Setup

#Packages

library(pacman)
p_load(dplyr, DT, meta, DescTools, ggplot2)

#Data

JOG <- read.csv("E:/Research/JustOneg/JOGMetaPART.csv")

datatable(JOG, extensions = c("Buttons", "FixedColumns"), options = list(dom = 'Bfrtip', buttons = c('copy', 'csv', 'print'), scrollX = T, fixedColumns = list(leftColumns = 3)))
#Ad hoc functions
multiplot <- function(..., plotlist=NULL, file, cols=1, layout=NULL) {
  library(grid)
  plots <- c(list(...), plotlist)
  numPlots = length(plots)
  if (is.null(layout)) {
    layout <- matrix(seq(1, cols * ceiling(numPlots/cols)),
                    ncol = cols, nrow = ceiling(numPlots/cols))}
 if (numPlots==1) {
    print(plots[[1]])
  } else {
    grid.newpage()
    pushViewport(viewport(layout = grid.layout(nrow(layout), ncol(layout))))
    for (i in 1:numPlots) {
      matchidx <- as.data.frame(which(layout == i, arr.ind = TRUE))
      print(plots[[i]], vp = viewport(layout.pos.row = matchidx$row,
                                      layout.pos.col = matchidx$col))}}}

Background

This is a meta-analysis of joint confirmatory factor analytic assessments of the indifference of the indicator. It will be expanded later to include a handful of new data points and results from other methods. These analyses have already been conducted and their results are in line with that presented below.

Analysis

Meta-analytic Results

#Raw correlations 
RCOR <- metacor(Corr,
                sqrt(n),
                data = JOG,
                studlab = Source,
                sm = "COR",
                method.tau = "SJ")
  
#r-to-z transformed for proper variance estimation
ZCOR <- metacor(Corr,
                sqrt(n),
                data = JOG,
                studlab = Source,
                sm = "ZCOR",
                method.tau = "SJ")

RCOR; ZCOR
##                                COR            95%-CI %W(fixed) %W(random)
## Stone 92                    0.9990 [ 0.9977; 1.0003]       3.6        2.5
## ByrdBuckhalt91              0.9990 [ 0.9974; 1.0006]       2.1        2.5
## TirreField2002A             0.9990 [ 0.9981; 0.9999]       6.3        2.5
## TirreField2002B             0.8900 [ 0.7942; 0.9858]       0.0        1.6
## TirreField2002C             0.9810 [ 0.9599; 1.0021]       0.0        2.4
## WothkeEA91                  0.9990 [ 0.9980; 1.0000]       5.2        2.5
## Williamson69                0.9990 [ 0.9979; 1.0001]       4.8        2.5
## Kettner76A                  0.9490 [ 0.9003; 0.9977]       0.0        2.2
## Kettner76B                  0.9990 [ 0.9980; 1.0000]       5.9        2.5
## Palmer90                    0.9750 [ 0.9526; 0.9974]       0.0        2.4
## KranzlerJensen91            0.3680 [-0.1953; 0.9313]       0.0        0.1
## LuoThompsonDetterman03      0.8700 [ 0.7686; 0.9714]       0.0        1.5
## Carey92                     0.8900 [ 0.8188; 0.9612]       0.0        1.9
## AbrahamsEA94                0.8610 [ 0.8087; 0.9133]       0.0        2.2
## WolfeEA95                   0.8660 [ 0.8179; 0.9141]       0.0        2.2
## NaglieriJensen87            0.9990 [ 0.9979; 1.0001]       4.5        2.5
## Engelhardt18                0.9800 [ 0.9651; 0.9949]       0.0        2.5
## StaufferReeCarretta96       0.9940 [ 0.9882; 0.9998]       0.2        2.5
## KeithKranzlerFlanagan01     0.9800 [ 0.9571; 1.0029]       0.0        2.4
## JohnsonEA04A                0.9900 [ 0.9813; 0.9987]       0.1        2.5
## JohnsonEA04B                0.9900 [ 0.9813; 0.9987]       0.1        2.5
## JohnsonEA04C                0.9990 [ 0.9981; 0.9999]       7.3        2.5
## JohnsonNijenhuisBouchard08A 0.9990 [ 0.9982; 0.9998]       7.9        2.5
## JohnsonNijenhuisBouchard08A 0.8900 [ 0.8018; 0.9782]       0.0        1.7
## JohnsonNijenhuisBouchard08B 0.9990 [ 0.9982; 0.9998]       7.9        2.5
## JohnsonNijenhuisBouchard08C 0.9990 [ 0.9982; 0.9998]       7.9        2.5
## JohnsonNijenhuisBouchard08D 0.8100 [ 0.6642; 0.9558]       0.0        1.1
## JohnsonNijenhuisBouchard08E 0.9990 [ 0.9982; 0.9998]       7.9        2.5
## JohnsonNijenhuisBouchard08F 0.9990 [ 0.9982; 0.9998]       7.9        2.5
## JohnsonNijenhuisBouchard08G 0.7300 [ 0.5319; 0.9281]       0.0        0.7
## JohnsonNijenhuisBouchard08H 0.9300 [ 0.8727; 0.9873]       0.0        2.1
## JohnsonNijenhuisBouchard08I 0.9990 [ 0.9982; 0.9998]       7.9        2.5
## FloydEA10                   0.9990 [ 0.9977; 1.0003]       3.3        2.5
## KaufmanEA12A                0.8600 [ 0.7872; 0.9328]       0.0        1.9
## KaufmanEA12B                0.8000 [ 0.7154; 0.8846]       0.0        1.7
## FloydEA12A                  0.9700 [ 0.9380; 1.0020]       0.0        2.4
## FloydEA12B                  0.9500 [ 0.8930; 1.0070]       0.0        2.1
## FloydEA12C                  0.9990 [ 0.9978; 1.0002]       3.9        2.5
## FloydEA12D                  0.8900 [ 0.7596; 1.0204]       0.0        1.2
## FloydEA12E                  0.9200 [ 0.8143; 1.0257]       0.0        1.5
## Salthouse13                 0.9100 [ 0.7943; 1.0257]       0.0        1.4
## ValeriusSparfeldt14A        0.9200 [ 0.8568; 0.9832]       0.0        2.0
## ValeriusSparfeldt14B        0.9900 [ 0.9818; 0.9982]       0.1        2.5
## ValeriusSparfeldt14C        0.9500 [ 0.9099; 0.9901]       0.0        2.3
## QuirogaEA15                 0.9300 [ 0.8532; 1.0068]       0.0        1.8
## SwagermanEA16               0.9990 [ 0.9980; 1.0000]       5.4        2.5
## Lim88                       0.9000 [ 0.8176; 0.9824]       0.0        1.8
## 
## Number of studies combined: k = 47
## 
##                         COR           95%-CI       z p-value
## Fixed effect model   0.9989 [0.9987; 0.9992] 8238.10       0
## Random effects model 0.9581 [0.9380; 0.9782]   93.35       0
## 
## Quantifying heterogeneity:
##  tau^2 = 0.0042 [0.0013; 0.0051]; tau = 0.0647 [0.0362; 0.0717];
##  I^2 = 78.1% [71.3%; 83.3%]; H = 2.14 [1.87; 2.45]
## 
## Test of heterogeneity:
##       Q d.f.  p-value
##  210.38   46 < 0.0001
## 
## Details on meta-analytical method:
## - Inverse variance method
## - Sidik-Jonkman estimator for tau^2
## - Q-profile method for confidence interval of tau^2 and tau
## - Untransformed correlations
##                                COR            95%-CI %W(fixed) %W(random)
## Stone 92                    0.9990 [ 0.9959; 0.9998]       0.8        2.0
## ByrdBuckhalt91              0.9990 [ 0.9925; 0.9999]       0.4        1.8
## TirreField2002A             0.9990 [ 0.9973; 0.9996]       1.6        2.1
## TirreField2002B             0.8900 [ 0.7322; 0.9571]       1.7        2.1
## TirreField2002C             0.9810 [ 0.9367; 0.9944]       1.1        2.1
## WothkeEA91                  0.9990 [ 0.9969; 0.9997]       1.3        2.1
## Williamson69                0.9990 [ 0.9968; 0.9997]       1.2        2.1
## Kettner76A                  0.9490 [ 0.8613; 0.9818]       1.5        2.1
## Kettner76B                  0.9990 [ 0.9972; 0.9996]       1.5        2.1
## Palmer90                    0.9750 [ 0.9360; 0.9904]       1.7        2.2
## KranzlerJensen91            0.3680 [-0.3382; 0.8091]       0.7        2.0
## LuoThompsonDetterman03      0.8700 [ 0.7141; 0.9437]       2.1        2.2
## Carey92                     0.8900 [ 0.7889; 0.9442]       3.2        2.2
## AbrahamsEA94                0.8610 [ 0.7979; 0.9054]       9.7        2.2
## WolfeEA95                   0.8660 [ 0.8084; 0.9072]      10.7        2.2
## NaglieriJensen87            0.9990 [ 0.9966; 0.9997]       1.1        2.1
## Engelhardt18                0.9800 [ 0.9569; 0.9908]       2.7        2.2
## StaufferReeCarretta96       0.9940 [ 0.9832; 0.9979]       1.5        2.1
## KeithKranzlerFlanagan01     0.9800 [ 0.9302; 0.9944]       1.0        2.1
## JohnsonEA04A                0.9900 [ 0.9749; 0.9960]       1.9        2.2
## JohnsonEA04B                0.9900 [ 0.9749; 0.9960]       1.9        2.2
## JohnsonEA04C                0.9990 [ 0.9975; 0.9996]       1.9        2.2
## JohnsonNijenhuisBouchard08A 0.9990 [ 0.9976; 0.9996]       2.0        2.2
## JohnsonNijenhuisBouchard08A 0.8900 [ 0.7515; 0.9534]       2.0        2.2
## JohnsonNijenhuisBouchard08B 0.9990 [ 0.9976; 0.9996]       2.0        2.2
## JohnsonNijenhuisBouchard08C 0.9990 [ 0.9976; 0.9996]       2.0        2.2
## JohnsonNijenhuisBouchard08D 0.8100 [ 0.5926; 0.9174]       2.0        2.2
## JohnsonNijenhuisBouchard08E 0.9990 [ 0.9976; 0.9996]       2.0        2.2
## JohnsonNijenhuisBouchard08F 0.9990 [ 0.9976; 0.9996]       2.0        2.2
## JohnsonNijenhuisBouchard08G 0.7300 [ 0.4489; 0.8796]       2.0        2.2
## JohnsonNijenhuisBouchard08H 0.9300 [ 0.8376; 0.9707]       2.0        2.2
## JohnsonNijenhuisBouchard08I 0.9990 [ 0.9976; 0.9996]       2.0        2.2
## FloydEA10                   0.9990 [ 0.9956; 0.9998]       0.7        2.0
## KaufmanEA12A                0.8600 [ 0.7650; 0.9184]       5.0        2.2
## KaufmanEA12B                0.8000 [ 0.6963; 0.8710]       7.1        2.2
## FloydEA12A                  0.9700 [ 0.9061; 0.9906]       1.2        2.1
## FloydEA12B                  0.9500 [ 0.8297; 0.9860]       1.0        2.1
## FloydEA12C                  0.9990 [ 0.9962; 0.9997]       0.9        2.1
## FloydEA12D                  0.8900 [ 0.6162; 0.9719]       0.8        2.0
## FloydEA12E                  0.9200 [ 0.6619; 0.9831]       0.6        2.0
## Salthouse13                 0.9100 [ 0.6399; 0.9800]       0.7        2.0
## ValeriusSparfeldt14A        0.9200 [ 0.8205; 0.9654]       2.2        2.2
## ValeriusSparfeldt14B        0.9900 [ 0.9765; 0.9958]       2.2        2.2
## ValeriusSparfeldt14C        0.9500 [ 0.8856; 0.9786]       2.2        2.2
## QuirogaEA15                 0.9300 [ 0.7759; 0.9794]       1.0        2.1
## SwagermanEA16               0.9990 [ 0.9970; 0.9997]       1.3        2.1
## Lim88                       0.9000 [ 0.7681; 0.9586]       1.9        2.2
## 
## Number of studies combined: k = 47
## 
##                         COR           95%-CI     z  p-value
## Fixed effect model   0.9718 [0.9680; 0.9751] 65.57        0
## Random effects model 0.9856 [0.9729; 0.9923] 15.19 < 0.0001
## 
## Quantifying heterogeneity:
##  tau^2 = 1.1607 [0.7761; 1.8704]; tau = 1.0773 [0.8809; 1.3676];
##  I^2 = 95.7% [94.9%; 96.4%]; H = 4.82 [4.43; 5.24]
## 
## Test of heterogeneity:
##        Q d.f.  p-value
##  1067.88   46 < 0.0001
## 
## Details on meta-analytical method:
## - Inverse variance method
## - Sidik-Jonkman estimator for tau^2
## - Q-profile method for confidence interval of tau^2 and tau
## - Fisher's z transformation of correlations
#Forest plots
RAW <- forest(RCOR,
       sortvar = TE,
       xlim = c(-1, 1),
       rightlabs = c("Correlation", "95% CI", "Weight"),
       leftcols = c("Source"),
       leftlabs = c("Study"),
       pooled.totals = F,
       smlab = "",
       text.random = "Overall Effect",
       print.tau2 = F,
       col.diamond = "orangered",
       col.diamond.lines = "black",
       col.predict = "black",
       print.I2.ci = F,
       digits.sd = 2,
       comb.fixed = F,
       col.square = "#00348E",
       overall = T)

STAND <- forest(ZCOR,
       sortvar = TE,
       xlim = c(-1, 1),
       rightlabs = c("Correlation", "95% CI", "Weight"),
       leftcols = c("Source"),
       leftlabs = c("Study"),
       pooled.totals = F,
       smlab = "",
       text.random = "Overall Effect",
       print.tau2 = F,
       col.diamond = "gold",
       col.diamond.lines = "black",
       col.predict = "black",
       print.I2.ci = F,
       digits.sd = 2,
       comb.fixed = F,
       col.square = "#5F85E7",
       overall = T)

#Trim-and-fill
trimfill(RCOR); trimfill(ZCOR)
##                                        COR            95%-CI %W(random)
## Stone 92                            0.9990 [ 0.9977; 1.0003]        1.8
## ByrdBuckhalt91                      0.9990 [ 0.9974; 1.0006]        1.8
## TirreField2002A                     0.9990 [ 0.9981; 0.9999]        1.8
## TirreField2002B                     0.8900 [ 0.7942; 0.9858]        1.4
## TirreField2002C                     0.9810 [ 0.9599; 1.0021]        1.7
## WothkeEA91                          0.9990 [ 0.9980; 1.0000]        1.8
## Williamson69                        0.9990 [ 0.9979; 1.0001]        1.8
## Kettner76A                          0.9490 [ 0.9003; 0.9977]        1.7
## Kettner76B                          0.9990 [ 0.9980; 1.0000]        1.8
## Palmer90                            0.9750 [ 0.9526; 0.9974]        1.7
## KranzlerJensen91                    0.3680 [-0.1953; 0.9313]        0.2
## LuoThompsonDetterman03              0.8700 [ 0.7686; 0.9714]        1.4
## Carey92                             0.8900 [ 0.8188; 0.9612]        1.6
## AbrahamsEA94                        0.8610 [ 0.8087; 0.9133]        1.6
## WolfeEA95                           0.8660 [ 0.8179; 0.9141]        1.7
## NaglieriJensen87                    0.9990 [ 0.9979; 1.0001]        1.8
## Engelhardt18                        0.9800 [ 0.9651; 0.9949]        1.7
## StaufferReeCarretta96               0.9940 [ 0.9882; 0.9998]        1.8
## KeithKranzlerFlanagan01             0.9800 [ 0.9571; 1.0029]        1.7
## JohnsonEA04A                        0.9900 [ 0.9813; 0.9987]        1.8
## JohnsonEA04B                        0.9900 [ 0.9813; 0.9987]        1.8
## JohnsonEA04C                        0.9990 [ 0.9981; 0.9999]        1.8
## JohnsonNijenhuisBouchard08A         0.9990 [ 0.9982; 0.9998]        1.8
## JohnsonNijenhuisBouchard08A         0.8900 [ 0.8018; 0.9782]        1.5
## JohnsonNijenhuisBouchard08B         0.9990 [ 0.9982; 0.9998]        1.8
## JohnsonNijenhuisBouchard08C         0.9990 [ 0.9982; 0.9998]        1.8
## JohnsonNijenhuisBouchard08D         0.8100 [ 0.6642; 0.9558]        1.2
## JohnsonNijenhuisBouchard08E         0.9990 [ 0.9982; 0.9998]        1.8
## JohnsonNijenhuisBouchard08F         0.9990 [ 0.9982; 0.9998]        1.8
## JohnsonNijenhuisBouchard08G         0.7300 [ 0.5319; 0.9281]        0.9
## JohnsonNijenhuisBouchard08H         0.9300 [ 0.8727; 0.9873]        1.6
## JohnsonNijenhuisBouchard08I         0.9990 [ 0.9982; 0.9998]        1.8
## FloydEA10                           0.9990 [ 0.9977; 1.0003]        1.8
## KaufmanEA12A                        0.8600 [ 0.7872; 0.9328]        1.6
## KaufmanEA12B                        0.8000 [ 0.7154; 0.8846]        1.5
## FloydEA12A                          0.9700 [ 0.9380; 1.0020]        1.7
## FloydEA12B                          0.9500 [ 0.8930; 1.0070]        1.6
## FloydEA12C                          0.9990 [ 0.9978; 1.0002]        1.8
## FloydEA12D                          0.8900 [ 0.7596; 1.0204]        1.2
## FloydEA12E                          0.9200 [ 0.8143; 1.0257]        1.4
## Salthouse13                         0.9100 [ 0.7943; 1.0257]        1.3
## ValeriusSparfeldt14A                0.9200 [ 0.8568; 0.9832]        1.6
## ValeriusSparfeldt14B                0.9900 [ 0.9818; 0.9982]        1.8
## ValeriusSparfeldt14C                0.9500 [ 0.9099; 0.9901]        1.7
## QuirogaEA15                         0.9300 [ 0.8532; 1.0068]        1.5
## SwagermanEA16                       0.9990 [ 0.9980; 1.0000]        1.8
## Lim88                               0.9000 [ 0.8176; 0.9824]        1.5
## Filled: JohnsonNijenhuisBouchard08H 1.0679 [ 1.0106; 1.1252]        1.6
## Filled: QuirogaEA15                 1.0679 [ 0.9911; 1.1447]        1.5
## Filled: FloydEA12E                  1.0779 [ 0.9722; 1.1836]        1.4
## Filled: ValeriusSparfeldt14A        1.0779 [ 1.0147; 1.1411]        1.6
## Filled: Salthouse13                 1.0879 [ 0.9723; 1.2036]        1.3
## Filled: Lim88                       1.0979 [ 1.0155; 1.1803]        1.5
## Filled: TirreField2002B             1.1079 [ 1.0121; 1.2037]        1.4
## Filled: Carey92                     1.1079 [ 1.0367; 1.1791]        1.6
## Filled: JohnsonNijenhuisBouchard08A 1.1079 [ 1.0197; 1.1961]        1.5
## Filled: FloydEA12D                  1.1079 [ 0.9775; 1.2383]        1.2
## Filled: LuoThompsonDetterman03      1.1279 [ 1.0265; 1.2293]        1.4
## Filled: WolfeEA95                   1.1319 [ 1.0838; 1.1800]        1.7
## Filled: AbrahamsEA94                1.1369 [ 1.0846; 1.1892]        1.6
## Filled: KaufmanEA12A                1.1379 [ 1.0651; 1.2107]        1.6
## Filled: JohnsonNijenhuisBouchard08D 1.1879 [ 1.0421; 1.3337]        1.2
## Filled: KaufmanEA12B                1.1979 [ 1.1133; 1.2825]        1.5
## Filled: JohnsonNijenhuisBouchard08G 1.2679 [ 1.0698; 1.4660]        0.9
## Filled: KranzlerJensen91            1.6299 [ 1.0666; 2.1932]        0.2
## 
## Number of studies combined: k = 65 (with 18 added studies)
## 
##                         COR           95%-CI     z p-value
## Random effects model 0.9941 [0.9670; 1.0212] 71.84       0
## 
## Quantifying heterogeneity:
##  tau^2 = 0.0109 [0.0048; 0.0140]; tau = 0.1045 [0.0695; 0.1182];
##  I^2 = 82.9% [78.7%; 86.2%]; H = 2.42 [2.17; 2.69]
## 
## Test of heterogeneity:
##       Q d.f.  p-value
##  373.40   64 < 0.0001
## 
## Details on meta-analytical method:
## - Inverse variance method
## - Sidik-Jonkman estimator for tau^2
## - Q-profile method for confidence interval of tau^2 and tau
## - Trim-and-fill method to adjust for funnel plot asymmetry
## - Untransformed correlations
##                                         COR             95%-CI %W(random)
## Stone 92                             0.9990 [ 0.9959;  0.9998]        1.6
## ByrdBuckhalt91                       0.9990 [ 0.9925;  0.9999]        1.5
## TirreField2002A                      0.9990 [ 0.9973;  0.9996]        1.6
## TirreField2002B                      0.8900 [ 0.7322;  0.9571]        1.6
## TirreField2002C                      0.9810 [ 0.9367;  0.9944]        1.6
## WothkeEA91                           0.9990 [ 0.9969;  0.9997]        1.6
## Williamson69                         0.9990 [ 0.9968;  0.9997]        1.6
## Kettner76A                           0.9490 [ 0.8613;  0.9818]        1.6
## Kettner76B                           0.9990 [ 0.9972;  0.9996]        1.6
## Palmer90                             0.9750 [ 0.9360;  0.9904]        1.6
## KranzlerJensen91                     0.3680 [-0.3382;  0.8091]        1.6
## LuoThompsonDetterman03               0.8700 [ 0.7141;  0.9437]        1.6
## Carey92                              0.8900 [ 0.7889;  0.9442]        1.6
## AbrahamsEA94                         0.8610 [ 0.7979;  0.9054]        1.6
## WolfeEA95                            0.8660 [ 0.8084;  0.9072]        1.6
## NaglieriJensen87                     0.9990 [ 0.9966;  0.9997]        1.6
## Engelhardt18                         0.9800 [ 0.9569;  0.9908]        1.6
## StaufferReeCarretta96                0.9940 [ 0.9832;  0.9979]        1.6
## KeithKranzlerFlanagan01              0.9800 [ 0.9302;  0.9944]        1.6
## JohnsonEA04A                         0.9900 [ 0.9749;  0.9960]        1.6
## JohnsonEA04B                         0.9900 [ 0.9749;  0.9960]        1.6
## JohnsonEA04C                         0.9990 [ 0.9975;  0.9996]        1.6
## JohnsonNijenhuisBouchard08A          0.9990 [ 0.9976;  0.9996]        1.6
## JohnsonNijenhuisBouchard08A          0.8900 [ 0.7515;  0.9534]        1.6
## JohnsonNijenhuisBouchard08B          0.9990 [ 0.9976;  0.9996]        1.6
## JohnsonNijenhuisBouchard08C          0.9990 [ 0.9976;  0.9996]        1.6
## JohnsonNijenhuisBouchard08D          0.8100 [ 0.5926;  0.9174]        1.6
## JohnsonNijenhuisBouchard08E          0.9990 [ 0.9976;  0.9996]        1.6
## JohnsonNijenhuisBouchard08F          0.9990 [ 0.9976;  0.9996]        1.6
## JohnsonNijenhuisBouchard08G          0.7300 [ 0.4489;  0.8796]        1.6
## JohnsonNijenhuisBouchard08H          0.9300 [ 0.8376;  0.9707]        1.6
## JohnsonNijenhuisBouchard08I          0.9990 [ 0.9976;  0.9996]        1.6
## FloydEA10                            0.9990 [ 0.9956;  0.9998]        1.6
## KaufmanEA12A                         0.8600 [ 0.7650;  0.9184]        1.6
## KaufmanEA12B                         0.8000 [ 0.6963;  0.8710]        1.6
## FloydEA12A                           0.9700 [ 0.9061;  0.9906]        1.6
## FloydEA12B                           0.9500 [ 0.8297;  0.9860]        1.6
## FloydEA12C                           0.9990 [ 0.9962;  0.9997]        1.6
## FloydEA12D                           0.8900 [ 0.6162;  0.9719]        1.6
## FloydEA12E                           0.9200 [ 0.6619;  0.9831]        1.5
## Salthouse13                          0.9100 [ 0.6399;  0.9800]        1.5
## ValeriusSparfeldt14A                 0.9200 [ 0.8205;  0.9654]        1.6
## ValeriusSparfeldt14B                 0.9900 [ 0.9765;  0.9958]        1.6
## ValeriusSparfeldt14C                 0.9500 [ 0.8856;  0.9786]        1.6
## QuirogaEA15                          0.9300 [ 0.7759;  0.9794]        1.6
## SwagermanEA16                        0.9990 [ 0.9970;  0.9997]        1.6
## Lim88                                0.9000 [ 0.7681;  0.9586]        1.6
## Filled: ByrdBuckhalt91              -0.5451 [-0.9245;  0.3769]        1.5
## Filled: TirreField2002A             -0.5451 [-0.8059; -0.1072]        1.6
## Filled: WothkeEA91                  -0.5451 [-0.8253; -0.0494]        1.6
## Filled: Williamson69                -0.5451 [-0.8332; -0.0242]        1.6
## Filled: Kettner76B                  -0.5451 [-0.8126; -0.0879]        1.6
## Filled: NaglieriJensen87            -0.5451 [-0.8419;  0.0049]        1.6
## Filled: JohnsonEA04C                -0.5451 [-0.7913; -0.1468]        1.6
## Filled: JohnsonNijenhuisBouchard08A -0.5451 [-0.7844; -0.1644]        1.6
## Filled: JohnsonNijenhuisBouchard08B -0.5451 [-0.7844; -0.1644]        1.6
## Filled: JohnsonNijenhuisBouchard08C -0.5451 [-0.7844; -0.1644]        1.6
## Filled: JohnsonNijenhuisBouchard08E -0.5451 [-0.7844; -0.1644]        1.6
## Filled: JohnsonNijenhuisBouchard08F -0.5451 [-0.7844; -0.1644]        1.6
## Filled: JohnsonNijenhuisBouchard08I -0.5451 [-0.7844; -0.1644]        1.6
## Filled: FloydEA10                   -0.5451 [-0.8746;  0.1287]        1.6
## Filled: FloydEA12C                  -0.5451 [-0.8562;  0.0562]        1.6
## Filled: SwagermanEA16               -0.5451 [-0.8216; -0.0610]        1.6
## 
## Number of studies combined: k = 63 (with 16 added studies)
## 
##                         COR           95%-CI    z  p-value
## Random effects model 0.9338 [0.8560; 0.9702] 8.09 < 0.0001
## 
## Quantifying heterogeneity:
##  tau^2 = 2.6605 [1.9016; 3.9538]; tau = 1.6311 [1.3790; 1.9884];
##  I^2 = 97.5% [97.1%; 97.8%]; H = 6.28 [5.91; 6.68]
## 
## Test of heterogeneity:
##        Q d.f. p-value
##  2447.75   62       0
## 
## Details on meta-analytical method:
## - Inverse variance method
## - Sidik-Jonkman estimator for tau^2
## - Q-profile method for confidence interval of tau^2 and tau
## - Trim-and-fill method to adjust for funnel plot asymmetry
## - Fisher's z transformation of correlations
#Funnel plots
dfR <- data.frame(RCOR$seTE, RCOR$TE); dfR$se <- dfR$RCOR.seTE; dfR$r <- dfR$RCOR.TE
dfZ <- data.frame(ZCOR$seTE, ZCOR$TE); dfZ$se <- FisherZInv(dfZ$ZCOR.seTE); dfZ$r <- FisherZInv(dfZ$ZCOR.TE)

estimateT = FisherZInv(ZCOR$TE.random); set = FisherZInv(ZCOR$seTE.random); estimateT
## [1] 0.9855728
estimateT2 = RCOR$TE.random; set2 = RCOR$seTE.random; estimateT2
## [1] 0.9580958
dfR; dfZ
se.seq = seq(0, max(dfZ$se), 0.001)
ll95 = estimateT - (1.96*se.seq)
ul95 = estimateT + (1.96*se.seq)
ll95a = FisherZInv(ZCOR$lower.random)
ul95a = FisherZInv(ZCOR$upper.random)
ll99 = estimateT - (3.29*se.seq)
ul99 = estimateT + (3.29*se.seq)
ll99a = 1.67857*FisherZInv(ZCOR$lower.random)
ul99a = 1.67857*FisherZInv(ZCOR$upper.random)
meanll95 = estimateT - (1.96*set)
meanul95 = estimateT + (1.96*set)
dfZCI <- data.frame(ll95, ul95, ll99, ul99, se.seq, estimateT, meanll95, meanul95, ll95a, ul95a, ll99a, ul99a)

se.seq2 = seq(0, max(dfR$se), 0.001)
ll952 = estimateT2 - (1.96*se.seq2)
ul952 = estimateT2 + (1.96*se.seq2)
ll952a = RCOR$lower.random
ul952a = RCOR$upper.random
ll992 = estimateT2 - (3.29*se.seq2)
ul992 = estimateT2 + (3.29*se.seq2)
ll992a = 1.67857*(RCOR$lower.random)
ul992a = 1.67857*(RCOR$upper.random)
meanll952 = estimateT2 - (1.96*set2)
meanul952 = estimateT2 + (1.96*set2)
dfRCI <- data.frame(ll952, ul952, ll992, ul992, se.seq2, estimateT2, meanll952, meanul952, ll952a, ul952a, ll992a, ul992a)

STAND <- ggplot(aes(x = se, y = r), data = dfZ) + 
  geom_point(shape = 16, size = 3, colour = "#00348E") + 
  xlab('Standard Error') + ylab('r-to-z Correlations') + 
  geom_line(aes(x = se.seq, y = ll95), linetype = 'dotted', colour = "#666666", size = 1, data = dfZCI) +
  geom_line(aes(x = se.seq, y = ul95), linetype = 'dotted', colour = "#666666", size = 1, data = dfZCI) +
  geom_line(aes(x = se.seq, y = ll99), linetype = 'dashed', colour = "#666666", size = 1, data = dfZCI) +
  geom_line(aes(x = se.seq, y = ul99), linetype = 'dashed', colour = "#666666", size = 1, data = dfZCI) +
  geom_segment(aes(x = min(se.seq), y = estimateT, xend = max(se.seq), yend = estimateT), linetype='dotted', colour = "#E9C535", size = 1, data=dfZCI) +
  geom_segment(aes(x = min(se.seq), y = ll95a, xend = max(se.seq), yend = ll95a), linetype='dotted' , colour = "gold", size = 1, data=dfZCI) +
  geom_segment(aes(x = min(se.seq), y = ul95a, xend = max(se.seq), yend = ul95a), linetype='dotted' , colour = "gold", size = 1, data=dfZCI) +
  scale_x_reverse() +
  coord_flip() + 
  theme_bw() + 
  theme(text = element_text(family = "serif", size = 12))

RAW <- ggplot(aes(x = se, y = r), data = dfR) + 
  geom_point(shape = 16, size = 3, colour = "#5F85E7") + 
  xlab('Standard Error') + ylab('Raw Correlations') + 
  geom_line(aes(x = se.seq2, y = ll952), linetype = 'dotted', colour = "#666666", size = 1, data = dfRCI) +
  geom_line(aes(x = se.seq2, y = ul952), linetype = 'dotted', colour = "#666666", size = 1, data = dfRCI) +
  geom_line(aes(x = se.seq2, y = ll992), linetype = 'dashed', colour = "#666666", size = 1, data = dfRCI) +
  geom_line(aes(x = se.seq2, y = ul992), linetype = 'dashed', colour = "#666666", size = 1, data = dfRCI) +
  geom_segment(aes(x = min(se.seq2), y = estimateT2, xend = max(se.seq2), yend = estimateT2), linetype='dotted', colour = "#E9C535", size = 1, data=dfRCI) +
  geom_segment(aes(x = min(se.seq2), y = ll952a, xend = max(se.seq2), yend = ll952a), linetype='dotted' , colour = "gold", size = 1, data=dfRCI) +
  geom_segment(aes(x = min(se.seq2), y = ul952a, xend = max(se.seq2), yend = ul952a), linetype='dotted' , colour = "gold", size = 1, data=dfRCI) +
  scale_x_reverse() +
  coord_flip() + 
  theme_bw() +
  theme(text = element_text(family = "serif", size = 12))

RAW; STAND

multiplot(RAW, STAND, cols = 2)

Conclusions

The relationship between the g factors from various tests is consistent with identity (meta-analytic r = 0.99). There is extremely limited discriminant validity for the g factors from different tests, suggesting a reflective phenotypic model is appropriate. On the other hand, a formative model is difficult to justify. The indifference of the indicator is an exceptionally robust phenomenon that persists despite a diversity of test content, modality, and sample age. Practitioners can be confident that their tests will be reasonably interchangeable for the general population; furthermore, the use of different tests will - for the most part - not assess different constructs barring failures of invariance, as in illiterate or blind samples. This finding is perhaps trivial to intelligence researchers, but systematic proof was lacking before this analysis; the indifference of the indicator and its not-so-necessary corollary of the identity of g factors from different cognitive tests - regardless of content -, which was strongly evidenced before, can now be reasonably taken for granted.

Sources

  • To-do

To-do

  • Add Snow et al. (1977), Woodcock (1978), and McGrew & Woodcock (2001).
  • Analyze the other methods used and manifest dimensionality
  • Assess heterogeneity by age and test combination/model/battery size and representativeness (new columns required)
  • Additional plots with test combination groupings, among others