3*x^2+8*x)}
fxdpt(g,-3.0,8)
n = 0 , x(n) = -3
n = 1 , x(n) = -2.666667
n = 2 , x(n) = Inf
n = 3 , x(n) = NaN
n = 4 , x(n) = NaN
n = 5 , x(n) = NaN
n = 6 , x(n) = NaN
n = 7 , x(n) = NaN
n = 8 , x(n) = NaN
\[ \small{ \begin{aligned} f(x) &= e^x - x - 1, \,\, p = 0 \\ f(p) & = f'(p) = 0 \end{aligned} } \]
\[ \small{ \begin{aligned} g_1(x) &= x - \frac{f(x)}{f'(x)} \\ g_2(x) &= x - \frac{f(x)f'(x)}{\left[f'(x)\right]^2-f(x)f''(x)} \\ \end{aligned} } \]
\[ \small{ \begin{aligned} g_1'(p) & \neq 0 \\ g_2'(p) &= 0 \end{aligned} } \]
\[ \small{ \begin{aligned} g_1(x) &= x - \frac{f(x)}{f'(x)} \\ x_n & = g_1(x_{n-1}) \end{aligned} } \]
g <- function(x)
{x-(exp(x)-x-1)/(exp(x)-1)}
fxdpt(g,0.8,8)
n = 0 , x(n) = 0.8
n = 1 , x(n) = 0.452773
n = 2 , x(n) = 0.243412
n = 3 , x(n) = 0.1266386
n = 4 , x(n) = 0.06465538
n = 5 , x(n) = 0.03267603
n = 6 , x(n) = 0.01642699
n = 7 , x(n) = 0.008235981
n = 8 , x(n) = 0.004123643
\[ \small{ \begin{aligned} f(x) &= e^x - x - 1, \,\, p = 0 \\ f(p) & = f'(p) = 0 \end{aligned} } \]
\[ \small{ \begin{aligned} g_1(x) &= x - \frac{f(x)}{f'(x)} \\ g_2(x) &= x - \frac{f(x)f'(x)}{\left[f'(x)\right]^2-f(x)f''(x)} \\ \end{aligned} } \]
\[ \small{ \begin{aligned} g_1'(p) & \neq 0 \\ g_2'(p) &= 0 \end{aligned} } \]
\[ x_n = g_2(x_{n-1}) \]
g <- function(x)
{x-(exp(x)-x-1)*(exp(x)-1)/((exp(x)-1)^2-(exp(x)-x-1)*exp(x))}
fxdpt(g,0.8,8)
n = 0 , x(n) = 0.8
n = 1 , x(n) = -0.139855
n = 2 , x(n) = -0.003111746
n = 3 , x(n) = -1.612155e-06
n = 4 , x(n) = -2.867545e-10
n = 5 , x(n) = -2.867545e-10
n = 6 , x(n) = -2.867545e-10
n = 7 , x(n) = -2.867545e-10
n = 8 , x(n) = -2.867545e-10
\[ \small{ \begin{aligned} g_1(x) &= x - \frac{f(x)}{f'(x)} \\ x_n & = g_1(x_{n-1}) \end{aligned} } \]
\[ \small{ \begin{aligned} f'(x_n) & = 0 \\ f'(p) & = 0 \\ |p - x_0 | & \gg 0 \end{aligned} } \]