Country: name of the country
LifeExp: average life expectancy for the country in years
InfantSurvival: proportion of those surviving to one year or more
Under5Survival: proportion of those surviving to five years or more
TBFree: proportion of the population without TB.
PropMD: proportion of the population who are MDs
PropRN: proportion of the population who are RNs
PersExp: mean personal expenditures on healthcare in US dollars at average exchange rate
GovtExp: mean government expenditures per capita on healthcare, US dollars at average exchange rate
TotExp: sum of personal and government expenditures.
who <- read.csv('who.csv')
head(who)
## Country LifeExp InfantSurvival Under5Survival TBFree PropMD
## 1 Afghanistan 42 0.835 0.743 0.99769 0.000228841
## 2 Albania 71 0.985 0.983 0.99974 0.001143127
## 3 Algeria 71 0.967 0.962 0.99944 0.001060478
## 4 Andorra 82 0.997 0.996 0.99983 0.003297297
## 5 Angola 41 0.846 0.740 0.99656 0.000070400
## 6 Antigua and Barbuda 73 0.990 0.989 0.99991 0.000142857
## PropRN PersExp GovtExp TotExp
## 1 0.000572294 20 92 112
## 2 0.004614439 169 3128 3297
## 3 0.002091362 108 5184 5292
## 4 0.003500000 2589 169725 172314
## 5 0.001146162 36 1620 1656
## 6 0.002773810 503 12543 13046
plot(who$TotExp,who$LifeExp)
This doesn’t appear to be a great model but it is better than nothing.
who_lm <- lm(who$LifeExp ~ who$TotExp)
summary(who_lm)
##
## Call:
## lm(formula = who$LifeExp ~ who$TotExp)
##
## Residuals:
## Min 1Q Median 3Q Max
## -24.764 -4.778 3.154 7.116 13.292
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.475e+01 7.535e-01 85.933 < 2e-16 ***
## who$TotExp 6.297e-05 7.795e-06 8.079 7.71e-14 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 9.371 on 188 degrees of freedom
## Multiple R-squared: 0.2577, Adjusted R-squared: 0.2537
## F-statistic: 65.26 on 1 and 188 DF, p-value: 7.714e-14
who2 <- who
who2$LifeExp4Point6 <- who2$LifeExp^4.6
who2$TotExpPoint6 <- who2$TotExp^0.06
plot(who2$TotExpPoint6,who2$LifeExp4Point6)
This model predicts the data fairly well and much better than the first model. The R-squared value alone increased by almost 50%.
who2_lm <- lm(who2$LifeExp4Point6 ~ who2$TotExpPoint6)
summary(who2_lm)
##
## Call:
## lm(formula = who2$LifeExp4Point6 ~ who2$TotExpPoint6)
##
## Residuals:
## Min 1Q Median 3Q Max
## -308616089 -53978977 13697187 59139231 211951764
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -736527910 46817945 -15.73 <2e-16 ***
## who2$TotExpPoint6 620060216 27518940 22.53 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 90490000 on 188 degrees of freedom
## Multiple R-squared: 0.7298, Adjusted R-squared: 0.7283
## F-statistic: 507.7 on 1 and 188 DF, p-value: < 2.2e-16
Our function is the following: LifeExp4Point6 = -736,527,910 + 620,060,216*TotalExpPoint6
TotalExpPoint6 = 1.5
LifeExp4Point6 <- -736527910 + 620060216 * TotalExpPoint6
LifeExp <- LifeExp4Point6^(1/4.6)
paste("When total exp ^ 0.06 is 1.5 then Life Exp is ",LifeExp)
## [1] "When total exp ^ 0.06 is 1.5 then Life Exp is 63.3115334478635"
TotalExp = 2.5
LifeExp4Point6 <- (-736527910 + 620060216 * TotalExp)
LifeExp <- LifeExp4Point6^(1/4.6)
paste("When total exp ^ 0.06 is 2.5 then Life Exp is ",LifeExp)
## [1] "When total exp ^ 0.06 is 2.5 then Life Exp is 86.5064484928337"
who4 <- who
who4$PropMDTotExp <- who4$PropMD * who4$TotExp
lm_who4 <- lm(who4$LifeExp ~ who4$PropMD + who4$TotExp + who4$PropMDTotExp)
summary(lm_who4)
##
## Call:
## lm(formula = who4$LifeExp ~ who4$PropMD + who4$TotExp + who4$PropMDTotExp)
##
## Residuals:
## Min 1Q Median 3Q Max
## -27.320 -4.132 2.098 6.540 13.074
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.277e+01 7.956e-01 78.899 < 2e-16 ***
## who4$PropMD 1.497e+03 2.788e+02 5.371 2.32e-07 ***
## who4$TotExp 7.233e-05 8.982e-06 8.053 9.39e-14 ***
## who4$PropMDTotExp -6.026e-03 1.472e-03 -4.093 6.35e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8.765 on 186 degrees of freedom
## Multiple R-squared: 0.3574, Adjusted R-squared: 0.3471
## F-statistic: 34.49 on 3 and 186 DF, p-value: < 2.2e-16
Our function is the following: LifeExp = 6.277e+01 + 1.497e+03 PropMD + 7.233e-05 TotalExp -6.026e-03 PropMDTotExp
PropMD = 0.03
TotalExp = 14
PropMDTotExp = PropMD*TotalExp
LifeExp <- 6.277e+01 + 1.497e+03 * PropMD + 7.233e-05 * TotalExp -6.026e-03 * PropMDTotExp
paste("When total exp ^ 0.06 is 1.5 then Life Exp is ",LifeExp)
## [1] "When total exp ^ 0.06 is 1.5 then Life Exp is 107.6784817"
This doesn’t make sense. If the government and people are together only spending on average $14 per person and only 3% of the population are doctors you wouldn’t expect people to live to 100 years old. They would likely die at a younger age.