Unemployment Rate - Transportation and Material Moving Occupations (LNU04032228)

indicator <-fredr_series_observations(series_id = "LNU04032228",
        observation_start = as.Date("2015-01-01")) 

colnames(indicator) <- c("date","series","miles")

indicator[,c(1,3)] %>% slice_sample(n = 10)%>% arrange(date)%>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(2, T, color = "blue" ) 
date miles
2015-11-01 6.8
2016-01-01 7.6
2016-02-01 6.6
2016-06-01 6.7
2017-03-01 6.2
2017-10-01 5.2
2018-11-01 4.0
2019-02-01 5.1
2019-10-01 3.9
2020-10-01 10.0
indicator %>% ggplot() + 
   geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-10-2020'), ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.04)+ 
   
  geom_line(mapping = aes(x=date,y=miles), color = "blue4",size=1) +
  labs(title = "Unemployment Rate - Transportation and Material Moving Occupations (LNU04032228)", 
       subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
       x="Time", y="Percent",
       caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego")+
    theme_economist()

All Employees, Transit and Ground Passenger Transportation (CES4348500001)

indicator <-fredr_series_observations(series_id = "CES4348500001",
        observation_start = as.Date("2015-01-01")) 

colnames(indicator) <- c("date","series","miles")

indicator[,c(1,3)] %>% slice_sample(n = 10)%>% arrange(date)%>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(2, T, color = "blue" ) 
date miles
2015-01-01 484.9
2016-03-01 490.4
2016-11-01 490.2
2017-05-01 498.8
2017-08-01 490.9
2017-12-01 494.5
2018-05-01 490.8
2018-09-01 496.3
2018-12-01 496.4
2019-08-01 493.1
indicator %>% ggplot() + 
   geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-11-2020'), ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.04)+ 
   
  geom_line(mapping = aes(x=date,y=miles), color = "blue4",size=1) +
  labs(title = "All Employees, Transit and Ground Passenger Transportation (CES4348500001)", 
       subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
       x="Time", y="Thousands of Persons",
       caption = "Data source: FRED S. Louis Federal Reserve\nIllustration by @JoeLongSanDiego")+
    theme_economist()

All Employees, Air Transportation (CEU4348100001)

indicator <-fredr_series_observations(series_id = "CES4348100001",
        observation_start = as.Date("2015-01-01")) 

colnames(indicator) <- c("date","series","miles")

indicator[,c(1,3)] %>% slice_sample(n = 10)%>% arrange(date)%>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(2, T, color = "blue" ) 
date miles
2015-01-01 450.0
2015-03-01 451.0
2015-05-01 454.1
2015-08-01 460.8
2015-10-01 465.2
2018-02-01 498.4
2019-06-01 503.3
2020-01-01 509.2
2020-05-01 383.8
2020-06-01 378.6
indicator %>% ggplot() + 
   geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-11-2020'), ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.04)+ 
   
  geom_line(mapping = aes(x=date,y=miles), color = "blue4",size=1) +
  labs(title = "All Employees, Air Transportation (CEU4348100001)", 
       subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
       x="Time", y="Thousands of Persons",
       caption = "Data source: FRED S. Louis Federal Reserve\nIllustration by @JoeLongSanDiego")+
    theme_economist()

All Employees, Pipeline Transportation (CES4348600001)

indicator <-fredr_series_observations(series_id = "CES4348600001",
        observation_start = as.Date("2015-01-01")) 

colnames(indicator) <- c("date","series","miles")

indicator[,c(1,3)] %>% slice_sample(n = 10)%>% arrange(date)%>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(1:2, T, color = "blue" ) 
date miles
2015-09-01 50.8
2016-03-01 49.9
2017-04-01 49.2
2017-10-01 48.5
2018-05-01 49.2
2018-06-01 49.8
2018-10-01 50.6
2019-02-01 50.5
2019-09-01 51.3
2020-09-01 49.4
indicator %>% ggplot() + 
   geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-11-2020'), ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.04)+ 
   
  geom_line(mapping = aes(x=date,y=miles), color = "blue4",size=1) +
  labs(title = "All Employees, Pipeline Transportation (CES4348600001)", 
       subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
       x="Time", y="Thousands of Persons",
       caption = "Data source: FRED S. Louis Federal Reserve\nIllustration by @JoeLongSanDiego")+
    theme_economist()

All Employees, Scenic and Sightseeing Transportation (CES4348700001)

indicator <-fredr_series_observations(series_id = "CES4348700001",
        observation_start = as.Date("2015-01-01")) 

colnames(indicator) <- c("date","series","miles")

indicator[,c(1,3)] %>% slice_sample(n = 10)%>% arrange(date)%>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(1:2, T, color = "blue" ) 
date miles
2016-06-01 34.3
2016-11-01 33.9
2016-12-01 35.3
2017-09-01 35.2
2018-04-01 34.5
2018-09-01 33.9
2019-03-01 35.5
2019-05-01 35.8
2019-10-01 35.7
2019-12-01 35.9
indicator %>% ggplot() + 
   geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-11-2020'), ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.04)+ 
   
  geom_line(mapping = aes(x=date,y=miles), color = "blue4",size=1) +
  labs(title = "All Employees, Scenic and Sightseeing Transportation (CES4348700001)", 
       subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
       x="Time", y="Thousands of Persons",
       caption = "Data source: FRED S. Louis Federal Reserve\nIllustration by @JoeLongSanDiego")+
    theme_economist()

Employment Level - Transportation and Material Moving Occupations (LNU02032214)

indicator <-fredr_series_observations(series_id = "LNU02032214",
        observation_start = as.Date("2015-01-01")) 

colnames(indicator) <- c("date","series","miles")

indicator[,c(1,3)] %>% slice_sample(n = 10)%>% arrange(date)%>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(1:2, T, color = "blue" ) 
date miles
2015-01-01 9149
2015-04-01 8998
2016-02-01 9211
2017-09-01 9986
2017-11-01 9245
2018-01-01 8839
2018-02-01 9680
2018-10-01 10112
2019-03-01 10046
2020-09-01 10534
indicator %>% ggplot() + 
   geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-11-2020'), ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.04)+ 
   
  geom_line(mapping = aes(x=date,y=miles), color = "blue4",size=1) +
  labs(title = "Employment Level - Transportation and Material Moving Occupations (LNU02032214)", 
       subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
       x="Time", y="Thousands of Persons",
       caption = "Data source: Bureau of Labor Statistics\nIllustration by @JoeLongSanDiego")+
    theme_economist()

Unemployment Level - Transportation and Material Moving Occupations (LNU03032228)

indicator <-fredr_series_observations(series_id = "LNU03032228",
        observation_start = as.Date("2015-01-01")) 

colnames(indicator) <- c("date","series","miles")

indicator[,c(1,3)] %>% slice_sample(n = 10)%>% arrange(date)%>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(1:2, T, color = "blue" ) 
date miles
2016-11-01 568
2016-12-01 610
2017-01-01 693
2017-09-01 468
2018-01-01 649
2018-03-01 551
2018-04-01 457
2019-06-01 528
2020-04-01 2045
2020-05-01 2217
indicator %>% ggplot() + 
   geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-11-2020'), ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.04)+ 
   
  geom_line(mapping = aes(x=date,y=miles), color = "blue4",size=1) +
  labs(title = "Unemployment Level - Transportation and Material Moving Occupations (LNU03032228)", 
       subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
       x="Time", y="Thousands of Persons",
       caption = "Data source: Bureau of Labor Statistics\nIllustration by @JoeLongSanDiego")+
    theme_economist()

All Employees, Warehousing and Storage (CES4349300001)

indicator <-fredr_series_observations(series_id = "CES4349300001",
        observation_start = as.Date("2015-01-01")) 

colnames(indicator) <- c("date","series","miles")

indicator[,c(1,3)] %>% slice_sample(n = 10)%>% arrange(date)%>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(1:2, T, color = "blue" ) 
date miles
2015-05-01 817.4
2016-04-01 914.6
2016-09-01 950.4
2017-02-01 983.5
2017-05-01 1007.6
2019-04-01 1185.2
2019-05-01 1186.1
2019-08-01 1190.5
2020-01-01 1200.4
2020-02-01 1207.8
indicator %>% ggplot() + 
   geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-11-2020'), ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.04)+ 
   
  geom_line(mapping = aes(x=date,y=miles), color = "blue4",size=1) +
  labs(title = "All Employees, Warehousing and Storage (CES4349300001)", 
       subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
       x="Time", y="Thousands of Persons",
       caption = "Data source: Bureau of Labor Statistics\nIllustration by @JoeLongSanDiego")+
    theme_economist()

All Employees, Truck Transportation (CEU4348400001)

indicator <-fredr_series_observations(series_id = "CES4348400001",
        observation_start = as.Date("2015-01-01")) 

colnames(indicator) <- c("date","series","miles")

indicator[,c(1,3)] %>% slice_sample(n = 10)%>% arrange(date)%>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(1:2, T, color = "blue" ) 
date miles
2015-10-01 1453
2016-11-01 1452
2017-05-01 1454
2018-04-01 1483
2018-05-01 1486
2019-04-01 1530
2019-09-01 1528
2019-12-01 1526
2020-03-01 1523
2020-07-01 1440
indicator %>% ggplot() + 
   geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-11-2020'), ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.04)+ 
   
  geom_line(mapping = aes(x=date,y=miles), color = "blue4",size=1) +
  labs(title = "All Employees, Truck Transportation (CEU4348400001)", 
       subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
       x="Time", y="Thousands of Persons",
       caption = "Data source: Bureau of Labor Statistics\nIllustration by @JoeLongSanDiego")+
    theme_economist()

Moving 12-Month Total Vehicle Miles Traveled (M12MTVUSM227NFWA)

indicator <-fredr_series_observations(series_id = "M12MTVUSM227NFWA",
        observation_start = as.Date("2015-01-01")) 

colnames(indicator) <- c("date","series","miles")

indicator[,c(1,3)] %>% slice_sample(n = 10)%>% arrange(date)%>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(2, T, color = "blue" ) 
date miles
2016-07-01 3141648
2017-01-01 3177328
2017-10-01 3206161
2017-12-01 3212346
2018-01-01 3214482
2018-02-01 3216597
2018-11-01 3237913
2019-03-01 3243523
2019-10-01 3263387
2020-03-01 3226317
indicator %>% ggplot() + 
   geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-10-2020'), ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.04)+ 
   
  geom_line(mapping = aes(x=date,y=miles), color = "blue4",size=1) +
  labs(title = "Moving 12-Month Total Vehicle Miles Traveled_ Total", 
       subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
       x="Time", y="Millions of Miles",
       caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego")+
    theme_economist()

Vehicle Miles Traveled (TRFVOLUSM227NFWA)

indicator <-fredr_series_observations(series_id = "TRFVOLUSM227NFWA",
        observation_start = as.Date("2019-01-01")) 

colnames(indicator) <- c("date","series","miles")

indicator[,c(1,3)] %>% slice_sample(n = 10)%>% arrange(date)%>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(2, T, color = "blue" ) 
date miles
2019-01-01 248208
2019-02-01 226734
2019-06-01 280936
2019-08-01 286531
2019-12-01 274113
2020-03-01 220020
2020-04-01 168463
2020-06-01 243890
2020-07-01 262380
2020-08-01 251265
indicator %>% ggplot() + 
  geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-10-2020'), ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.04)+  
   
  geom_line(mapping = aes(x=date,y=miles), color = "blue4",size=1) +
  labs(title = "Vehicle Miles Traveled", 
       subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
       x="Time", y="Millions of Miles",
       caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego")+
    theme_economist()

Load Factor for U.S. Air Carrier Domestic and International, Scheduled Passenger Flights (LOADFACTOR)

indicator <-fredr_series_observations(series_id = "LOADFACTOR",
        observation_start = as.Date("2000-01-01")) 

colnames(indicator) <- c("date","series","percent")

indicator[,c(1,3)] %>% slice_sample(n = 10)%>% arrange(date)%>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(2, T, color = "blue" ) 
date percent
2003-03-01 72.1
2004-07-01 82.6
2005-04-01 76.8
2006-02-01 75.2
2009-02-01 73.3
2010-06-01 86.2
2010-12-01 80.7
2011-07-01 86.9
2019-11-01 81.7
2020-01-01 80.1
indicator %>% ggplot() + 
   
   geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-10-2020'), ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.04)+ 
  geom_line(mapping = aes(x=date,y=percent), color = "blue4",size=1) +
  labs(title = "U.S. Air Passenger _ Load Factor", 
       subtitle = str_glue("Domestic & International\nFrom {min(indicator$date)} through {max(indicator$date)}"),
       x="Time", y="Percent of load",
       caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego")+
    theme_economist()

tail(indicator,n=12) %>%
  ggplot() + 
    geom_line(mapping = aes(x=date,y=percent), color = "blue4",size=1) +
  labs(title = "U.S. Air Passenger _ Load Factor", 
       subtitle = "May 2019 to May 2020",
       x="Time", y="Percent of load",
       caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego")+
    theme_economist()

Public Transit Ridership (TRANSIT)

indicator <-fredr_series_observations(series_id = "TRANSIT",
        observation_start = as.Date("2000-01-01")) 

colnames(indicator) <- c("date","series","value")

indicator[,c(1,3)] %>% slice_sample(n = 12)%>% arrange(date)%>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(2, T, color = "blue" ) 
date value
2001-06-01 807301
2002-07-01 782849
2003-03-01 820157
2004-05-01 781133
2004-07-01 754430
2006-11-01 851564
2009-01-01 827360
2012-07-01 848428
2015-06-01 878666
2016-10-01 889002
2018-11-01 812423
2020-02-01 790589
indicator %>% ggplot() + 
   geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-10-2020'), ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.04)+
   geom_line(mapping = aes(x=date,y=value), color = "blue4",size=1) +
  labs(title = "Public Transit Ridership", 
       subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
       x="Time", y="Thousands of trip tickets",
       caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego")+
    theme_economist()

tail(indicator,n=12) %>%
  ggplot() + 
    geom_line(mapping = aes(x=date,y=value), color = "blue4",size=1) +
  labs(title = "Public Transit Ridership", 
       subtitle = "Most recent 12 months",
       x="Time", y="Thousands of trip tickets",
       caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego")+
    theme_economist()

Rail Passenger Miles (RAILPM)

indicator <-fredr_series_observations(series_id = "RAILPM",
        observation_start = as.Date("2000-01-01")) 

colnames(indicator) <- c("date","series","value")

indicator[,c(1,3)] %>% slice_sample(n = 12)%>% arrange(date)%>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(2, T, color = "blue" ) 
date value
2001-02-01 366288212
2001-03-01 448912584
2002-06-01 499734575
2008-05-01 550928592
2009-03-01 456227991
2011-03-01 566357389
2012-07-01 663965533
2013-10-01 543695520
2017-06-01 636313142
2019-04-01 532041046
2019-06-01 618224369
2020-07-01 160734686
indicator %>% ggplot() + 
   geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-10-2020'), ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.04)+
   geom_line(mapping = aes(x=date,y=value/1000000), color = "blue4",size=1) +
  labs(title = "Rail Passenger Miles", 
       subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
       x="Time", y="Millions of Miles",
       caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego")+
    theme_economist()

tail(indicator,n=12) %>%
  ggplot() + 
    geom_line(mapping = aes(x=date,y=value/1000000), color = "blue4",size=1) +
  labs(title = "Rail Passenger Miles", 
       subtitle = "Most recent 12 months",
       x="Time", y="Millions of Miles",
       caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego")+
    theme_economist()

Air Revenue Passenger Miles (AIRRPMTSID11)

indicator <-fredr_series_observations(series_id = "AIRRPMTSID11",
        observation_start = as.Date("2000-01-01")) 

colnames(indicator) <- c("date","series","value")

indicator[,c(1,3)] %>% slice_sample(n = 12)%>% arrange(date)%>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(2, T, color = "blue" ) 
date value
2000-02-01 58168008
2003-11-01 59194919
2004-04-01 62296043
2004-09-01 63175083
2005-07-01 66942007
2007-10-01 70826612
2009-03-01 63843795
2010-05-01 66608999
2012-10-01 68899197
2014-11-01 72807914
2019-08-01 88577542
2019-10-01 89115893
indicator %>% ggplot() + 
   geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-10-2020'), ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.04)+
   geom_line(mapping = aes(x=date,y=value/1000), color = "blue4",size=1) +
  labs(title = "Air Revenue Passenger Miles (RPM) _ AIRRPMTSID11", 
       subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
       x="Time", y="Millions",
       caption = "Data source: FRED St. Louis Federal Reserve\nIllustration by @JoeLongSanDiego")+
    theme_economist()

tail(indicator,n=12) %>%
  ggplot() + 
   geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-10-2020'), ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.04)+
    geom_line(mapping = aes(x=date,y=value/1000), color = "blue4",size=1) +
  labs(title = "Air Revenue Passenger Miles (RMP) _ AIRRPMTSID11", 
       subtitle = "Most recent 12 months period",
       x="Time", y="Millions",
       caption = "Data source: FRED St. Louis Federal Reserve\nIllustration by @JoeLongSanDiego")+
    theme_economist()