# load libraries and data
library(readr)
library(dplyr)
library(ggplot2)
options(scipen=10000) #removes scientific notation

noaa_data <- read_csv('carbon_dioxide_levels.csv')
## 
## -- Column specification --------------------------------------------------------
## cols(
##   Age_yrBP = col_double(),
##   CO2_ppmv = col_double()
## )
head(noaa_data)
## # A tibble: 6 x 2
##   Age_yrBP CO2_ppmv
##      <dbl>    <dbl>
## 1      137     280.
## 2      268     275.
## 3      279     278.
## 4      395     279.
## 5      404     282.
## 6      485     278.
#Create NOAA Visualization here:
noaa_viz <- ggplot(data = noaa_data, aes(x = Age_yrBP, y = CO2_ppmv)) +
  geom_line() +
  labs(title = 'Carbon Dioxide Levels From 8,000 to 136 Years BP', subtitle = 'From World Data Center for Paleoclimatology and NOAA Paleoclimatology', x = 'Years Before Today (0=1950)', y = 'Carbon Dioxide Level (Parts Per Million)') +
  scale_x_reverse(lim = c(800000, 0))
noaa_viz

millennia_max = max(noaa_data$CO2_ppmv)
millennia_max
## [1] 298.6
#Create IAC Visualization
iac_data <- read_csv('yearly_co2.csv')
head(iac_data)
## # A tibble: 6 x 4
##    year data_mean_global data_mean_nh data_mean_sh
##   <dbl>            <dbl>        <dbl>        <dbl>
## 1     0             277.         277.         277.
## 2     1             277.         277.         277.
## 3     2             277.         277.         277.
## 4     3             277.         277.         277.
## 5     4             277.         277.         277.
## 6     5             277.         277.         277.
iac_viz <- ggplot(data = iac_data, aes(x = year, y = data_mean_global)) + 
  geom_line() +
  labs(title = 'Carbon Dioxide Levels over Time', subtitle = 'From Institute for Atmospheric and Climate Science', x = 'Year', y = 'Carbon Dioxide Level (Parts Per Million)') +
  geom_hline(aes(yintercept = millennia_max, linetype = 'Historical CO2 Peak before 1950'))
iac_viz