Definition of a distance

A distance on the space \(\mathbb{R}^n,\:n\geq 2\), is a function \(d:\mathbb{R}^n\times\mathbb{R}^n\rightarrow [0,\infty)\).

It must satisfy some required properties.

P1. \(d(\mathbf{x},\mathbf{y})= 0\iff \mathbf{x}=\mathbf{y}\) (identity of indiscernibles);

P2. \(d(\mathbf{x},\mathbf{y})= d(\mathbf{y},\mathbf{x})\) (symmetry);

P3. \(d(\mathbf{x},\mathbf{y})+d(\mathbf{y},\mathbf{z})\geq d(\mathbf{x},\mathbf{z})\) (triangle inequality),

where \(\mathbf{x}=(x_1,\cdots,x_n)\), \(\mathbf{y}=(y_1,\cdots,y_n)\) and \(\mathbf{z}=(z_1,\cdots,z_n)\) are any three vectors of \(\mathbb{R}^n\).

Classical distances

  1. Euclidean distance \[d(\mathbf{x},\mathbf{y})=\sqrt{\sum_{i=1}^n (x_i-y_i)^2}\]

  2. Manhattan distance \[d(\mathbf{x},\mathbf{y}) =\sum_{i=1}^n |x_i-y_i|\]

Both are special casesof the Minkowski distance (resp. p = 2 and p=1).

\[ d(\mathbf{x},\mathbf{y}) = \left[\sum_{i=1}^n |x_i-y_i|^{p}\right]^{1/p},\: p\geq 1 \]

To proof of the triangular inequality is bases onthe Minkowski inequality

\[ \left[\sum_{i=1}^n |x_i+y_i|^{p}\right]^{1/p}\leq \left[\sum_{i=1}^n |x_i|^{p}\right]^{1/p} + \left[\sum_{i=1}^n |y_i|^{p}\right]^{1/p},\:p\geq 1. \]

One proof of Minkowski inequality requires the use of Hölder inequality

\[ \sum_{i=1}^n |x_iy_i|\leq \left[\sum_{i=1}^n |x_i|^{p}\right]^{1/p} \left[\sum_{i=1}^n |y_i|^{q}\right]^{1/q},\:\frac{1}{p}+\frac{1}{q}=1,\:p,q> 1. \] Note that the equality holds iff at least one vector is null or the two vectors are proportional.

Note that the above inequality implies

\[ \sum_{i=1}^n |x_i|\leq \left[\sum_{i=1}^n |x_i|^{p}\right]^{1/p} ,\:p\geq 1. \] To prove Minkowski, notice that

\[ |x_i+y_i|^{p}=|x_i+y_i| |x_i+y_i|^{p-1}\leq (|x_i|+|y_i|) |x_i+y_i|^{p-1},\;i=1,\cdots, n, \] so that

\[ |x_i+y_i|^{p}\leq |x_i| |x_i+y_i|^{p-1}+ |y_i||x_i+y_i|^{p-1},\;i=1,\cdots, n, \]

Applying Hölder inequality, we get \[ |x_i+y_i|^{p}= |x_i+y_i| |x_i+y_i|^{p-1},\;i=1,\cdots, n \]

Correlation-based distances

  1. Pearson correlation distance \[ {\sqrt{\sum_{i=1}^n (x_i-\bar{x})^2\sum_{i=1}^n (y_i-\bar{y})^2}}\]

  2. Eisen cosine correlation distance

  3. Spearman correlation distance

  4. Kendall correlation distance

LS0tCnRpdGxlOiAiQ2x1c3RlcmluZyBEaXN0YW5jZSBNZWFzdXJlcyIKb3V0cHV0OgogIGh0bWxfbm90ZWJvb2s6IGRlZmF1bHQKICBwZGZfZG9jdW1lbnQ6IGRlZmF1bHQKLS0tCgoKIyBEZWZpbml0aW9uIG9mIGEgZGlzdGFuY2UKCgpBIGRpc3RhbmNlIG9uIHRoZSBzcGFjZSAkXG1hdGhiYntSfV5uLFw6blxnZXEgMiQsIGlzIGEgZnVuY3Rpb24gJGQ6XG1hdGhiYntSfV5uXHRpbWVzXG1hdGhiYntSfV5uXHJpZ2h0YXJyb3cgWzAsXGluZnR5KSQuCgpJdCBtdXN0IHNhdGlzZnkgc29tZSByZXF1aXJlZCBwcm9wZXJ0aWVzLiAKClAxLiAkZChcbWF0aGJme3h9LFxtYXRoYmZ7eX0pPSAwXGlmZiBcbWF0aGJme3h9PVxtYXRoYmZ7eX0kIChpZGVudGl0eSBvZiBpbmRpc2Nlcm5pYmxlcyk7CgpQMi4gJGQoXG1hdGhiZnt4fSxcbWF0aGJme3l9KT0gZChcbWF0aGJme3l9LFxtYXRoYmZ7eH0pJCAoc3ltbWV0cnkpOwoKUDMuICRkKFxtYXRoYmZ7eH0sXG1hdGhiZnt5fSkrZChcbWF0aGJme3l9LFxtYXRoYmZ7en0pXGdlcSBkKFxtYXRoYmZ7eH0sXG1hdGhiZnt6fSkkICh0cmlhbmdsZSBpbmVxdWFsaXR5KSwKCndoZXJlICRcbWF0aGJme3h9PSh4XzEsXGNkb3RzLHhfbikkLCAkXG1hdGhiZnt5fT0oeV8xLFxjZG90cyx5X24pJCBhbmQgJFxtYXRoYmZ7en09KHpfMSxcY2RvdHMsel9uKSQgYXJlIGFueSB0aHJlZSB2ZWN0b3JzIG9mICRcbWF0aGJie1J9Xm4kLgoKIyMgQ2xhc3NpY2FsIGRpc3RhbmNlcwogCjEuIEV1Y2xpZGVhbiBkaXN0YW5jZQokJGQoXG1hdGhiZnt4fSxcbWF0aGJme3l9KT1cc3FydHtcc3VtX3tpPTF9Xm4gKHhfaS15X2kpXjJ9JCQKCgoyLiBNYW5oYXR0YW4gZGlzdGFuY2UKJCRkKFxtYXRoYmZ7eH0sXG1hdGhiZnt5fSkKPVxzdW1fe2k9MX1ebiB8eF9pLXlfaXwkJAoKQm90aCBhcmUgc3BlY2lhbCBjYXNlc29mIHRoZSBNaW5rb3dza2kgZGlzdGFuY2UgKHJlc3AuIHAgPSAyIGFuZCBwPTEpLgoKJCQKZChcbWF0aGJme3h9LFxtYXRoYmZ7eX0pCj0KXGxlZnRbXHN1bV97aT0xfV5uIHx4X2kteV9pfF57cH1ccmlnaHRdXnsxL3B9LFw6IHBcZ2VxIDEKJCQKCgpUbyBwcm9vZiBvZiB0aGUgdHJpYW5ndWxhciBpbmVxdWFsaXR5IGlzIGJhc2VzIG9udGhlIE1pbmtvd3NraSBpbmVxdWFsaXR5CgokJApcbGVmdFtcc3VtX3tpPTF9Xm4gfHhfaSt5X2l8XntwfVxyaWdodF1eezEvcH1cbGVxClxsZWZ0W1xzdW1fe2k9MX1ebiB8eF9pfF57cH1ccmlnaHRdXnsxL3B9CisKXGxlZnRbXHN1bV97aT0xfV5uIHx5X2l8XntwfVxyaWdodF1eezEvcH0sXDpwXGdlcSAxLgokJAoKT25lIHByb29mIG9mIE1pbmtvd3NraSBpbmVxdWFsaXR5IHJlcXVpcmVzIHRoZSB1c2Ugb2YgSMO2bGRlciBpbmVxdWFsaXR5CgokJApcc3VtX3tpPTF9Xm4gfHhfaXlfaXxcbGVxClxsZWZ0W1xzdW1fe2k9MX1ebiB8eF9pfF57cH1ccmlnaHRdXnsxL3B9ClxsZWZ0W1xzdW1fe2k9MX1ebiB8eV9pfF57cX1ccmlnaHRdXnsxL3F9LFw6XGZyYWN7MX17cH0rXGZyYWN7MX17cX09MSxcOnAscT4gMS4KJCQKTm90ZSB0aGF0IHRoZSBlcXVhbGl0eSBob2xkcyBpZmYgYXQgbGVhc3Qgb25lIHZlY3RvciBpcyBudWxsIG9yIHRoZSB0d28gdmVjdG9ycyBhcmUgcHJvcG9ydGlvbmFsLgoKTm90ZSB0aGF0IHRoZSBhYm92ZSBpbmVxdWFsaXR5IGltcGxpZXMgCgokJApcc3VtX3tpPTF9Xm4gfHhfaXxcbGVxClxsZWZ0W1xzdW1fe2k9MX1ebiB8eF9pfF57cH1ccmlnaHRdXnsxL3B9CixcOnBcZ2VxIDEuCiQkClRvIHByb3ZlIE1pbmtvd3NraSwgbm90aWNlIHRoYXQgCgokJAogfHhfaSt5X2l8XntwfT18eF9pK3lfaXwgfHhfaSt5X2l8XntwLTF9XGxlcQogKHx4X2l8K3x5X2l8KSB8eF9pK3lfaXxee3AtMX0sXDtpPTEsXGNkb3RzLCBuLAokJApzbyB0aGF0CgokJAogfHhfaSt5X2l8XntwfVxsZXEKIHx4X2l8IHx4X2kreV9pfF57cC0xfSsgfHlfaXx8eF9pK3lfaXxee3AtMX0sXDtpPTEsXGNkb3RzLCBuLAokJAoKQXBwbHlpbmcgSMO2bGRlciBpbmVxdWFsaXR5LCB3ZSBnZXQKJCQKIHx4X2kreV9pfF57cH09IHx4X2kreV9pfCB8eF9pK3lfaXxee3AtMX0sXDtpPTEsXGNkb3RzLCBuCiQkCgoKIyMgQ29ycmVsYXRpb24tYmFzZWQgZGlzdGFuY2VzCgoxLiBQZWFyc29uIGNvcnJlbGF0aW9uIGRpc3RhbmNlCiQkCntcc3FydHtcc3VtX3tpPTF9Xm4gKHhfaS1cYmFye3h9KV4yXHN1bV97aT0xfV5uICh5X2ktXGJhcnt5fSleMn19JCQKMi4gRWlzZW4gY29zaW5lIGNvcnJlbGF0aW9uIGRpc3RhbmNlCgoyLiBTcGVhcm1hbiBjb3JyZWxhdGlvbiBkaXN0YW5jZQoKMy4gS2VuZGFsbCBjb3JyZWxhdGlvbiBkaXN0YW5jZQoK