Exercises 7.2 & 7.5 from the K&J book.

#clear the workspace
rm(list = ls())
#load req's packages
library(mlbench)
library(caret)
library(knitr)
library(AppliedPredictiveModeling)
library(corrplot)

7.2

Friedman (1991) introduced several benchmark data sets create by simulation. One of these simulations used the following nonlinear equation to create data:

\(y=10sin(\pi x_1x_2)+20(x_3-0.5)^2 + 10x_4+5x_5+N(0,\sigma^2)\)

where the x values are random variables uniformly distributed between [0, 1] (there are also 5 other non-informative variables also created in the simulation). The package mlbench contains a function called mlbench.friedman1 that simulates these data:

set.seed(200)
trainingData <- mlbench.friedman1(200, sd = 1)
## We convert the 'x' data from a matrix to a data frame
## One reason is that this will give the columns names.
trainingData$x <- data.frame(trainingData$x)
## Look at the data using
featurePlot(trainingData$x, trainingData$y)

## or other methods.
## This creates a list with a vector 'y' and a matrix
## of predictors 'x'. Also simulate a large test set to
## estimate the true error rate with good precision:
testData <- mlbench.friedman1(5000, sd = 1)
testData$x <- data.frame(testData$x) 

Tune several models on these data. For example:

knnModel <- train(x = trainingData$x, 
                  y = trainingData$y,
                  method = "knn",
                  preProcess = c("center", "scale"),
                  tuneLength = 10)
knnModel
## k-Nearest Neighbors 
## 
## 200 samples
##  10 predictor
## 
## Pre-processing: centered (10), scaled (10) 
## Resampling: Bootstrapped (25 reps) 
## Summary of sample sizes: 200, 200, 200, 200, 200, 200, ... 
## Resampling results across tuning parameters:
## 
##   k   RMSE      Rsquared   MAE     
##    5  3.466085  0.5121775  2.816838
##    7  3.349428  0.5452823  2.727410
##    9  3.264276  0.5785990  2.660026
##   11  3.214216  0.6024244  2.603767
##   13  3.196510  0.6176570  2.591935
##   15  3.184173  0.6305506  2.577482
##   17  3.183130  0.6425367  2.567787
##   19  3.198752  0.6483184  2.592683
##   21  3.188993  0.6611428  2.588787
##   23  3.200458  0.6638353  2.604529
## 
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was k = 17.
knnPred <- predict(knnModel, newdata = testData$x)
postResample(pred = knnPred, obs = testData$y)
##      RMSE  Rsquared       MAE 
## 3.2040595 0.6819919 2.5683461

Which models appear to give the best performance? Does MARS select the informative predictors (those named \(X1-X5\))?

MARS:

set.seed(19)  #set the see for the 7.2
grid.MARS <- expand.grid(degree =1:2, nprune=seq(2,14,by=2))
model.MARS <- train(x = trainingData$x, 
                    y = trainingData$y, 
                    method='bagEarth', 
                    tuneGrid = grid.MARS, 
                    trControl = trainControl(method = "cv"))
## Loading required package: earth
## Loading required package: Formula
## Loading required package: plotmo
## Loading required package: plotrix
## Loading required package: TeachingDemos
model.MARS
## Bagged MARS 
## 
## 200 samples
##  10 predictor
## 
## No pre-processing
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 180, 180, 180, 180, 180, 180, ... 
## Resampling results across tuning parameters:
## 
##   degree  nprune  RMSE      Rsquared   MAE      
##   1        2      3.872886  0.5574803  3.1941640
##   1        4      2.633475  0.7410836  2.1128858
##   1        6      1.972961  0.8489500  1.5654086
##   1        8      1.626131  0.8939049  1.2611676
##   1       10      1.597489  0.8984315  1.2257064
##   1       12      1.591183  0.8997029  1.2309777
##   1       14      1.615752  0.8970973  1.2422983
##   2        2      3.839686  0.6053134  3.1622985
##   2        4      2.609962  0.7450580  2.0968921
##   2        6      1.973944  0.8510582  1.5795255
##   2        8      1.521918  0.9083429  1.1879655
##   2       10      1.270410  0.9375227  1.0158870
##   2       12      1.191376  0.9441512  0.9574594
##   2       14      1.202423  0.9436500  0.9654653
## 
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were nprune = 12 and degree = 2.
pred.MARS <- predict(model.MARS, newdata = testData$x)
postResample(pred = pred.MARS, obs = testData$y)
##      RMSE  Rsquared       MAE 
## 1.1284736 0.9490171 0.8964610

Neural Network:

grid.NN <- expand.grid(size = seq(from = 1, to = 5, by = 1),
                        decay = seq(from = 0.01, to = 0.1, by = 0.01), 
                        bag = F)
maxW.NN <- 5 * (ncol(trainingData$x) + 1) + 5 + 1
model.NN <- train(x = trainingData$x,
                    y = trainingData$y,
                    method = "avNNet",
                    preProcess = c("center", "scale"),
                    tuneGrid = grid.NN,
                    trControl = trainControl(method = "cv"),
                    linout = TRUE,
                    trace = FALSE,
                    MaxNWts = maxW.NN,
                    maxit = 500)
## Warning: executing %dopar% sequentially: no parallel backend registered
model.NN
## Model Averaged Neural Network 
## 
## 200 samples
##  10 predictor
## 
## Pre-processing: centered (10), scaled (10) 
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 180, 180, 180, 180, 180, 180, ... 
## Resampling results across tuning parameters:
## 
##   size  decay  RMSE      Rsquared   MAE     
##   1     0.01   2.400546  0.7714549  1.897524
##   1     0.02   2.399852  0.7714851  1.895658
##   1     0.03   2.399925  0.7714154  1.895033
##   1     0.04   2.400182  0.7713267  1.894544
##   1     0.05   2.400908  0.7711710  1.894614
##   1     0.06   2.401564  0.7710317  1.895132
##   1     0.07   2.402312  0.7708827  1.895707
##   1     0.08   2.403121  0.7707319  1.896352
##   1     0.09   2.403827  0.7705763  1.896922
##   1     0.10   2.404707  0.7704335  1.897457
##   2     0.01   2.425899  0.7684554  1.928861
##   2     0.02   2.450005  0.7641147  1.944182
##   2     0.03   2.410475  0.7753418  1.898650
##   2     0.04   2.489193  0.7551824  1.969686
##   2     0.05   2.390568  0.7763850  1.868654
##   2     0.06   2.490907  0.7584509  1.987295
##   2     0.07   2.482651  0.7594984  1.988899
##   2     0.08   2.493445  0.7578585  1.955523
##   2     0.09   2.479188  0.7576474  1.968391
##   2     0.10   2.461430  0.7664008  1.918088
##   3     0.01   2.185140  0.8164438  1.763258
##   3     0.02   2.082945  0.8301367  1.654004
##   3     0.03   2.129401  0.8240268  1.707016
##   3     0.04   2.174907  0.8148989  1.719764
##   3     0.05   2.247116  0.8010948  1.815253
##   3     0.06   2.109754  0.8244453  1.683527
##   3     0.07   2.124562  0.8231077  1.699436
##   3     0.08   2.136487  0.8226156  1.699474
##   3     0.09   2.124755  0.8200460  1.709111
##   3     0.10   2.027136  0.8369393  1.588771
##   4     0.01   1.978298  0.8472253  1.604464
##   4     0.02   2.056965  0.8365585  1.633423
##   4     0.03   1.968804  0.8458645  1.569619
##   4     0.04   2.001157  0.8459569  1.584770
##   4     0.05   2.043768  0.8357741  1.619571
##   4     0.06   2.097237  0.8292816  1.701472
##   4     0.07   1.947778  0.8546720  1.563618
##   4     0.08   1.966856  0.8482008  1.531302
##   4     0.09   2.086539  0.8280099  1.628341
##   4     0.10   2.061637  0.8338004  1.639665
##   5     0.01   2.064046  0.8314127  1.637041
##   5     0.02   2.034929  0.8353612  1.634637
##   5     0.03   2.134746  0.8214311  1.689796
##   5     0.04   2.020254  0.8431548  1.619872
##   5     0.05   2.058465  0.8334029  1.661762
##   5     0.06   2.002411  0.8428767  1.602258
##   5     0.07   1.962017  0.8514358  1.582753
##   5     0.08   1.988120  0.8437342  1.588862
##   5     0.09   2.058439  0.8308101  1.689881
##   5     0.10   2.074241  0.8249229  1.658259
## 
## Tuning parameter 'bag' was held constant at a value of FALSE
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were size = 4, decay = 0.07 and bag = FALSE.
pred.NN <- predict(model.NN, newdata = testData$x)
postResample(pred = pred.NN, obs = testData$y)
##      RMSE  Rsquared       MAE 
## 2.1201492 0.8217987 1.5912055

SVM:

model.SVM <- train(x = trainingData$x,
                   y = trainingData$y,
                   method='svmRadial',
                   tuneLength = 9,
                   trControl = trainControl(method = "cv"))
model.SVM
## Support Vector Machines with Radial Basis Function Kernel 
## 
## 200 samples
##  10 predictor
## 
## No pre-processing
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 180, 180, 180, 180, 180, 180, ... 
## Resampling results across tuning parameters:
## 
##   C      RMSE      Rsquared   MAE     
##    0.25  2.505555  0.7966271  2.022634
##    0.50  2.279753  0.8109619  1.832437
##    1.00  2.122294  0.8322147  1.706683
##    2.00  1.998040  0.8511927  1.598674
##    4.00  1.874576  0.8670713  1.494258
##    8.00  1.836083  0.8705836  1.456283
##   16.00  1.833906  0.8705585  1.451872
##   32.00  1.833925  0.8705583  1.451880
##   64.00  1.833925  0.8705583  1.451880
## 
## Tuning parameter 'sigma' was held constant at a value of 0.06178128
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were sigma = 0.06178128 and C = 16.
pred.SVM <- predict(model.SVM, newdata = testData$x)
postResample(pred = pred.SVM , obs = testData$y)
##      RMSE  Rsquared       MAE 
## 2.0710406 0.8260815 1.5731468

Summary

First we will look at model performance:

model.perf <- cbind(data.frame(postResample(pred = knnPred, obs = testData$y)),
                    data.frame(postResample(pred = pred.MARS, obs = testData$y)),
                    data.frame(postResample(pred = pred.NN, obs = testData$y)),
                    data.frame(postResample(pred = pred.SVM, obs = testData$y)))
colnames(model.perf) <- c("KNN","MARS","NN","SVM")
kable(round(model.perf,2))
KNN MARS NN SVM
RMSE 3.20 1.13 2.12 2.07
Rsquared 0.68 0.95 0.82 0.83
MAE 2.57 0.90 1.59 1.57

For this particular problem, we can see that the MARS model the superior performer. MARS shows the smallest error stats and the higest Rsquared.

var.importance <- cbind(varImp(knnModel)[[1]],
                        varImp(model.NN)[[1]],
                        varImp(model.SVM)[[1]])
colnames(var.importance) <- c("KNN","NN","SVM")
kable(round(var.importance))
KNN NN SVM
X1 96 96 96
X2 90 90 90
X3 30 30 30
X4 100 100 100
X5 45 45 45
X6 1 1 1
X7 0 0 0
X8 3 3 3
X9 6 6 6
X10 6 6 6

All of the models correctly identify \(X1-X5\) as the important variables while almost identifying \(X6-X10\) as not important.

Interestingly, MARS performs the best and also shows 2 distinct differences: For the MARS model, \(X3\) is significantly over-weight as compared to other models and \(X4\) is signifcantly underweight vs. the other models.

7.5

Exercise 6.3 describes data for a chemical manufacturing process. Use the same data imputation, data splitting, and pre-processing steps as before and train several nonlinear regression models.

set.seed(19) #reset the seed for Q 7.5 
data(ChemicalManufacturingProcess)
chem <- ChemicalManufacturingProcess
#impute using knn
chem.imp <- preProcess(chem[,2:ncol(chem)], method=c('knnImpute'))
chem <- cbind(chem$Yield,predict(chem.imp, chem[,2:ncol(chem)]))
colnames(chem)[1] <- "Yield"
#split 70/30
n <-  floor(0.70 * nrow(chem))
idx <- sample(seq_len(nrow(chem)), size = n)
train <- chem[idx, ]
test <- chem[-idx, ]
knnModel <- train(x=train[,-1],
                  y=train$Yield,
                  method = "knn",
                  preProcess = c("center", "scale"),
                  tuneLength = 10)
knnModel
## k-Nearest Neighbors 
## 
## 123 samples
##  57 predictor
## 
## Pre-processing: centered (57), scaled (57) 
## Resampling: Bootstrapped (25 reps) 
## Summary of sample sizes: 123, 123, 123, 123, 123, 123, ... 
## Resampling results across tuning parameters:
## 
##   k   RMSE      Rsquared   MAE     
##    5  1.433790  0.3687691  1.136364
##    7  1.410122  0.3732909  1.120532
##    9  1.414762  0.3668017  1.121848
##   11  1.421107  0.3607650  1.138411
##   13  1.437570  0.3437580  1.151992
##   15  1.443993  0.3408658  1.164805
##   17  1.453462  0.3358697  1.172275
##   19  1.466765  0.3268167  1.184108
##   21  1.471999  0.3259854  1.191366
##   23  1.484340  0.3177842  1.205743
## 
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was k = 7.
knnPred <- predict(knnModel, newdata = test[,-1])
postResample(pred = knnPred, obs = test$Yield)
##      RMSE  Rsquared       MAE 
## 1.3705821 0.5888388 1.0641004
grid.MARS <- expand.grid(degree =1:2, nprune=seq(2,14,by=2))
model.MARS <- train(x=train[,-1],
                    y=train$Yield, 
                    method='bagEarth', 
                    tuneGrid = grid.MARS, 
                    trControl = trainControl(method = "cv"))
model.MARS
## Bagged MARS 
## 
## 123 samples
##  57 predictor
## 
## No pre-processing
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 111, 111, 111, 110, 111, 111, ... 
## Resampling results across tuning parameters:
## 
##   degree  nprune  RMSE      Rsquared   MAE     
##   1        2      1.350900  0.4941127  1.108734
##   1        4      1.221729  0.5606339  1.005637
##   1        6      1.317405  0.5269844  1.036788
##   1        8      1.450711  0.4857636  1.091201
##   1       10      1.513744  0.5216115  1.071108
##   1       12      1.819527  0.4806020  1.166368
##   1       14      1.851979  0.4982395  1.189922
##   2        2      1.373078  0.4893161  1.134307
##   2        4      1.251562  0.5249608  1.027347
##   2        6      1.503673  0.5054010  1.084645
##   2        8      1.607509  0.5241377  1.098866
##   2       10      1.422078  0.5151927  1.026461
##   2       12      1.645545  0.5263822  1.102896
##   2       14      1.415669  0.5364610  1.019540
## 
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were nprune = 4 and degree = 1.
pred.MARS <- predict(model.MARS, newdata = test[,-1])
postResample(pred = pred.MARS, obs = test$Yield)
##      RMSE  Rsquared       MAE 
## 1.1358439 0.6864584 0.9029211
grid.NN <- expand.grid(size = seq(from = 1, to = 5, by = 1),
                        decay = seq(from = 0.01, to = 0.1, by = 0.01), 
                        bag = F)
maxW.NN <- 5 * (ncol(train[,-1]) + 1) + 5 + 1
model.NN <- train(x=train[,-1],
                 y=train$Yield,
                    method = "avNNet",
                    preProcess = c("center", "scale"),
                    tuneGrid = grid.NN,
                    trControl = trainControl(method = "cv"),
                    linout = TRUE,
                    trace = FALSE,
                    MaxNWts = maxW.NN ,
                    maxit = 500)
model.NN
## Model Averaged Neural Network 
## 
## 123 samples
##  57 predictor
## 
## Pre-processing: centered (57), scaled (57) 
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 111, 110, 111, 110, 111, 111, ... 
## Resampling results across tuning parameters:
## 
##   size  decay  RMSE      Rsquared   MAE     
##   1     0.01   1.393954  0.4957296  1.114959
##   1     0.02   1.495886  0.4841757  1.234266
##   1     0.03   1.499004  0.4544222  1.238226
##   1     0.04   1.445131  0.4812720  1.166866
##   1     0.05   1.410895  0.5146155  1.117820
##   1     0.06   1.405862  0.5256280  1.137211
##   1     0.07   1.431424  0.5265021  1.164013
##   1     0.08   1.392381  0.5182450  1.118763
##   1     0.09   1.374384  0.5418711  1.100398
##   1     0.10   1.448610  0.5203659  1.153555
##   2     0.01   1.453991  0.5344814  1.171729
##   2     0.02   1.387121  0.5428100  1.141238
##   2     0.03   1.435128  0.5660785  1.154208
##   2     0.04   1.459433  0.5049892  1.185673
##   2     0.05   1.705540  0.4202164  1.352201
##   2     0.06   1.692759  0.4431603  1.348105
##   2     0.07   1.742384  0.4407848  1.356461
##   2     0.08   1.527851  0.4983190  1.236119
##   2     0.09   1.637814  0.4789318  1.292206
##   2     0.10   1.543863  0.4779902  1.239303
##   3     0.01   1.217408  0.6446204  1.005156
##   3     0.02   1.679082  0.4776072  1.301091
##   3     0.03   1.726798  0.4498563  1.315137
##   3     0.04   1.703012  0.4575319  1.309448
##   3     0.05   1.590475  0.4795444  1.275498
##   3     0.06   2.103476  0.4144842  1.558904
##   3     0.07   1.747224  0.4835508  1.316275
##   3     0.08   2.166366  0.3968389  1.525114
##   3     0.09   1.766827  0.4695882  1.348430
##   3     0.10   2.057701  0.4524074  1.525010
##   4     0.01   1.892491  0.4455835  1.440135
##   4     0.02   1.968587  0.4203580  1.451430
##   4     0.03   1.511492  0.4847420  1.207431
##   4     0.04   1.826404  0.4496128  1.385832
##   4     0.05   2.147983  0.4161978  1.560147
##   4     0.06   1.907500  0.3990677  1.443901
##   4     0.07   2.153800  0.4189672  1.584359
##   4     0.08   1.966562  0.4512702  1.491026
##   4     0.09   2.236159  0.4342262  1.503525
##   4     0.10   2.033004  0.4234840  1.462491
##   5     0.01   1.919912  0.3822981  1.485646
##   5     0.02   2.164050  0.3950856  1.547093
##   5     0.03   1.893153  0.4828728  1.430106
##   5     0.04   2.212083  0.3964681  1.505662
##   5     0.05   2.186768  0.3904546  1.547178
##   5     0.06   2.526237  0.3822816  1.614280
##   5     0.07   2.384625  0.3564096  1.545319
##   5     0.08   2.352560  0.3987622  1.546808
##   5     0.09   2.232665  0.4115193  1.510734
##   5     0.10   1.975321  0.4127980  1.425510
## 
## Tuning parameter 'bag' was held constant at a value of FALSE
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were size = 3, decay = 0.01 and bag = FALSE.
pred.NN <- predict(model.NN, newdata = test[,-1])
postResample(pred = pred.NN, obs = test$Yield)
##      RMSE  Rsquared       MAE 
## 1.8672838 0.3525522 1.3521986
model.SVM <- train(x=train[,-1],
                   y=train$Yield,
                   method='svmRadial',
                   tuneLength = 9,
                   trControl = trainControl(method = "cv"))
model.SVM
## Support Vector Machines with Radial Basis Function Kernel 
## 
## 123 samples
##  57 predictor
## 
## No pre-processing
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 111, 110, 111, 111, 111, 111, ... 
## Resampling results across tuning parameters:
## 
##   C      RMSE      Rsquared   MAE      
##    0.25  1.394170  0.4961883  1.1646441
##    0.50  1.299529  0.5376299  1.0806526
##    1.00  1.210805  0.5839863  1.0025696
##    2.00  1.122409  0.6314188  0.9339997
##    4.00  1.072147  0.6535913  0.8869301
##    8.00  1.060473  0.6545789  0.8836760
##   16.00  1.060473  0.6545789  0.8836760
##   32.00  1.060473  0.6545789  0.8836760
##   64.00  1.060473  0.6545789  0.8836760
## 
## Tuning parameter 'sigma' was held constant at a value of 0.01616608
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were sigma = 0.01616608 and C = 8.
pred.SVM <- predict(model.SVM, newdata = test[,-1])
postResample(pred = pred.SVM , obs = test$Yield)
##      RMSE  Rsquared       MAE 
## 1.3149519 0.6204367 1.0100227

A

Which nonlinear regression model gives the optimal resampling and test set performance?

model.perf <- cbind(data.frame(postResample(pred = knnPred, obs =test$Yield)),
                    data.frame(postResample(pred = pred.MARS, obs = test$Yield)),
                    data.frame(postResample(pred = pred.NN, obs = test$Yield)),
                    data.frame(postResample(pred = pred.SVM, obs = test$Yield)))
colnames(model.perf) <- c("KNN","MARS","NN","SVM")
kable(round(model.perf,2))
KNN MARS NN SVM
RMSE 1.37 1.14 1.87 1.31
Rsquared 0.59 0.69 0.35 0.62
MAE 1.06 0.90 1.35 1.01

B

Which predictors are most important in the optimal nonlinear regression model? Do either the biological or process variables dominate the list? How do the top ten important predictors compare to the top ten predictors from the optimal linear model?

var.importance <- cbind(varImp(knnModel)[[1]],
                        varImp(model.NN)[[1]],
                        varImp(model.SVM)[[1]])
colnames(var.importance) <- c("KNN","NN","SVM")
kable(round(var.importance))
KNN NN SVM
BiologicalMaterial01 46 46 46
BiologicalMaterial02 64 64 64
BiologicalMaterial03 91 91 91
BiologicalMaterial04 47 47 47
BiologicalMaterial05 8 8 8
BiologicalMaterial06 95 95 95
BiologicalMaterial07 4 4 4
BiologicalMaterial08 48 48 48
BiologicalMaterial09 57 57 57
BiologicalMaterial10 22 22 22
BiologicalMaterial11 52 52 52
BiologicalMaterial12 75 75 75
ManufacturingProcess01 28 28 28
ManufacturingProcess02 32 32 32
ManufacturingProcess03 1 1 1
ManufacturingProcess04 29 29 29
ManufacturingProcess05 7 7 7
ManufacturingProcess06 64 64 64
ManufacturingProcess07 0 0 0
ManufacturingProcess08 0 0 0
ManufacturingProcess09 72 72 72
ManufacturingProcess10 29 29 29
ManufacturingProcess11 53 53 53
ManufacturingProcess12 29 29 29
ManufacturingProcess13 88 88 88
ManufacturingProcess14 19 19 19
ManufacturingProcess15 22 22 22
ManufacturingProcess16 26 26 26
ManufacturingProcess17 66 66 66
ManufacturingProcess18 32 32 32
ManufacturingProcess19 9 9 9
ManufacturingProcess20 23 23 23
ManufacturingProcess21 13 13 13
ManufacturingProcess22 0 0 0
ManufacturingProcess23 4 4 4
ManufacturingProcess24 15 15 15
ManufacturingProcess25 28 28 28
ManufacturingProcess26 22 22 22
ManufacturingProcess27 17 17 17
ManufacturingProcess28 13 13 13
ManufacturingProcess29 57 57 57
ManufacturingProcess30 42 42 42
ManufacturingProcess31 62 62 62
ManufacturingProcess32 100 100 100
ManufacturingProcess33 48 48 48
ManufacturingProcess34 6 6 6
ManufacturingProcess35 14 14 14
ManufacturingProcess36 57 57 57
ManufacturingProcess37 15 15 15
ManufacturingProcess38 0 0 0
ManufacturingProcess39 1 1 1
ManufacturingProcess40 0 0 0
ManufacturingProcess41 0 0 0
ManufacturingProcess42 0 0 0
ManufacturingProcess43 2 2 2
ManufacturingProcess44 14 14 14
ManufacturingProcess45 1 1 1