#Packages
library(pacman)
p_load(dplyr, DT, meta, DescTools, ggplot2)
#Data
JOG <- read.csv("E:/Research/JustOneg/JOGMetaPART.csv")
datatable(JOG, extensions = c("Buttons", "FixedColumns"), options = list(dom = 'Bfrtip', buttons = c('copy', 'csv', 'print'), scrollX = T, fixedColumns = list(leftColumns = 3)))
#Ad hoc functions
multiplot <- function(..., plotlist=NULL, file, cols=1, layout=NULL) {
library(grid)
plots <- c(list(...), plotlist)
numPlots = length(plots)
if (is.null(layout)) {
layout <- matrix(seq(1, cols * ceiling(numPlots/cols)),
ncol = cols, nrow = ceiling(numPlots/cols))}
if (numPlots==1) {
print(plots[[1]])
} else {
grid.newpage()
pushViewport(viewport(layout = grid.layout(nrow(layout), ncol(layout))))
for (i in 1:numPlots) {
matchidx <- as.data.frame(which(layout == i, arr.ind = TRUE))
print(plots[[i]], vp = viewport(layout.pos.row = matchidx$row,
layout.pos.col = matchidx$col))}}}
This is a meta-analysis of joint confirmatory factor analytic assessments of the indifference of the indicator. It will be expanded later to include a handful of new data points and results from other methods. These analyses have already been conducted and their results are in line with that presented below.
Located at https://rpubs.com/JLLJ/JOG, https://rpubs.com/JLLJ/NJDH and https://rpubs.com/JLLJ/FRE20.
#Raw correlations
RCOR <- metacor(Corr,
sqrt(n),
data = JOG,
studlab = Source,
sm = "COR",
method.tau = "SJ")
#r-to-z transformed for proper variance estimation
ZCOR <- metacor(Corr,
sqrt(n),
data = JOG,
studlab = Source,
sm = "ZCOR",
method.tau = "SJ")
RCOR; ZCOR
## COR 95%-CI %W(fixed) %W(random)
## Stone 92 0.9990 [ 0.9977; 1.0003] 3.6 2.5
## ByrdBuckhalt91 0.9990 [ 0.9974; 1.0006] 2.1 2.5
## TirreField2002A 0.9990 [ 0.9981; 0.9999] 6.3 2.5
## TirreField2002B 0.8900 [ 0.7942; 0.9858] 0.0 1.6
## TirreField2002C 0.9810 [ 0.9599; 1.0021] 0.0 2.4
## WothkeEA91 0.9990 [ 0.9980; 1.0000] 5.2 2.5
## Williamson69 0.9990 [ 0.9979; 1.0001] 4.8 2.5
## Kettner76A 0.9490 [ 0.9003; 0.9977] 0.0 2.2
## Kettner76B 0.9990 [ 0.9980; 1.0000] 5.9 2.5
## Palmer90 0.9750 [ 0.9526; 0.9974] 0.0 2.4
## KranzlerJensen91 0.3680 [-0.1953; 0.9313] 0.0 0.1
## LuoThompsonDetterman03 0.8700 [ 0.7686; 0.9714] 0.0 1.5
## Carey92 0.8900 [ 0.8188; 0.9612] 0.0 1.9
## AbrahamsEA94 0.8610 [ 0.8087; 0.9133] 0.0 2.2
## WolfeEA95 0.8660 [ 0.8179; 0.9141] 0.0 2.2
## NaglieriJensen87 0.9990 [ 0.9979; 1.0001] 4.5 2.5
## Engelhardt18 0.9800 [ 0.9651; 0.9949] 0.0 2.5
## StaufferReeCarretta96 0.9940 [ 0.9882; 0.9998] 0.2 2.5
## KeithKranzlerFlanagan01 0.9800 [ 0.9571; 1.0029] 0.0 2.4
## JohnsonEA04A 0.9900 [ 0.9813; 0.9987] 0.1 2.5
## JohnsonEA04B 0.9900 [ 0.9813; 0.9987] 0.1 2.5
## JohnsonEA04C 0.9990 [ 0.9981; 0.9999] 7.3 2.5
## JohnsonNijenhuisBouchard08A 0.9990 [ 0.9982; 0.9998] 7.9 2.5
## JohnsonNijenhuisBouchard08A 0.8900 [ 0.8018; 0.9782] 0.0 1.7
## JohnsonNijenhuisBouchard08B 0.9990 [ 0.9982; 0.9998] 7.9 2.5
## JohnsonNijenhuisBouchard08C 0.9990 [ 0.9982; 0.9998] 7.9 2.5
## JohnsonNijenhuisBouchard08D 0.8100 [ 0.6642; 0.9558] 0.0 1.1
## JohnsonNijenhuisBouchard08E 0.9990 [ 0.9982; 0.9998] 7.9 2.5
## JohnsonNijenhuisBouchard08F 0.9990 [ 0.9982; 0.9998] 7.9 2.5
## JohnsonNijenhuisBouchard08G 0.7300 [ 0.5319; 0.9281] 0.0 0.7
## JohnsonNijenhuisBouchard08H 0.9300 [ 0.8727; 0.9873] 0.0 2.1
## JohnsonNijenhuisBouchard08I 0.9990 [ 0.9982; 0.9998] 7.9 2.5
## FloydEA10 0.9990 [ 0.9977; 1.0003] 3.3 2.5
## KaufmanEA12A 0.8600 [ 0.7872; 0.9328] 0.0 1.9
## KaufmanEA12B 0.8000 [ 0.7154; 0.8846] 0.0 1.7
## FloydEA12A 0.9700 [ 0.9380; 1.0020] 0.0 2.4
## FloydEA12B 0.9500 [ 0.8930; 1.0070] 0.0 2.1
## FloydEA12C 0.9990 [ 0.9978; 1.0002] 3.9 2.5
## FloydEA12D 0.8900 [ 0.7596; 1.0204] 0.0 1.2
## FloydEA12E 0.9200 [ 0.8143; 1.0257] 0.0 1.5
## Salthouse13 0.9100 [ 0.7943; 1.0257] 0.0 1.4
## ValeriusSparfeldt14A 0.9200 [ 0.8568; 0.9832] 0.0 2.0
## ValeriusSparfeldt14B 0.9900 [ 0.9818; 0.9982] 0.1 2.5
## ValeriusSparfeldt14C 0.9500 [ 0.9099; 0.9901] 0.0 2.3
## QuirogaEA15 0.9300 [ 0.8532; 1.0068] 0.0 1.8
## SwagermanEA16 0.9990 [ 0.9980; 1.0000] 5.4 2.5
## Lim88 0.9000 [ 0.8176; 0.9824] 0.0 1.8
##
## Number of studies combined: k = 47
##
## COR 95%-CI z p-value
## Fixed effect model 0.9989 [0.9987; 0.9992] 8238.10 0
## Random effects model 0.9581 [0.9380; 0.9782] 93.35 0
##
## Quantifying heterogeneity:
## tau^2 = 0.0042 [0.0013; 0.0051]; tau = 0.0647 [0.0362; 0.0717];
## I^2 = 78.1% [71.3%; 83.3%]; H = 2.14 [1.87; 2.45]
##
## Test of heterogeneity:
## Q d.f. p-value
## 210.38 46 < 0.0001
##
## Details on meta-analytical method:
## - Inverse variance method
## - Sidik-Jonkman estimator for tau^2
## - Q-profile method for confidence interval of tau^2 and tau
## - Untransformed correlations
## COR 95%-CI %W(fixed) %W(random)
## Stone 92 0.9990 [ 0.9959; 0.9998] 0.8 2.0
## ByrdBuckhalt91 0.9990 [ 0.9925; 0.9999] 0.4 1.8
## TirreField2002A 0.9990 [ 0.9973; 0.9996] 1.6 2.1
## TirreField2002B 0.8900 [ 0.7322; 0.9571] 1.7 2.1
## TirreField2002C 0.9810 [ 0.9367; 0.9944] 1.1 2.1
## WothkeEA91 0.9990 [ 0.9969; 0.9997] 1.3 2.1
## Williamson69 0.9990 [ 0.9968; 0.9997] 1.2 2.1
## Kettner76A 0.9490 [ 0.8613; 0.9818] 1.5 2.1
## Kettner76B 0.9990 [ 0.9972; 0.9996] 1.5 2.1
## Palmer90 0.9750 [ 0.9360; 0.9904] 1.7 2.2
## KranzlerJensen91 0.3680 [-0.3382; 0.8091] 0.7 2.0
## LuoThompsonDetterman03 0.8700 [ 0.7141; 0.9437] 2.1 2.2
## Carey92 0.8900 [ 0.7889; 0.9442] 3.2 2.2
## AbrahamsEA94 0.8610 [ 0.7979; 0.9054] 9.7 2.2
## WolfeEA95 0.8660 [ 0.8084; 0.9072] 10.7 2.2
## NaglieriJensen87 0.9990 [ 0.9966; 0.9997] 1.1 2.1
## Engelhardt18 0.9800 [ 0.9569; 0.9908] 2.7 2.2
## StaufferReeCarretta96 0.9940 [ 0.9832; 0.9979] 1.5 2.1
## KeithKranzlerFlanagan01 0.9800 [ 0.9302; 0.9944] 1.0 2.1
## JohnsonEA04A 0.9900 [ 0.9749; 0.9960] 1.9 2.2
## JohnsonEA04B 0.9900 [ 0.9749; 0.9960] 1.9 2.2
## JohnsonEA04C 0.9990 [ 0.9975; 0.9996] 1.9 2.2
## JohnsonNijenhuisBouchard08A 0.9990 [ 0.9976; 0.9996] 2.0 2.2
## JohnsonNijenhuisBouchard08A 0.8900 [ 0.7515; 0.9534] 2.0 2.2
## JohnsonNijenhuisBouchard08B 0.9990 [ 0.9976; 0.9996] 2.0 2.2
## JohnsonNijenhuisBouchard08C 0.9990 [ 0.9976; 0.9996] 2.0 2.2
## JohnsonNijenhuisBouchard08D 0.8100 [ 0.5926; 0.9174] 2.0 2.2
## JohnsonNijenhuisBouchard08E 0.9990 [ 0.9976; 0.9996] 2.0 2.2
## JohnsonNijenhuisBouchard08F 0.9990 [ 0.9976; 0.9996] 2.0 2.2
## JohnsonNijenhuisBouchard08G 0.7300 [ 0.4489; 0.8796] 2.0 2.2
## JohnsonNijenhuisBouchard08H 0.9300 [ 0.8376; 0.9707] 2.0 2.2
## JohnsonNijenhuisBouchard08I 0.9990 [ 0.9976; 0.9996] 2.0 2.2
## FloydEA10 0.9990 [ 0.9956; 0.9998] 0.7 2.0
## KaufmanEA12A 0.8600 [ 0.7650; 0.9184] 5.0 2.2
## KaufmanEA12B 0.8000 [ 0.6963; 0.8710] 7.1 2.2
## FloydEA12A 0.9700 [ 0.9061; 0.9906] 1.2 2.1
## FloydEA12B 0.9500 [ 0.8297; 0.9860] 1.0 2.1
## FloydEA12C 0.9990 [ 0.9962; 0.9997] 0.9 2.1
## FloydEA12D 0.8900 [ 0.6162; 0.9719] 0.8 2.0
## FloydEA12E 0.9200 [ 0.6619; 0.9831] 0.6 2.0
## Salthouse13 0.9100 [ 0.6399; 0.9800] 0.7 2.0
## ValeriusSparfeldt14A 0.9200 [ 0.8205; 0.9654] 2.2 2.2
## ValeriusSparfeldt14B 0.9900 [ 0.9765; 0.9958] 2.2 2.2
## ValeriusSparfeldt14C 0.9500 [ 0.8856; 0.9786] 2.2 2.2
## QuirogaEA15 0.9300 [ 0.7759; 0.9794] 1.0 2.1
## SwagermanEA16 0.9990 [ 0.9970; 0.9997] 1.3 2.1
## Lim88 0.9000 [ 0.7681; 0.9586] 1.9 2.2
##
## Number of studies combined: k = 47
##
## COR 95%-CI z p-value
## Fixed effect model 0.9718 [0.9680; 0.9751] 65.57 0
## Random effects model 0.9856 [0.9729; 0.9923] 15.19 < 0.0001
##
## Quantifying heterogeneity:
## tau^2 = 1.1607 [0.7761; 1.8704]; tau = 1.0773 [0.8809; 1.3676];
## I^2 = 95.7% [94.9%; 96.4%]; H = 4.82 [4.43; 5.24]
##
## Test of heterogeneity:
## Q d.f. p-value
## 1067.88 46 < 0.0001
##
## Details on meta-analytical method:
## - Inverse variance method
## - Sidik-Jonkman estimator for tau^2
## - Q-profile method for confidence interval of tau^2 and tau
## - Fisher's z transformation of correlations
#Forest plots
RAW <- forest(RCOR,
sortvar = TE,
xlim = c(-1, 1),
rightlabs = c("Correlation", "95% CI", "Weight"),
leftcols = c("Source"),
leftlabs = c("Study"),
pooled.totals = F,
smlab = "",
text.random = "Overall Effect",
print.tau2 = F,
col.diamond = "orangered",
col.diamond.lines = "black",
col.predict = "black",
print.I2.ci = F,
digits.sd = 2,
comb.fixed = F,
col.square = "#00348E",
overall = T)
STAND <- forest(ZCOR,
sortvar = TE,
xlim = c(-1, 1),
rightlabs = c("Correlation", "95% CI", "Weight"),
leftcols = c("Source"),
leftlabs = c("Study"),
pooled.totals = F,
smlab = "",
text.random = "Overall Effect",
print.tau2 = F,
col.diamond = "gold",
col.diamond.lines = "black",
col.predict = "black",
print.I2.ci = F,
digits.sd = 2,
comb.fixed = F,
col.square = "#5F85E7",
overall = T)
#Trim-and-fill
trimfill(RCOR); trimfill(ZCOR)
## COR 95%-CI %W(random)
## Stone 92 0.9990 [ 0.9977; 1.0003] 1.8
## ByrdBuckhalt91 0.9990 [ 0.9974; 1.0006] 1.8
## TirreField2002A 0.9990 [ 0.9981; 0.9999] 1.8
## TirreField2002B 0.8900 [ 0.7942; 0.9858] 1.4
## TirreField2002C 0.9810 [ 0.9599; 1.0021] 1.7
## WothkeEA91 0.9990 [ 0.9980; 1.0000] 1.8
## Williamson69 0.9990 [ 0.9979; 1.0001] 1.8
## Kettner76A 0.9490 [ 0.9003; 0.9977] 1.7
## Kettner76B 0.9990 [ 0.9980; 1.0000] 1.8
## Palmer90 0.9750 [ 0.9526; 0.9974] 1.7
## KranzlerJensen91 0.3680 [-0.1953; 0.9313] 0.2
## LuoThompsonDetterman03 0.8700 [ 0.7686; 0.9714] 1.4
## Carey92 0.8900 [ 0.8188; 0.9612] 1.6
## AbrahamsEA94 0.8610 [ 0.8087; 0.9133] 1.6
## WolfeEA95 0.8660 [ 0.8179; 0.9141] 1.7
## NaglieriJensen87 0.9990 [ 0.9979; 1.0001] 1.8
## Engelhardt18 0.9800 [ 0.9651; 0.9949] 1.7
## StaufferReeCarretta96 0.9940 [ 0.9882; 0.9998] 1.8
## KeithKranzlerFlanagan01 0.9800 [ 0.9571; 1.0029] 1.7
## JohnsonEA04A 0.9900 [ 0.9813; 0.9987] 1.8
## JohnsonEA04B 0.9900 [ 0.9813; 0.9987] 1.8
## JohnsonEA04C 0.9990 [ 0.9981; 0.9999] 1.8
## JohnsonNijenhuisBouchard08A 0.9990 [ 0.9982; 0.9998] 1.8
## JohnsonNijenhuisBouchard08A 0.8900 [ 0.8018; 0.9782] 1.5
## JohnsonNijenhuisBouchard08B 0.9990 [ 0.9982; 0.9998] 1.8
## JohnsonNijenhuisBouchard08C 0.9990 [ 0.9982; 0.9998] 1.8
## JohnsonNijenhuisBouchard08D 0.8100 [ 0.6642; 0.9558] 1.2
## JohnsonNijenhuisBouchard08E 0.9990 [ 0.9982; 0.9998] 1.8
## JohnsonNijenhuisBouchard08F 0.9990 [ 0.9982; 0.9998] 1.8
## JohnsonNijenhuisBouchard08G 0.7300 [ 0.5319; 0.9281] 0.9
## JohnsonNijenhuisBouchard08H 0.9300 [ 0.8727; 0.9873] 1.6
## JohnsonNijenhuisBouchard08I 0.9990 [ 0.9982; 0.9998] 1.8
## FloydEA10 0.9990 [ 0.9977; 1.0003] 1.8
## KaufmanEA12A 0.8600 [ 0.7872; 0.9328] 1.6
## KaufmanEA12B 0.8000 [ 0.7154; 0.8846] 1.5
## FloydEA12A 0.9700 [ 0.9380; 1.0020] 1.7
## FloydEA12B 0.9500 [ 0.8930; 1.0070] 1.6
## FloydEA12C 0.9990 [ 0.9978; 1.0002] 1.8
## FloydEA12D 0.8900 [ 0.7596; 1.0204] 1.2
## FloydEA12E 0.9200 [ 0.8143; 1.0257] 1.4
## Salthouse13 0.9100 [ 0.7943; 1.0257] 1.3
## ValeriusSparfeldt14A 0.9200 [ 0.8568; 0.9832] 1.6
## ValeriusSparfeldt14B 0.9900 [ 0.9818; 0.9982] 1.8
## ValeriusSparfeldt14C 0.9500 [ 0.9099; 0.9901] 1.7
## QuirogaEA15 0.9300 [ 0.8532; 1.0068] 1.5
## SwagermanEA16 0.9990 [ 0.9980; 1.0000] 1.8
## Lim88 0.9000 [ 0.8176; 0.9824] 1.5
## Filled: JohnsonNijenhuisBouchard08H 1.0679 [ 1.0106; 1.1252] 1.6
## Filled: QuirogaEA15 1.0679 [ 0.9911; 1.1447] 1.5
## Filled: FloydEA12E 1.0779 [ 0.9722; 1.1836] 1.4
## Filled: ValeriusSparfeldt14A 1.0779 [ 1.0147; 1.1411] 1.6
## Filled: Salthouse13 1.0879 [ 0.9723; 1.2036] 1.3
## Filled: Lim88 1.0979 [ 1.0155; 1.1803] 1.5
## Filled: TirreField2002B 1.1079 [ 1.0121; 1.2037] 1.4
## Filled: Carey92 1.1079 [ 1.0367; 1.1791] 1.6
## Filled: JohnsonNijenhuisBouchard08A 1.1079 [ 1.0197; 1.1961] 1.5
## Filled: FloydEA12D 1.1079 [ 0.9775; 1.2383] 1.2
## Filled: LuoThompsonDetterman03 1.1279 [ 1.0265; 1.2293] 1.4
## Filled: WolfeEA95 1.1319 [ 1.0838; 1.1800] 1.7
## Filled: AbrahamsEA94 1.1369 [ 1.0846; 1.1892] 1.6
## Filled: KaufmanEA12A 1.1379 [ 1.0651; 1.2107] 1.6
## Filled: JohnsonNijenhuisBouchard08D 1.1879 [ 1.0421; 1.3337] 1.2
## Filled: KaufmanEA12B 1.1979 [ 1.1133; 1.2825] 1.5
## Filled: JohnsonNijenhuisBouchard08G 1.2679 [ 1.0698; 1.4660] 0.9
## Filled: KranzlerJensen91 1.6299 [ 1.0666; 2.1932] 0.2
##
## Number of studies combined: k = 65 (with 18 added studies)
##
## COR 95%-CI z p-value
## Random effects model 0.9941 [0.9670; 1.0212] 71.84 0
##
## Quantifying heterogeneity:
## tau^2 = 0.0109 [0.0048; 0.0140]; tau = 0.1045 [0.0695; 0.1182];
## I^2 = 82.9% [78.7%; 86.2%]; H = 2.42 [2.17; 2.69]
##
## Test of heterogeneity:
## Q d.f. p-value
## 373.40 64 < 0.0001
##
## Details on meta-analytical method:
## - Inverse variance method
## - Sidik-Jonkman estimator for tau^2
## - Q-profile method for confidence interval of tau^2 and tau
## - Trim-and-fill method to adjust for funnel plot asymmetry
## - Untransformed correlations
## COR 95%-CI %W(random)
## Stone 92 0.9990 [ 0.9959; 0.9998] 1.6
## ByrdBuckhalt91 0.9990 [ 0.9925; 0.9999] 1.5
## TirreField2002A 0.9990 [ 0.9973; 0.9996] 1.6
## TirreField2002B 0.8900 [ 0.7322; 0.9571] 1.6
## TirreField2002C 0.9810 [ 0.9367; 0.9944] 1.6
## WothkeEA91 0.9990 [ 0.9969; 0.9997] 1.6
## Williamson69 0.9990 [ 0.9968; 0.9997] 1.6
## Kettner76A 0.9490 [ 0.8613; 0.9818] 1.6
## Kettner76B 0.9990 [ 0.9972; 0.9996] 1.6
## Palmer90 0.9750 [ 0.9360; 0.9904] 1.6
## KranzlerJensen91 0.3680 [-0.3382; 0.8091] 1.6
## LuoThompsonDetterman03 0.8700 [ 0.7141; 0.9437] 1.6
## Carey92 0.8900 [ 0.7889; 0.9442] 1.6
## AbrahamsEA94 0.8610 [ 0.7979; 0.9054] 1.6
## WolfeEA95 0.8660 [ 0.8084; 0.9072] 1.6
## NaglieriJensen87 0.9990 [ 0.9966; 0.9997] 1.6
## Engelhardt18 0.9800 [ 0.9569; 0.9908] 1.6
## StaufferReeCarretta96 0.9940 [ 0.9832; 0.9979] 1.6
## KeithKranzlerFlanagan01 0.9800 [ 0.9302; 0.9944] 1.6
## JohnsonEA04A 0.9900 [ 0.9749; 0.9960] 1.6
## JohnsonEA04B 0.9900 [ 0.9749; 0.9960] 1.6
## JohnsonEA04C 0.9990 [ 0.9975; 0.9996] 1.6
## JohnsonNijenhuisBouchard08A 0.9990 [ 0.9976; 0.9996] 1.6
## JohnsonNijenhuisBouchard08A 0.8900 [ 0.7515; 0.9534] 1.6
## JohnsonNijenhuisBouchard08B 0.9990 [ 0.9976; 0.9996] 1.6
## JohnsonNijenhuisBouchard08C 0.9990 [ 0.9976; 0.9996] 1.6
## JohnsonNijenhuisBouchard08D 0.8100 [ 0.5926; 0.9174] 1.6
## JohnsonNijenhuisBouchard08E 0.9990 [ 0.9976; 0.9996] 1.6
## JohnsonNijenhuisBouchard08F 0.9990 [ 0.9976; 0.9996] 1.6
## JohnsonNijenhuisBouchard08G 0.7300 [ 0.4489; 0.8796] 1.6
## JohnsonNijenhuisBouchard08H 0.9300 [ 0.8376; 0.9707] 1.6
## JohnsonNijenhuisBouchard08I 0.9990 [ 0.9976; 0.9996] 1.6
## FloydEA10 0.9990 [ 0.9956; 0.9998] 1.6
## KaufmanEA12A 0.8600 [ 0.7650; 0.9184] 1.6
## KaufmanEA12B 0.8000 [ 0.6963; 0.8710] 1.6
## FloydEA12A 0.9700 [ 0.9061; 0.9906] 1.6
## FloydEA12B 0.9500 [ 0.8297; 0.9860] 1.6
## FloydEA12C 0.9990 [ 0.9962; 0.9997] 1.6
## FloydEA12D 0.8900 [ 0.6162; 0.9719] 1.6
## FloydEA12E 0.9200 [ 0.6619; 0.9831] 1.5
## Salthouse13 0.9100 [ 0.6399; 0.9800] 1.5
## ValeriusSparfeldt14A 0.9200 [ 0.8205; 0.9654] 1.6
## ValeriusSparfeldt14B 0.9900 [ 0.9765; 0.9958] 1.6
## ValeriusSparfeldt14C 0.9500 [ 0.8856; 0.9786] 1.6
## QuirogaEA15 0.9300 [ 0.7759; 0.9794] 1.6
## SwagermanEA16 0.9990 [ 0.9970; 0.9997] 1.6
## Lim88 0.9000 [ 0.7681; 0.9586] 1.6
## Filled: ByrdBuckhalt91 -0.5451 [-0.9245; 0.3769] 1.5
## Filled: TirreField2002A -0.5451 [-0.8059; -0.1072] 1.6
## Filled: WothkeEA91 -0.5451 [-0.8253; -0.0494] 1.6
## Filled: Williamson69 -0.5451 [-0.8332; -0.0242] 1.6
## Filled: Kettner76B -0.5451 [-0.8126; -0.0879] 1.6
## Filled: NaglieriJensen87 -0.5451 [-0.8419; 0.0049] 1.6
## Filled: JohnsonEA04C -0.5451 [-0.7913; -0.1468] 1.6
## Filled: JohnsonNijenhuisBouchard08A -0.5451 [-0.7844; -0.1644] 1.6
## Filled: JohnsonNijenhuisBouchard08B -0.5451 [-0.7844; -0.1644] 1.6
## Filled: JohnsonNijenhuisBouchard08C -0.5451 [-0.7844; -0.1644] 1.6
## Filled: JohnsonNijenhuisBouchard08E -0.5451 [-0.7844; -0.1644] 1.6
## Filled: JohnsonNijenhuisBouchard08F -0.5451 [-0.7844; -0.1644] 1.6
## Filled: JohnsonNijenhuisBouchard08I -0.5451 [-0.7844; -0.1644] 1.6
## Filled: FloydEA10 -0.5451 [-0.8746; 0.1287] 1.6
## Filled: FloydEA12C -0.5451 [-0.8562; 0.0562] 1.6
## Filled: SwagermanEA16 -0.5451 [-0.8216; -0.0610] 1.6
##
## Number of studies combined: k = 63 (with 16 added studies)
##
## COR 95%-CI z p-value
## Random effects model 0.9338 [0.8560; 0.9702] 8.09 < 0.0001
##
## Quantifying heterogeneity:
## tau^2 = 2.6605 [1.9016; 3.9538]; tau = 1.6311 [1.3790; 1.9884];
## I^2 = 97.5% [97.1%; 97.8%]; H = 6.28 [5.91; 6.68]
##
## Test of heterogeneity:
## Q d.f. p-value
## 2447.75 62 0
##
## Details on meta-analytical method:
## - Inverse variance method
## - Sidik-Jonkman estimator for tau^2
## - Q-profile method for confidence interval of tau^2 and tau
## - Trim-and-fill method to adjust for funnel plot asymmetry
## - Fisher's z transformation of correlations
#Funnel plots
dfR <- data.frame(RCOR$seTE, RCOR$TE); dfR$se <- dfR$RCOR.seTE; dfR$r <- dfR$RCOR.TE
dfZ <- data.frame(ZCOR$seTE, ZCOR$TE); dfZ$se <- FisherZInv(dfZ$ZCOR.seTE); dfZ$r <- FisherZInv(dfZ$ZCOR.TE)
estimateT = FisherZInv(ZCOR$TE.random); set = FisherZInv(ZCOR$seTE.random); estimateT
## [1] 0.9855728
estimateT2 = RCOR$TE.random; set2 = RCOR$seTE.random; estimateT2
## [1] 0.9580958
dfR; dfZ
se.seq = seq(0, max(dfZ$se), 0.001)
ll95 = estimateT - (1.96*se.seq)
ul95 = estimateT + (1.96*se.seq)
ll95a = FisherZInv(ZCOR$lower.random)
ul95a = FisherZInv(ZCOR$upper.random)
ll99 = estimateT - (3.29*se.seq)
ul99 = estimateT + (3.29*se.seq)
ll99a = 1.67857*FisherZInv(ZCOR$lower.random)
ul99a = 1.67857*FisherZInv(ZCOR$upper.random)
meanll95 = estimateT - (1.96*set)
meanul95 = estimateT + (1.96*set)
dfZCI <- data.frame(ll95, ul95, ll99, ul99, se.seq, estimateT, meanll95, meanul95, ll95a, ul95a, ll99a, ul99a)
se.seq2 = seq(0, max(dfR$se), 0.001)
ll952 = estimateT2 - (1.96*se.seq2)
ul952 = estimateT2 + (1.96*se.seq2)
ll952a = RCOR$lower.random
ul952a = RCOR$upper.random
ll992 = estimateT2 - (3.29*se.seq2)
ul992 = estimateT2 + (3.29*se.seq2)
ll992a = 1.67857*(RCOR$lower.random)
ul992a = 1.67857*(RCOR$upper.random)
meanll952 = estimateT2 - (1.96*set2)
meanul952 = estimateT2 + (1.96*set2)
dfRCI <- data.frame(ll952, ul952, ll992, ul992, se.seq2, estimateT2, meanll952, meanul952, ll952a, ul952a, ll992a, ul992a)
STAND <- ggplot(aes(x = se, y = r), data = dfZ) +
geom_point(shape = 16, size = 3, colour = "#00348E") +
xlab('Standard Error') + ylab('r-to-z Correlations') +
geom_line(aes(x = se.seq, y = ll95), linetype = 'dotted', colour = "#666666", size = 1, data = dfZCI) +
geom_line(aes(x = se.seq, y = ul95), linetype = 'dotted', colour = "#666666", size = 1, data = dfZCI) +
geom_line(aes(x = se.seq, y = ll99), linetype = 'dashed', colour = "#666666", size = 1, data = dfZCI) +
geom_line(aes(x = se.seq, y = ul99), linetype = 'dashed', colour = "#666666", size = 1, data = dfZCI) +
geom_segment(aes(x = min(se.seq), y = estimateT, xend = max(se.seq), yend = estimateT), linetype='dotted', colour = "#E9C535", size = 1, data=dfZCI) +
geom_segment(aes(x = min(se.seq), y = ll95a, xend = max(se.seq), yend = ll95a), linetype='dotted' , colour = "gold", size = 1, data=dfZCI) +
geom_segment(aes(x = min(se.seq), y = ul95a, xend = max(se.seq), yend = ul95a), linetype='dotted' , colour = "gold", size = 1, data=dfZCI) +
scale_x_reverse() +
coord_flip() +
theme_bw() +
theme(text = element_text(family = "serif", size = 12))
RAW <- ggplot(aes(x = se, y = r), data = dfR) +
geom_point(shape = 16, size = 3, colour = "#5F85E7") +
xlab('Standard Error') + ylab('Raw Correlations') +
geom_line(aes(x = se.seq2, y = ll952), linetype = 'dotted', colour = "#666666", size = 1, data = dfRCI) +
geom_line(aes(x = se.seq2, y = ul952), linetype = 'dotted', colour = "#666666", size = 1, data = dfRCI) +
geom_line(aes(x = se.seq2, y = ll992), linetype = 'dashed', colour = "#666666", size = 1, data = dfRCI) +
geom_line(aes(x = se.seq2, y = ul992), linetype = 'dashed', colour = "#666666", size = 1, data = dfRCI) +
geom_segment(aes(x = min(se.seq2), y = estimateT2, xend = max(se.seq2), yend = estimateT2), linetype='dotted', colour = "#E9C535", size = 1, data=dfRCI) +
geom_segment(aes(x = min(se.seq2), y = ll952a, xend = max(se.seq2), yend = ll952a), linetype='dotted' , colour = "gold", size = 1, data=dfRCI) +
geom_segment(aes(x = min(se.seq2), y = ul952a, xend = max(se.seq2), yend = ul952a), linetype='dotted' , colour = "gold", size = 1, data=dfRCI) +
scale_x_reverse() +
coord_flip() +
theme_bw() +
theme(text = element_text(family = "serif", size = 12))
RAW; STAND
multiplot(RAW, STAND, cols = 2)
The relationship between the g factors from various tests is consistent with identity (meta-analytic r = 0.99). There is extremely limited discriminant validity for the g factors from different tests, suggesting a reflective phenotypic model is appropriate. On the other hand, a formative model is difficult to justify. The indifference of the indicator is an exceptionally robust phenomenon that persists despite a diversity of test content, modality, and sample age. Practitioners can be confident that their tests will be reasonably interchangeable for the general population; furthermore, the use of different tests will - for the most part - not assess different constructs barring failures of invariance, as in illiterate or blind samples. This finding is perhaps trivial to intelligence researchers, but systematic proof was lacking before this analysis; the indifference of the indicator and its not-so-necessary corollary of the identity of g factors from different cognitive tests - regardless of content -, which was strongly evidenced before, can now be reasonably taken for granted.