library(RCurl)
library(ggplot2)
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union

The attached who.csv dataset contains real-world data from 2008. The variables included follow.

x <- getURL("https://raw.githubusercontent.com/ChristopherBloome/Misc/main/who.csv")
RawData <-  read.csv(text = x)

head(RawData)
##               Country LifeExp InfantSurvival Under5Survival  TBFree      PropMD
## 1         Afghanistan      42          0.835          0.743 0.99769 0.000228841
## 2             Albania      71          0.985          0.983 0.99974 0.001143127
## 3             Algeria      71          0.967          0.962 0.99944 0.001060478
## 4             Andorra      82          0.997          0.996 0.99983 0.003297297
## 5              Angola      41          0.846          0.740 0.99656 0.000070400
## 6 Antigua and Barbuda      73          0.990          0.989 0.99991 0.000142857
##        PropRN PersExp GovtExp TotExp
## 1 0.000572294      20      92    112
## 2 0.004614439     169    3128   3297
## 3 0.002091362     108    5184   5292
## 4 0.003500000    2589  169725 172314
## 5 0.001146162      36    1620   1656
## 6 0.002773810     503   12543  13046

Provide a scatterplot of LifeExp~TotExp, and run simple linear regression. Do not transform the variables. Provide and interpret the F statistics, R^2, standard error,and p-values only. Discuss whether the assumptions of simple linear regression met.

RawData %>%
  ggplot(aes(x=TotExp, y=LifeExp)) + geom_point()

RD_LM <- lm(data = RawData, LifeExp ~ TotExp)
summary(RD_LM)
## 
## Call:
## lm(formula = LifeExp ~ TotExp, data = RawData)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -24.764  -4.778   3.154   7.116  13.292 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 6.475e+01  7.535e-01  85.933  < 2e-16 ***
## TotExp      6.297e-05  7.795e-06   8.079 7.71e-14 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 9.371 on 188 degrees of freedom
## Multiple R-squared:  0.2577, Adjusted R-squared:  0.2537 
## F-statistic: 65.26 on 1 and 188 DF,  p-value: 7.714e-14

F Statistic.

As we see above, the p-value associated with the F-Statistic is 7.714 * 10^-14, very small and significantly significant. #### R^2 The R Squared is .25, This implies that a quarter of the variation can be explained by our independent variable. #### standard error With a standard error of 9.37, we know that the average distance away from the regression line is 9.3%, and that 95% of our observations are between +/- 2 x 9.3% #### P-Values Our one P-Value for TotExp is 7.71 x 10^-14, very significant. We note this is the same as the P-Value associated with our F Statistic, as this model only has one variable.

Overall, we know that there is a correlation between our dependent and independent variable, but this alone does not account for all the variation in our model.

Raise life expectancy to the 4.6 power (i.e., LifeExp^4.6). Raise total expenditures to the 0.06 power (nearly a log transform, TotExp^.06). Plot LifeExp^4.6 as a function of TotExp^.06, and r re-run the simple regression model using the transformed variables. Provide and interpret the F statistics, R^2, standard error, and p-values. Which model is “better?”

AdjData <-data.frame(RawData$LifeExp^4.6, RawData$TotExp^.06)
names(AdjData) <- c("AdjLifeExp","AdjTotExp")

AdjData %>%
  ggplot(aes(x=AdjTotExp, y=AdjLifeExp)) + geom_point()

AdjLM <- lm(data = AdjData, AdjLifeExp ~ AdjTotExp)
summary(AdjLM)
## 
## Call:
## lm(formula = AdjLifeExp ~ AdjTotExp, data = AdjData)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -308616089  -53978977   13697187   59139231  211951764 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -736527910   46817945  -15.73   <2e-16 ***
## AdjTotExp    620060216   27518940   22.53   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 90490000 on 188 degrees of freedom
## Multiple R-squared:  0.7298, Adjusted R-squared:  0.7283 
## F-statistic: 507.7 on 1 and 188 DF,  p-value: < 2.2e-16

F Statistic.

Just as with the un-adjusted table, the F-Statistic is very small, implying the model is predictive. #### R^2 The R Squared is .73, implying nearly 75% of the variation in the dependent variable can be explained by the independent variable. #### standard error This standard error is significantly higher than in the previous model, due to the fact that we have transformed our dependent variable. #### P-Values Our one P-Value for TotExp are very very small - a quick Google search demonstrated that these are the smallest values R will show.

In all, this model is significantly better.

Using the results from 2, forecast life expectancy when TotExp^.06 =1.5. Then forecast life expectancy when TotExp^.06=2.5.

B <- AdjLM$coefficients[[1]]
M <- AdjLM$coefficients[[2]]

(M*1.5 + B)^(1/4.6)
## [1] 63.31153
(M*2.5 + B)^(1/4.6)
## [1] 86.50645

Build the following multiple regression model and interpret the F Statistics, R^2, standard error, and p-values. How good is the model? LifeExp = b0+b1 x PropMd + b2 x TotExp +b3 x PropMD x TotExp

LM2 <- lm(data = RawData, LifeExp ~ PropMD + TotExp + PropMD*TotExp)
summary(LM2)
## 
## Call:
## lm(formula = LifeExp ~ PropMD + TotExp + PropMD * TotExp, data = RawData)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -27.320  -4.132   2.098   6.540  13.074 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    6.277e+01  7.956e-01  78.899  < 2e-16 ***
## PropMD         1.497e+03  2.788e+02   5.371 2.32e-07 ***
## TotExp         7.233e-05  8.982e-06   8.053 9.39e-14 ***
## PropMD:TotExp -6.026e-03  1.472e-03  -4.093 6.35e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.765 on 186 degrees of freedom
## Multiple R-squared:  0.3574, Adjusted R-squared:  0.3471 
## F-statistic: 34.49 on 3 and 186 DF,  p-value: < 2.2e-16

While each of the PValues is low enough to imply significance, the RSqured is nowhere near as great as the adjusted model from Question 2.

Forecast LifeExp when PropMD=.03 and TotExp = 14. Does this forecast seem realistic? Why or why not?

B0 <- LM2$coefficients[[1]]
B1 <- LM2$coefficients[[2]]
B2 <- LM2$coefficients[[3]]
B3 <- LM2$coefficients[[4]]

B0 + .03*B1 + 14*B2 + .03*14*B3 
## [1] 107.696

107 years is a long time, so at first glance this seems high. Looking at the data, it is clear that both values are at the extreme of their ranges, which confirms our suspician this value is not realistic.