complete_predictors_all <- read_csv("data/complete_predictors_all_vars.csv") %>% 
  rename(picture_naming_aoa = morrison_aoa_threshold_years, wordbank_inv = wordbank_threshold_inv) %>% 
  pivot_longer(cols = c("KupermanAoA", "wordbank_aoa_years", "picture_naming_aoa",
                        "prop_say_naive_combined","kuperman_inv",
                        "picture_naming_inv", "wordbank_inv"),
               names_to = "measure", values_to = "value") %>% 
  select(num_item_id, word, category, wordnet_pos, preschoolness, helpfulness, frequency=childes_adult_log_freq, 
         concreteness, measure, value)

#set measure as factor for later analyses
complete_predictors_all$measure <- as.factor(complete_predictors_all$measure)

complete_predictors_wordbank_all <- read_csv("data/complete_predictors_wordbank.csv") %>% 
  rename(picture_naming_aoa = morrison_aoa_threshold_years, wordbank_inv = wordbank_threshold_inv) %>% 
  pivot_longer(cols = c("KupermanAoA", "wordbank_aoa_years", "picture_naming_aoa",
                        "prop_say_naive_combined","kuperman_inv",
                        "picture_naming_inv", "wordbank_inv"),
               names_to = "measure", values_to = "value") %>% 
  select(num_item_id, word, category, wordnet_pos, preschoolness, helpfulness, frequency=childes_adult_log_freq,
         concreteness, measure, value)

#set measure as factor for later analyses
complete_predictors_all$measure <- as.factor(complete_predictors_all$measure)

aoas <- c("KupermanAoA","wordbank_aoa_years","picture_naming_aoa")

#dfs with inverted AoAs (for easier comparison to proportion data)
##smaller df that includes only words for which we have all data, including picture-naming norms
complete_predictors <- complete_predictors_all %>% filter(!(measure %in% aoas))

##larger df that excludes picture-naming norms for a larger complete dataset
complete_predictors_wordbank <- complete_predictors_wordbank_all %>% filter(!(measure %in% aoas) & measure != "picture_naming_inv")

#dfs with raw AoAs - excludes proportion data
##smaller df that includes words for which we have all data including picture-naming
complete_predictors_aoas <- complete_predictors_all %>% filter(measure %in% aoas)

##larger df that excludes picture-naming norms for a larger complete dataset
complete_predictors_wordbank_aoas <- complete_predictors_wordbank_all %>% filter(measure %in% aoas)

#df of only kuperman and wordbank AoAs
kuperman_wb_aoas <- complete_predictors_wordbank_all %>% filter(measure %in% c("KupermanAoA","wordbank_aoa_years"))

Codebook:
wordbank_threshold_inv: 1/wordbank_threshold_aoa so that interpretation is consistent with naive proportion data
kuperman_inv: 1/KupermanAoA
picture_naming_inv: 1/picture_naming_aoa
prop_say_naive_combined: Proportion of children estimated to produce the word at 18/24 months (combined across age group because r = .95), from a survey of naive adults (N=87).
wordbank_production_24: Proportion of children reported in wordbank to produce word at 24 months (for comparison to naive data)
preschoolness: on a scale of 1-5, how much is the word associated with preschoolers (MTurk)
helpfulness: on a scale of 1-5, how helpful would it be for a preschooler to know this word (MTurk)
frequency: log frequency based on adult speech in CHILDES
concreteness: concreteness norms from Brysbaert et al. - adults asked to rate on a scale of 1-5

1 Analyses including picture-naming data (fewer words) - raw AoAs

1.1 Estimate only effects of measure: in general, how much do they differ?

#relevel measure so that picture-naming (closest thing we have to ground truth) is reference group
complete_predictors_aoas$measure <- relevel(complete_predictors_aoas$measure, ref = "picture_naming_aoa")

measure_aoa <- lmer(value ~ measure + (1|word), data=complete_predictors_aoas)
summary(measure_aoa)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: value ~ measure + (1 | word)
##    Data: complete_predictors_aoas
## 
## REML criterion at convergence: 1021
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.3649 -0.5894 -0.0307  0.2997  5.4675 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  word     (Intercept) 0.2809   0.5300  
##  Residual             0.8904   0.9436  
## Number of obs: 345, groups:  word, 115
## 
## Fixed effects:
##                           Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)                 3.1887     0.1009 306.7233   31.60  < 2e-16 ***
## measureKupermanAoA          0.9818     0.1244 228.0000    7.89 1.25e-13 ***
## measurewordbank_aoa_years  -1.3184     0.1244 228.0000  -10.60  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) msrKAA
## mesrKprmnAA -0.617       
## msrwrdbnk__ -0.617  0.500

1.1.1 Plot what this main effect looks like

ggplot(complete_predictors_aoas, aes(x = measure, y = value, color = measure, fill = measure))+
  geom_jitter(height=0.1, width=0.1)+
  geom_violin(alpha=.2)+
  theme_classic()+
  labs(y="age of acquisition")

1.2 Estimate how word characteristics (frequency, preschoolness, helpfulness, concreteness) interact with measure

omnibus_aoa <- lmer(value ~ frequency*measure + preschoolness*measure + helpfulness*measure + concreteness*measure +
             (1|word), data=complete_predictors_aoas)
summary(omnibus_aoa)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: value ~ frequency * measure + preschoolness * measure + helpfulness *  
##     measure + concreteness * measure + (1 | word)
##    Data: complete_predictors_aoas
## 
## REML criterion at convergence: 899.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.9267 -0.3891 -0.0499  0.3066  4.1847 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  word     (Intercept) 0.09515  0.3085  
##  Residual             0.67802  0.8234  
## Number of obs: 345, groups:  word, 115
## 
## Fixed effects:
##                                          Estimate Std. Error        df t value
## (Intercept)                              20.66385    3.96179 320.29807   5.216
## frequency                                -0.86982    0.07958 320.29840 -10.930
## measureKupermanAoA                      -13.37824    5.24675 220.00032  -2.550
## measurewordbank_aoa_years               -15.63595    5.24675 220.00034  -2.980
## preschoolness                             0.37796    0.12219 320.29840   3.093
## helpfulness                               0.62591    0.13874 320.29840   4.511
## concreteness                             -2.89647    0.80939 320.29807  -3.579
## frequency:measureKupermanAoA              0.53990    0.10540 220.00000   5.123
## frequency:measurewordbank_aoa_years       0.70619    0.10540 220.00000   6.700
## measureKupermanAoA:preschoolness         -0.76850    0.16182 220.00000  -4.749
## measurewordbank_aoa_years:preschoolness  -0.43716    0.16182 220.00000  -2.702
## measureKupermanAoA:helpfulness           -0.73424    0.18374 220.00000  -3.996
## measurewordbank_aoa_years:helpfulness    -0.62298    0.18374 220.00000  -3.391
## measureKupermanAoA:concreteness           2.99750    1.07191 220.00032   2.796
## measurewordbank_aoa_years:concreteness    2.51609    1.07191 220.00034   2.347
##                                         Pr(>|t|)    
## (Intercept)                             3.29e-07 ***
## frequency                                < 2e-16 ***
## measureKupermanAoA                      0.011458 *  
## measurewordbank_aoa_years               0.003205 ** 
## preschoolness                           0.002154 ** 
## helpfulness                             9.05e-06 ***
## concreteness                            0.000399 ***
## frequency:measureKupermanAoA            6.58e-07 ***
## frequency:measurewordbank_aoa_years     1.72e-10 ***
## measureKupermanAoA:preschoolness        3.68e-06 ***
## measurewordbank_aoa_years:preschoolness 0.007440 ** 
## measureKupermanAoA:helpfulness          8.79e-05 ***
## measurewordbank_aoa_years:helpfulness   0.000827 ***
## measureKupermanAoA:concreteness         0.005625 ** 
## measurewordbank_aoa_years:concreteness  0.019798 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

1.3 Pairwise comparisons of slopes for different measures

measure_frequency_aoa <- emtrends(omnibus_aoa, "measure", var = "frequency")
print(measure_frequency_aoa)
##  measure            frequency.trend     SE  df lower.CL upper.CL
##  picture_naming_aoa          -0.870 0.0796 320   -1.026 -0.71324
##  KupermanAoA                 -0.330 0.0796 320   -0.486 -0.17334
##  wordbank_aoa_years          -0.164 0.0796 320   -0.320 -0.00705
## 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95
pairs(measure_frequency_aoa)
##  contrast                                estimate    SE  df t.ratio p.value
##  picture_naming_aoa - KupermanAoA          -0.540 0.105 220 -5.123  <.0001 
##  picture_naming_aoa - wordbank_aoa_years   -0.706 0.105 220 -6.700  <.0001 
##  KupermanAoA - wordbank_aoa_years          -0.166 0.105 220 -1.578  0.2574 
## 
## Degrees-of-freedom method: kenward-roger 
## P value adjustment: tukey method for comparing a family of 3 estimates
measure_preschoolness_aoa <- emtrends(omnibus_aoa, "measure", var = "preschoolness")
print(measure_preschoolness_aoa)
##  measure            preschoolness.trend    SE  df lower.CL upper.CL
##  picture_naming_aoa              0.3780 0.122 320    0.138    0.618
##  KupermanAoA                    -0.3905 0.122 320   -0.631   -0.150
##  wordbank_aoa_years             -0.0592 0.122 320   -0.300    0.181
## 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95
pairs(measure_preschoolness_aoa)
##  contrast                                estimate    SE  df t.ratio p.value
##  picture_naming_aoa - KupermanAoA           0.769 0.162 220  4.749  <.0001 
##  picture_naming_aoa - wordbank_aoa_years    0.437 0.162 220  2.702  0.0203 
##  KupermanAoA - wordbank_aoa_years          -0.331 0.162 220 -2.048  0.1034 
## 
## Degrees-of-freedom method: kenward-roger 
## P value adjustment: tukey method for comparing a family of 3 estimates
measure_helpfulness_aoa <- emtrends(omnibus_aoa, "measure", var = "helpfulness")
print(measure_helpfulness_aoa)
##  measure            helpfulness.trend    SE  df lower.CL upper.CL
##  picture_naming_aoa           0.62591 0.139 320    0.353    0.899
##  KupermanAoA                 -0.10833 0.139 320   -0.381    0.165
##  wordbank_aoa_years           0.00293 0.139 320   -0.270    0.276
## 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95
pairs(measure_helpfulness_aoa)
##  contrast                                estimate    SE  df t.ratio p.value
##  picture_naming_aoa - KupermanAoA           0.734 0.184 220  3.996  0.0003 
##  picture_naming_aoa - wordbank_aoa_years    0.623 0.184 220  3.391  0.0024 
##  KupermanAoA - wordbank_aoa_years          -0.111 0.184 220 -0.606  0.8173 
## 
## Degrees-of-freedom method: kenward-roger 
## P value adjustment: tukey method for comparing a family of 3 estimates
measure_concreteness_aoa <- emtrends(omnibus_aoa, "measure", var = "concreteness")
print(measure_concreteness_aoa)
##  measure            concreteness.trend    SE  df lower.CL upper.CL
##  picture_naming_aoa             -2.896 0.809 320    -4.49    -1.30
##  KupermanAoA                     0.101 0.809 320    -1.49     1.69
##  wordbank_aoa_years             -0.380 0.809 320    -1.97     1.21
## 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95
pairs(measure_concreteness_aoa)
##  contrast                                estimate   SE  df t.ratio p.value
##  picture_naming_aoa - KupermanAoA          -2.998 1.07 220 -2.796  0.0155 
##  picture_naming_aoa - wordbank_aoa_years   -2.516 1.07 220 -2.347  0.0516 
##  KupermanAoA - wordbank_aoa_years           0.481 1.07 220  0.449  0.8948 
## 
## Degrees-of-freedom method: kenward-roger 
## P value adjustment: tukey method for comparing a family of 3 estimates

1.4 Reliability of frequency interaction

Reference group: Kuperman AoA (shallowest slope)

1.4.1 Model

frequency_aoa <- lmer(value ~ frequency + preschoolness*measure + helpfulness*measure + concreteness*measure +
             (1|word), data=complete_predictors_aoas)
summary(frequency_aoa)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: value ~ frequency + preschoolness * measure + helpfulness * measure +  
##     concreteness * measure + (1 | word)
##    Data: complete_predictors_aoas
## 
## REML criterion at convergence: 938.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.0212 -0.5415 -0.0549  0.3496  5.4110 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  word     (Intercept) 0.04721  0.2173  
##  Residual             0.82182  0.9065  
## Number of obs: 345, groups:  word, 115
## 
## Fixed effects:
##                                          Estimate Std. Error        df t value
## (Intercept)                              18.33211    4.18336 329.47397   4.382
## frequency                                -0.45445    0.05129 110.00000  -8.860
## preschoolness                             0.16553    0.12493 325.59399   1.325
## measureKupermanAoA                      -10.34739    5.73957 221.99984  -1.803
## measurewordbank_aoa_years               -11.67156    5.73957 221.99975  -2.034
## helpfulness                               0.52017    0.14610 329.21868   3.560
## concreteness                             -2.85587    0.85808 329.82206  -3.328
## preschoolness:measureKupermanAoA         -0.49238    0.16798 222.00000  -2.931
## preschoolness:measurewordbank_aoa_years  -0.07600    0.16798 222.00000  -0.452
## measureKupermanAoA:helpfulness           -0.59680    0.20012 222.00000  -2.982
## measurewordbank_aoa_years:helpfulness    -0.44321    0.20012 222.00000  -2.215
## measureKupermanAoA:concreteness           2.94472    1.18006 221.99984   2.495
## measurewordbank_aoa_years:concreteness    2.44705    1.18006 221.99975   2.074
##                                         Pr(>|t|)    
## (Intercept)                             1.58e-05 ***
## frequency                               1.58e-14 ***
## preschoolness                           0.186107    
## measureKupermanAoA                      0.072773 .  
## measurewordbank_aoa_years               0.043189 *  
## helpfulness                             0.000425 ***
## concreteness                            0.000973 ***
## preschoolness:measureKupermanAoA        0.003730 ** 
## preschoolness:measurewordbank_aoa_years 0.651405    
## measureKupermanAoA:helpfulness          0.003181 ** 
## measurewordbank_aoa_years:helpfulness   0.027794 *  
## measureKupermanAoA:concreteness         0.013310 *  
## measurewordbank_aoa_years:concreteness  0.039264 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(omnibus_aoa, frequency_aoa)
## Data: complete_predictors_aoas
## Models:
## frequency_aoa: value ~ frequency + preschoolness * measure + helpfulness * measure + 
## frequency_aoa:     concreteness * measure + (1 | word)
## omnibus_aoa: value ~ frequency * measure + preschoolness * measure + helpfulness * 
## omnibus_aoa:     measure + concreteness * measure + (1 | word)
##               npar    AIC     BIC  logLik deviance  Chisq Df Pr(>Chisq)    
## frequency_aoa   15 946.40 1004.05 -458.20   916.40                         
## omnibus_aoa     17 904.08  969.42 -435.04   870.08 46.322  2  8.738e-11 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

1.4.2 Plot

freq_aoa_plot <- ggplot(complete_predictors_aoas, aes(x = frequency, y = value, color = as.factor(measure)))+
  geom_point()+
  geom_smooth(method="lm")+
  scale_color_brewer(palette = "Set1")+
  theme_classic()

freq_aoa_plot

1.5 Reliability of concreteness interaction

Reference group: Kuperman AoA

1.5.1 Model

concreteness_aoa <- lmer(value ~ frequency*measure + preschoolness*measure + helpfulness*measure + concreteness +
             (1|word), data=complete_predictors_aoas)
summary(concreteness_aoa)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: value ~ frequency * measure + preschoolness * measure + helpfulness *  
##     measure + concreteness + (1 | word)
##    Data: complete_predictors_aoas
## 
## REML criterion at convergence: 912
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.0507 -0.3775 -0.0309  0.2952  5.0032 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  word     (Intercept) 0.0880   0.2966  
##  Residual             0.6995   0.8363  
## Number of obs: 345, groups:  word, 115
## 
## Fixed effects:
##                                          Estimate Std. Error        df t value
## (Intercept)                              11.79380    2.60437 118.96079   4.528
## frequency                                -0.86808    0.08031 323.44888 -10.809
## measureKupermanAoA                        1.08856    0.88841 222.00001   1.225
## measurewordbank_aoa_years                -3.49259    0.88841 222.00001  -3.931
## preschoolness                             0.36351    0.12321 323.31050   2.950
## helpfulness                               0.59351    0.13958 322.88617   4.252
## concreteness                             -1.05861    0.52165 109.99990  -2.029
## frequency:measureKupermanAoA              0.53707    0.10704 222.00000   5.017
## frequency:measurewordbank_aoa_years       0.70382    0.10704 222.00000   6.575
## measureKupermanAoA:preschoolness         -0.74494    0.16414 222.00000  -4.539
## measurewordbank_aoa_years:preschoolness  -0.41739    0.16414 222.00000  -2.543
## measureKupermanAoA:helpfulness           -0.68141    0.18563 222.00001  -3.671
## measurewordbank_aoa_years:helpfulness    -0.57864    0.18563 222.00001  -3.117
##                                         Pr(>|t|)    
## (Intercept)                             1.42e-05 ***
## frequency                                < 2e-16 ***
## measureKupermanAoA                      0.221764    
## measurewordbank_aoa_years               0.000113 ***
## preschoolness                           0.003407 ** 
## helpfulness                             2.77e-05 ***
## concreteness                            0.044837 *  
## frequency:measureKupermanAoA            1.07e-06 ***
## frequency:measurewordbank_aoa_years     3.43e-10 ***
## measureKupermanAoA:preschoolness        9.28e-06 ***
## measurewordbank_aoa_years:preschoolness 0.011673 *  
## measureKupermanAoA:helpfulness          0.000303 ***
## measurewordbank_aoa_years:helpfulness   0.002068 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(omnibus_aoa, concreteness_aoa)
## Data: complete_predictors_aoas
## Models:
## concreteness_aoa: value ~ frequency * measure + preschoolness * measure + helpfulness * 
## concreteness_aoa:     measure + concreteness + (1 | word)
## omnibus_aoa: value ~ frequency * measure + preschoolness * measure + helpfulness * 
## omnibus_aoa:     measure + concreteness * measure + (1 | word)
##                  npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)   
## concreteness_aoa   15 909.32 966.97 -439.66   879.32                        
## omnibus_aoa        17 904.08 969.42 -435.04   870.08 9.2428  2   0.009839 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

1.5.2 Plot

concreteness_aoa_plot <- ggplot(complete_predictors_aoas, aes(x = concreteness, y = value, color = as.factor(measure)))+
  geom_point()+
  geom_smooth(method="lm")+
  scale_color_brewer(palette = "Set1")+
  theme_classic()

concreteness_aoa_plot

1.6 Reliability of preschoolness interaction

Reference group: picture_naming_inv (shallowest slope)

1.6.1 Model

complete_predictors_aoas_presch <- complete_predictors_aoas
complete_predictors_aoas_presch$measure <- relevel(as.factor(complete_predictors_aoas_presch$measure), ref = "picture_naming_aoa")

omnibus_presch_aoa <- lmer(value ~ frequency*measure + preschoolness*measure + helpfulness*measure + concreteness*measure +
             (1|word), data=complete_predictors_aoas_presch)
preschoolness_aoa <- lmer(value ~ frequency*measure + preschoolness + helpfulness*measure + concreteness*measure +
             (1|word), data=complete_predictors_aoas_presch)

summary(omnibus_presch_aoa)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: value ~ frequency * measure + preschoolness * measure + helpfulness *  
##     measure + concreteness * measure + (1 | word)
##    Data: complete_predictors_aoas_presch
## 
## REML criterion at convergence: 899.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.9267 -0.3891 -0.0499  0.3066  4.1847 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  word     (Intercept) 0.09515  0.3085  
##  Residual             0.67802  0.8234  
## Number of obs: 345, groups:  word, 115
## 
## Fixed effects:
##                                          Estimate Std. Error        df t value
## (Intercept)                              20.66385    3.96179 320.29807   5.216
## frequency                                -0.86982    0.07958 320.29840 -10.930
## measureKupermanAoA                      -13.37824    5.24675 220.00032  -2.550
## measurewordbank_aoa_years               -15.63595    5.24675 220.00034  -2.980
## preschoolness                             0.37796    0.12219 320.29840   3.093
## helpfulness                               0.62591    0.13874 320.29840   4.511
## concreteness                             -2.89647    0.80939 320.29807  -3.579
## frequency:measureKupermanAoA              0.53990    0.10540 220.00000   5.123
## frequency:measurewordbank_aoa_years       0.70619    0.10540 220.00000   6.700
## measureKupermanAoA:preschoolness         -0.76850    0.16182 220.00000  -4.749
## measurewordbank_aoa_years:preschoolness  -0.43716    0.16182 220.00000  -2.702
## measureKupermanAoA:helpfulness           -0.73424    0.18374 220.00000  -3.996
## measurewordbank_aoa_years:helpfulness    -0.62298    0.18374 220.00000  -3.391
## measureKupermanAoA:concreteness           2.99750    1.07191 220.00032   2.796
## measurewordbank_aoa_years:concreteness    2.51609    1.07191 220.00034   2.347
##                                         Pr(>|t|)    
## (Intercept)                             3.29e-07 ***
## frequency                                < 2e-16 ***
## measureKupermanAoA                      0.011458 *  
## measurewordbank_aoa_years               0.003205 ** 
## preschoolness                           0.002154 ** 
## helpfulness                             9.05e-06 ***
## concreteness                            0.000399 ***
## frequency:measureKupermanAoA            6.58e-07 ***
## frequency:measurewordbank_aoa_years     1.72e-10 ***
## measureKupermanAoA:preschoolness        3.68e-06 ***
## measurewordbank_aoa_years:preschoolness 0.007440 ** 
## measureKupermanAoA:helpfulness          8.79e-05 ***
## measurewordbank_aoa_years:helpfulness   0.000827 ***
## measureKupermanAoA:concreteness         0.005625 ** 
## measurewordbank_aoa_years:concreteness  0.019798 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(preschoolness_aoa)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: value ~ frequency * measure + preschoolness + helpfulness * measure +  
##     concreteness * measure + (1 | word)
##    Data: complete_predictors_aoas_presch
## 
## REML criterion at convergence: 917.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.7612 -0.4104 -0.0220  0.2672  4.6634 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  word     (Intercept) 0.07408  0.2722  
##  Residual             0.74123  0.8609  
## Number of obs: 345, groups:  word, 115
## 
## Fixed effects:
##                                         Estimate Std. Error        df t value
## (Intercept)                             20.32103    4.06747 326.20305   4.996
## frequency                               -0.78263    0.07893 320.04272  -9.916
## measureKupermanAoA                     -12.72267    5.48397 222.00014  -2.320
## measurewordbank_aoa_years              -15.26303    5.48397 222.00016  -2.783
## preschoolness                           -0.02393    0.07875 110.00000  -0.304
## helpfulness                              0.61535    0.14245 326.20991   4.320
## concreteness                            -2.75789    0.83047 326.11509  -3.321
## frequency:measureKupermanAoA             0.37317    0.10391 222.00000   3.591
## frequency:measurewordbank_aoa_years      0.61135    0.10391 222.00000   5.884
## measureKupermanAoA:helpfulness          -0.71406    0.19206 222.00000  -3.718
## measurewordbank_aoa_years:helpfulness   -0.61150    0.19206 222.00000  -3.184
## measureKupermanAoA:concreteness          2.73249    1.11924 222.00013   2.441
## measurewordbank_aoa_years:concreteness   2.36534    1.11924 222.00016   2.113
##                                        Pr(>|t|)    
## (Intercept)                            9.56e-07 ***
## frequency                               < 2e-16 ***
## measureKupermanAoA                     0.021251 *  
## measurewordbank_aoa_years              0.005846 ** 
## preschoolness                          0.761790    
## helpfulness                            2.07e-05 ***
## concreteness                           0.000999 ***
## frequency:measureKupermanAoA           0.000405 ***
## frequency:measurewordbank_aoa_years    1.47e-08 ***
## measureKupermanAoA:helpfulness         0.000254 ***
## measurewordbank_aoa_years:helpfulness  0.001662 ** 
## measureKupermanAoA:concreteness        0.015414 *  
## measurewordbank_aoa_years:concreteness 0.035688 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(omnibus_presch_aoa, preschoolness_aoa)
## Data: complete_predictors_aoas_presch
## Models:
## preschoolness_aoa: value ~ frequency * measure + preschoolness + helpfulness * measure + 
## preschoolness_aoa:     concreteness * measure + (1 | word)
## omnibus_presch_aoa: value ~ frequency * measure + preschoolness * measure + helpfulness * 
## omnibus_presch_aoa:     measure + concreteness * measure + (1 | word)
##                    npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)    
## preschoolness_aoa    15 922.66 980.31 -446.33   892.66                         
## omnibus_presch_aoa   17 904.08 969.42 -435.04   870.08 22.582  2  1.248e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

1.6.2 Plot

presch_aoa_plot <- ggplot(complete_predictors_aoas, aes(x = preschoolness, y = value, color = as.factor(measure)))+
  geom_point()+
  geom_smooth(method="lm")+
  scale_color_brewer(palette = "Set1")+
  theme_classic()

presch_aoa_plot

1.7 Reliability of helpfulness interaction

Reference group: Kuperman AoA (shallowest slope)

1.7.1 Model

helpfulness_aoa <- lmer(value ~ frequency*measure + preschoolness*measure + helpfulness + concreteness*measure +
             (1|word), data=complete_predictors_aoas)
summary(helpfulness_aoa)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: value ~ frequency * measure + preschoolness * measure + helpfulness +  
##     concreteness * measure + (1 | word)
##    Data: complete_predictors_aoas
## 
## REML criterion at convergence: 914
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.8646 -0.4526 -0.0480  0.2658  4.6840 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  word     (Intercept) 0.0783   0.2798  
##  Residual             0.7286   0.8536  
## Number of obs: 345, groups:  word, 115
## 
## Fixed effects:
##                                          Estimate Std. Error        df t value
## (Intercept)                              20.56718    4.04716 325.46175   5.082
## frequency                                -0.83192    0.08078 324.43522 -10.299
## measureKupermanAoA                      -13.22135    5.43870 222.00056  -2.431
## measurewordbank_aoa_years               -15.50284    5.43870 222.00052  -2.850
## preschoolness                             0.36874    0.12480 325.44006   2.955
## helpfulness                               0.17350    0.08942 110.00000   1.940
## concreteness                             -2.62511    0.82421 324.96602  -3.185
## frequency:measureKupermanAoA              0.47840    0.10808 221.99997   4.426
## frequency:measurewordbank_aoa_years       0.65401    0.10808 221.99997   6.051
## measureKupermanAoA:preschoolness         -0.75355    0.16770 221.99997  -4.493
## measurewordbank_aoa_years:preschoolness  -0.42448    0.16770 221.99997  -2.531
## measureKupermanAoA:concreteness           2.55709    1.10527 222.00055   2.314
## measurewordbank_aoa_years:concreteness    2.14241    1.10527 222.00052   1.938
##                                         Pr(>|t|)    
## (Intercept)                             6.31e-07 ***
## frequency                                < 2e-16 ***
## measureKupermanAoA                       0.01585 *  
## measurewordbank_aoa_years                0.00478 ** 
## preschoolness                            0.00336 ** 
## helpfulness                              0.05490 .  
## concreteness                             0.00159 ** 
## frequency:measureKupermanAoA            1.50e-05 ***
## frequency:measurewordbank_aoa_years     6.06e-09 ***
## measureKupermanAoA:preschoolness        1.13e-05 ***
## measurewordbank_aoa_years:preschoolness  0.01206 *  
## measureKupermanAoA:concreteness          0.02161 *  
## measurewordbank_aoa_years:concreteness   0.05385 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(omnibus_aoa, helpfulness_aoa)
## Data: complete_predictors_aoas
## Models:
## helpfulness_aoa: value ~ frequency * measure + preschoolness * measure + helpfulness + 
## helpfulness_aoa:     concreteness * measure + (1 | word)
## omnibus_aoa: value ~ frequency * measure + preschoolness * measure + helpfulness * 
## omnibus_aoa:     measure + concreteness * measure + (1 | word)
##                 npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)    
## helpfulness_aoa   15 918.70 976.36 -444.35   888.70                         
## omnibus_aoa       17 904.08 969.42 -435.04   870.08 18.623  2  9.038e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

1.7.2 Plot

help_aoa_plot <- ggplot(complete_predictors_aoas, aes(x = helpfulness, y = value, color = as.factor(measure)))+
  geom_point()+
  geom_smooth(method="lm")+
  scale_color_brewer(palette = "Set1")+
  theme_classic()

help_aoa_plot

1.8 Check effect of concreteness for larger dataset (no picture-naming)

omnibus_for_conc <- lmer(value ~ frequency*measure + preschoolness*measure + helpfulness*measure + concreteness*measure +
             (1|word), data = kuperman_wb_aoas)
summary(omnibus_for_conc)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: value ~ frequency * measure + preschoolness * measure + helpfulness *  
##     measure + concreteness * measure + (1 | word)
##    Data: kuperman_wb_aoas
## 
## REML criterion at convergence: 1296.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.7644 -0.3683  0.0138  0.3592  5.7629 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  word     (Intercept) 0.05037  0.2244  
##  Residual             0.24102  0.4909  
## Number of obs: 790, groups:  word, 395
## 
## Fixed effects:
##                                           Estimate Std. Error         df
## (Intercept)                               8.818961   0.388443 757.368189
## frequency                                -0.254119   0.021569 757.368193
## measurewordbank_aoa_years                -5.117637   0.499610 389.999976
## preschoolness                            -0.363172   0.032514 757.368191
## helpfulness                              -0.009086   0.043462 757.368189
## concreteness                             -0.393819   0.050734 757.368192
## frequency:measurewordbank_aoa_years       0.151079   0.027742 389.999976
## measurewordbank_aoa_years:preschoolness   0.296224   0.041819 389.999982
## measurewordbank_aoa_years:helpfulness     0.046555   0.055901 389.999982
## measurewordbank_aoa_years:concreteness    0.187745   0.065254 389.999977
##                                         t value Pr(>|t|)    
## (Intercept)                              22.703  < 2e-16 ***
## frequency                               -11.782  < 2e-16 ***
## measurewordbank_aoa_years               -10.243  < 2e-16 ***
## preschoolness                           -11.170  < 2e-16 ***
## helpfulness                              -0.209  0.83446    
## concreteness                             -7.762 2.70e-14 ***
## frequency:measurewordbank_aoa_years       5.446 9.14e-08 ***
## measurewordbank_aoa_years:preschoolness   7.083 6.61e-12 ***
## measurewordbank_aoa_years:helpfulness     0.833  0.40546    
## measurewordbank_aoa_years:concreteness    2.877  0.00423 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##                  (Intr) frqncy msrw__ prschl hlpfln cncrtn frq:__
## frequency        -0.613                                          
## msrwrdbnk__      -0.643  0.394                                   
## prescholnss      -0.221 -0.064  0.142                            
## helpfulness      -0.497 -0.039  0.320 -0.079                     
## concretenss      -0.874  0.429  0.562  0.102  0.241              
## frqncy:ms__       0.394 -0.643 -0.613  0.041  0.025 -0.276       
## msrwrdbnk__yrs:p  0.142  0.041 -0.221 -0.643  0.051 -0.065 -0.064
## msrwrdbnk__yrs:h  0.320  0.025 -0.497  0.051 -0.643 -0.155 -0.039
## msrwrdbnk__yrs:c  0.562 -0.276 -0.874 -0.065 -0.155 -0.643  0.429
##                  msrwrdbnk__yrs:p msrwrdbnk__yrs:h
## frequency                                         
## msrwrdbnk__                                       
## prescholnss                                       
## helpfulness                                       
## concretenss                                       
## frqncy:ms__                                       
## msrwrdbnk__yrs:p                                  
## msrwrdbnk__yrs:h -0.079                           
## msrwrdbnk__yrs:c  0.102            0.241

1.8.1 Concreteness interaction reliability

kwb_conc <- lmer(value ~ frequency*measure + preschoolness*measure + helpfulness*measure + concreteness +
             (1|word), data = kuperman_wb_aoas)
summary(kwb_conc)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: value ~ frequency * measure + preschoolness * measure + helpfulness *  
##     measure + concreteness + (1 | word)
##    Data: kuperman_wb_aoas
## 
## REML criterion at convergence: 1300.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.7639 -0.3870  0.0199  0.3594  5.8122 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  word     (Intercept) 0.04813  0.2194  
##  Residual             0.24551  0.4955  
## Number of obs: 790, groups:  word, 395
## 
## Fixed effects:
##                                           Estimate Std. Error         df
## (Intercept)                               8.191056   0.321768 518.966610
## frequency                                -0.237016   0.020804 730.840427
## measurewordbank_aoa_years                -3.861826   0.245351 391.000001
## preschoolness                            -0.357058   0.032569 759.004747
## helpfulness                               0.010292   0.043097 752.632556
## concreteness                             -0.299947   0.038852 390.000029
## frequency:measurewordbank_aoa_years       0.116873   0.025298 390.999999
## measurewordbank_aoa_years:preschoolness   0.283996   0.041988 391.000000
## measurewordbank_aoa_years:helpfulness     0.007799   0.054756 391.000002
##                                         t value Pr(>|t|)    
## (Intercept)                              25.456  < 2e-16 ***
## frequency                               -11.393  < 2e-16 ***
## measurewordbank_aoa_years               -15.740  < 2e-16 ***
## preschoolness                           -10.963  < 2e-16 ***
## helpfulness                               0.239    0.811    
## concreteness                             -7.720 9.86e-14 ***
## frequency:measurewordbank_aoa_years       4.620 5.22e-06 ***
## measurewordbank_aoa_years:preschoolness   6.764 4.92e-11 ***
## measurewordbank_aoa_years:helpfulness     0.142    0.887    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##                  (Intr) frqncy msrw__ prschl hlpfln cncrtn frq:__
## frequency        -0.575                                          
## msrwrdbnk__      -0.381  0.329                                   
## prescholnss      -0.224 -0.086  0.176                            
## helpfulness      -0.502 -0.087  0.385 -0.091                     
## concretenss      -0.808  0.340  0.000  0.078  0.186              
## frqncy:ms__       0.207 -0.608 -0.542  0.077  0.103  0.000       
## msrwrdbnk__yrs:p  0.104  0.073 -0.274 -0.645  0.068  0.000 -0.120
## msrwrdbnk__yrs:h  0.231  0.099 -0.607  0.069 -0.635  0.000 -0.163
##                  msrwrdbnk__yrs:p
## frequency                        
## msrwrdbnk__                      
## prescholnss                      
## helpfulness                      
## concretenss                      
## frqncy:ms__                      
## msrwrdbnk__yrs:p                 
## msrwrdbnk__yrs:h -0.108
anova(omnibus_for_conc, kwb_conc)
## Data: kuperman_wb_aoas
## Models:
## kwb_conc: value ~ frequency * measure + preschoolness * measure + helpfulness * 
## kwb_conc:     measure + concreteness + (1 | word)
## omnibus_for_conc: value ~ frequency * measure + preschoolness * measure + helpfulness * 
## omnibus_for_conc:     measure + concreteness * measure + (1 | word)
##                  npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)   
## kwb_conc           11 1276.0 1327.4 -627.02   1254.0                        
## omnibus_for_conc   12 1269.8 1325.8 -622.87   1245.8 8.2964  1   0.003972 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

1.8.2 Compare concreteness slopes for Kuperman and Wordbank

measure_concreteness_kwb <- emtrends(omnibus_for_conc, "measure", var = "concreteness")
print(measure_concreteness_kwb)
##  measure            concreteness.trend     SE  df lower.CL upper.CL
##  KupermanAoA                    -0.394 0.0507 757   -0.493   -0.294
##  wordbank_aoa_years             -0.206 0.0507 757   -0.306   -0.106
## 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95
pairs(measure_concreteness_kwb)
##  contrast                         estimate     SE  df t.ratio p.value
##  KupermanAoA - wordbank_aoa_years   -0.188 0.0653 390 -2.877  0.0042 
## 
## Degrees-of-freedom method: kenward-roger

1.8.3 Plot

conc_kwb_aoa_plot <- ggplot(kuperman_wb_aoas, aes(x = concreteness, y = value, color = as.factor(measure)))+
  geom_point()+
  geom_smooth(method="lm")+
  scale_color_brewer(palette = "Set1")+
  theme_classic()

conc_kwb_aoa_plot

2 Analyses including picture-naming data (fewer words) - Inverse AoAs

2.1 Estimate only effects of measure: in general, how much do they differ?

#relevel measure so that picture-naming (closest thing we have to ground truth) is reference group
complete_predictors$measure <- fct_relevel(complete_predictors$measure, c("picture_naming_inv", "wordbank_inv", "prop_say_naive_combined,","kuperman_inv"))

measure_aoa_inv <- lmer(value ~ measure + (1|word), data=complete_predictors)
summary(measure_aoa_inv)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: value ~ measure + (1 | word)
##    Data: complete_predictors
## 
## REML criterion at convergence: -497.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2841 -0.4628  0.0162  0.4941  2.3808 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  word     (Intercept) 0.007813 0.08839 
##  Residual             0.014070 0.11862 
## Number of obs: 460, groups:  word, 115
## 
## Fixed effects:
##                                 Estimate Std. Error        df t value Pr(>|t|)
## (Intercept)                      0.37846    0.01379 329.85072  27.435  < 2e-16
## measurewordbank_inv              0.16799    0.01564 342.00000  10.739  < 2e-16
## measurekuperman_inv             -0.12774    0.01564 342.00000  -8.166  6.2e-15
## measureprop_say_naive_combined   0.19416    0.01564 342.00000  12.412  < 2e-16
##                                   
## (Intercept)                    ***
## measurewordbank_inv            ***
## measurekuperman_inv            ***
## measureprop_say_naive_combined ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) msrwr_ msrkp_
## msrwrdbnk_n -0.567              
## msrkprmn_nv -0.567  0.500       
## msrprp_sy__ -0.567  0.500  0.500

2.1.1 Plot what this main effect looks like

ggplot(complete_predictors, aes(x = measure, y = value, color = measure, fill = measure))+
  geom_jitter(height=0.1, width=0.1)+
  geom_violin(alpha=.2)+
  theme_classic()

2.2 Add interaction terms

omnibus <- lmer(value ~ frequency*measure + preschoolness*measure + helpfulness*measure + concreteness*measure +
             (1|word), data=complete_predictors)
summary(omnibus)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: value ~ frequency * measure + preschoolness * measure + helpfulness *  
##     measure + concreteness * measure + (1 | word)
##    Data: complete_predictors
## 
## REML criterion at convergence: -642.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2129 -0.4553 -0.0091  0.4356  3.2627 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  word     (Intercept) 0.002692 0.05188 
##  Residual             0.009596 0.09796 
## Number of obs: 460, groups:  word, 115
## 
## Fixed effects:
##                                               Estimate Std. Error        df
## (Intercept)                                   -0.82582    0.49946 384.62912
## frequency                                      0.06945    0.01003 384.62895
## measurewordbank_inv                            0.42422    0.62420 330.00002
## measurekuperman_inv                            0.85819    0.62420 330.00003
## measureprop_say_naive_combined                 0.03084    0.62420 329.99998
## preschoolness                                 -0.02781    0.01540 384.62895
## helpfulness                                   -0.05365    0.01749 384.62895
## concreteness                                   0.19358    0.10204 384.62911
## frequency:measurewordbank_inv                 -0.02286    0.01254 330.00000
## frequency:measurekuperman_inv                 -0.05099    0.01254 330.00000
## frequency:measureprop_say_naive_combined       0.06156    0.01254 330.00000
## measurewordbank_inv:preschoolness              0.04998    0.01925 330.00000
## measurekuperman_inv:preschoolness              0.05225    0.01925 330.00000
## measureprop_say_naive_combined:preschoolness   0.08583    0.01925 330.00000
## measurewordbank_inv:helpfulness                0.05094    0.02186 330.00000
## measurekuperman_inv:helpfulness                0.05753    0.02186 330.00000
## measureprop_say_naive_combined:helpfulness     0.10780    0.02186 330.00000
## measurewordbank_inv:concreteness              -0.07652    0.12752 330.00002
## measurekuperman_inv:concreteness              -0.19000    0.12752 330.00004
## measureprop_say_naive_combined:concreteness   -0.16889    0.12752 329.99998
##                                              t value Pr(>|t|)    
## (Intercept)                                   -1.653  0.09906 .  
## frequency                                      6.923 1.87e-11 ***
## measurewordbank_inv                            0.680  0.49722    
## measurekuperman_inv                            1.375  0.17011    
## measureprop_say_naive_combined                 0.049  0.96063    
## preschoolness                                 -1.805  0.07185 .  
## helpfulness                                   -3.067  0.00231 ** 
## concreteness                                   1.897  0.05855 .  
## frequency:measurewordbank_inv                 -1.823  0.06916 .  
## frequency:measurekuperman_inv                 -4.066 5.98e-05 ***
## frequency:measureprop_say_naive_combined       4.909 1.44e-06 ***
## measurewordbank_inv:preschoolness              2.596  0.00985 ** 
## measurekuperman_inv:preschoolness              2.714  0.00700 ** 
## measureprop_say_naive_combined:preschoolness   4.458 1.13e-05 ***
## measurewordbank_inv:helpfulness                2.330  0.02040 *  
## measurekuperman_inv:helpfulness                2.632  0.00889 ** 
## measureprop_say_naive_combined:helpfulness     4.932 1.30e-06 ***
## measurewordbank_inv:concreteness              -0.600  0.54889    
## measurekuperman_inv:concreteness              -1.490  0.13719    
## measureprop_say_naive_combined:concreteness   -1.324  0.18630    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

2.3 Reliability of frequency interaction

Reference group: Kuperman AoA (shallowest slope)

2.3.1 Model

frequency <- lmer(value ~ frequency + preschoolness*measure + helpfulness*measure + concreteness*measure +
             (1|word), data=complete_predictors)
summary(frequency)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: value ~ frequency + preschoolness * measure + helpfulness * measure +  
##     concreteness * measure + (1 | word)
##    Data: complete_predictors
## 
## REML criterion at convergence: -586.1
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.13997 -0.53364  0.02236  0.51589  2.97192 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  word     (Intercept) 0.002083 0.04565 
##  Residual             0.012030 0.10968 
## Number of obs: 460, groups:  word, 115
## 
## Fixed effects:
##                                                Estimate Std. Error         df
## (Intercept)                                   -0.808571   0.533086 413.513290
## frequency                                      0.066382   0.006458 109.999998
## preschoolness                                 -0.026234   0.015912 400.929066
## measurewordbank_inv                            0.295881   0.694419 333.000114
## measurekuperman_inv                            0.571955   0.694419 333.000097
## measureprop_say_naive_combined                 0.376403   0.694419 333.000067
## helpfulness                                   -0.052868   0.018617 412.539460
## concreteness                                   0.193284   0.109351 414.900631
## preschoolness:measurewordbank_inv              0.038289   0.020324 332.999999
## preschoolness:measurekuperman_inv              0.026169   0.020324 332.999999
## preschoolness:measureprop_say_naive_combined   0.117308   0.020324 332.999999
## measurewordbank_inv:helpfulness                0.045117   0.024212 332.999999
## measurekuperman_inv:helpfulness                0.044548   0.024212 332.999999
## measureprop_say_naive_combined:helpfulness     0.123470   0.024212 332.999998
## measurewordbank_inv:concreteness              -0.074284   0.142773 333.000113
## measurekuperman_inv:concreteness              -0.185018   0.142773 333.000098
## measureprop_say_naive_combined:concreteness   -0.174905   0.142773 333.000067
##                                              t value Pr(>|t|)    
## (Intercept)                                   -1.517  0.13009    
## frequency                                     10.279  < 2e-16 ***
## preschoolness                                 -1.649  0.10000    
## measurewordbank_inv                            0.426  0.67032    
## measurekuperman_inv                            0.824  0.41073    
## measureprop_say_naive_combined                 0.542  0.58815    
## helpfulness                                   -2.840  0.00474 ** 
## concreteness                                   1.768  0.07787 .  
## preschoolness:measurewordbank_inv              1.884  0.06044 .  
## preschoolness:measurekuperman_inv              1.288  0.19878    
## preschoolness:measureprop_say_naive_combined   5.772 1.79e-08 ***
## measurewordbank_inv:helpfulness                1.863  0.06328 .  
## measurekuperman_inv:helpfulness                1.840  0.06667 .  
## measureprop_say_naive_combined:helpfulness     5.100 5.73e-07 ***
## measurewordbank_inv:concreteness              -0.520  0.60321    
## measurekuperman_inv:concreteness              -1.296  0.19591    
## measureprop_say_naive_combined:concreteness   -1.225  0.22142    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(omnibus, frequency)
## Data: complete_predictors
## Models:
## frequency: value ~ frequency + preschoolness * measure + helpfulness * measure + 
## frequency:     concreteness * measure + (1 | word)
## omnibus: value ~ frequency * measure + preschoolness * measure + helpfulness * 
## omnibus:     measure + concreteness * measure + (1 | word)
##           npar     AIC     BIC logLik deviance  Chisq Df Pr(>Chisq)    
## frequency   19 -646.73 -568.24 342.37  -684.73                         
## omnibus     22 -721.83 -630.94 382.91  -765.83 81.095  3  < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

2.3.2 Plot

freq_115_plot <- ggplot(complete_predictors, aes(x = frequency, y = value, color = as.factor(measure)))+
  geom_point()+
  geom_smooth(method="lm")+
  scale_color_brewer(palette = "Set1")+
  theme_classic()

freq_115_plot

2.3.3 Pairwise slope comparisons

measure_frequency <- emtrends(omnibus, "measure", var = "frequency")
print(measure_frequency)
##  measure                 frequency.trend   SE  df lower.CL upper.CL
##  picture_naming_inv               0.0695 0.01 385  0.04973   0.0892
##  wordbank_inv                     0.0466 0.01 385  0.02687   0.0663
##  kuperman_inv                     0.0185 0.01 385 -0.00126   0.0382
##  prop_say_naive_combined          0.1310 0.01 385  0.11129   0.1507
## 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95
pairs(measure_frequency)
##  contrast                                     estimate     SE  df t.ratio
##  picture_naming_inv - wordbank_inv              0.0229 0.0125 330  1.823 
##  picture_naming_inv - kuperman_inv              0.0510 0.0125 330  4.066 
##  picture_naming_inv - prop_say_naive_combined  -0.0616 0.0125 330 -4.909 
##  wordbank_inv - kuperman_inv                    0.0281 0.0125 330  2.243 
##  wordbank_inv - prop_say_naive_combined        -0.0844 0.0125 330 -6.733 
##  kuperman_inv - prop_say_naive_combined        -0.1125 0.0125 330 -8.976 
##  p.value
##  0.2642 
##  0.0003 
##  <.0001 
##  0.1139 
##  <.0001 
##  <.0001 
## 
## Degrees-of-freedom method: kenward-roger 
## P value adjustment: tukey method for comparing a family of 4 estimates

2.4 Reliability of concreteness interaction

Reference group: Kuperman AoA

2.4.1 Model

concreteness <- lmer(value ~ frequency*measure + preschoolness*measure + helpfulness*measure + concreteness +
             (1|word), data=complete_predictors)
summary(concreteness)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: value ~ frequency * measure + preschoolness * measure + helpfulness *  
##     measure + concreteness + (1 | word)
##    Data: complete_predictors
## 
## REML criterion at convergence: -647.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2720 -0.4722 -0.0048  0.4366  3.4687 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  word     (Intercept) 0.002693 0.05189 
##  Residual             0.009592 0.09794 
## Number of obs: 460, groups:  word, 115
## 
## Fixed effects:
##                                               Estimate Std. Error        df
## (Intercept)                                   -0.30047    0.32773 118.74891
## frequency                                      0.06935    0.01003 385.93577
## measurewordbank_inv                            0.05492    0.10404 333.00001
## measurekuperman_inv                           -0.05882    0.10404 333.00001
## measureprop_say_naive_combined                -0.78426    0.10404 333.00001
## preschoolness                                 -0.02695    0.01539 385.55459
## helpfulness                                   -0.05173    0.01743 384.39859
## concreteness                                   0.08473    0.06568 109.99989
## frequency:measurewordbank_inv                 -0.02279    0.01254 333.00001
## frequency:measurekuperman_inv                 -0.05081    0.01254 333.00001
## frequency:measureprop_say_naive_combined       0.06172    0.01254 333.00001
## measurewordbank_inv:preschoolness              0.04938    0.01922 333.00001
## measurekuperman_inv:preschoolness              0.05075    0.01922 333.00001
## measureprop_say_naive_combined:preschoolness   0.08450    0.01922 333.00001
## measurewordbank_inv:helpfulness                0.04959    0.02174 333.00001
## measurekuperman_inv:helpfulness                0.05418    0.02174 333.00001
## measureprop_say_naive_combined:helpfulness     0.10482    0.02174 333.00001
##                                              t value Pr(>|t|)    
## (Intercept)                                   -0.917  0.36109    
## frequency                                      6.914 1.97e-11 ***
## measurewordbank_inv                            0.528  0.59792    
## measurekuperman_inv                           -0.565  0.57219    
## measureprop_say_naive_combined                -7.538 4.55e-13 ***
## preschoolness                                 -1.751  0.08071 .  
## helpfulness                                   -2.967  0.00319 ** 
## concreteness                                   1.290  0.19971    
## frequency:measurewordbank_inv                 -1.818  0.06995 .  
## frequency:measurekuperman_inv                 -4.053 6.29e-05 ***
## frequency:measureprop_say_naive_combined       4.924 1.34e-06 ***
## measurewordbank_inv:preschoolness              2.569  0.01063 *  
## measurekuperman_inv:preschoolness              2.640  0.00867 ** 
## measureprop_say_naive_combined:preschoolness   4.396 1.48e-05 ***
## measurewordbank_inv:helpfulness                2.281  0.02317 *  
## measurekuperman_inv:helpfulness                2.492  0.01318 *  
## measureprop_say_naive_combined:helpfulness     4.822 2.16e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(omnibus, concreteness)
## Data: complete_predictors
## Models:
## concreteness: value ~ frequency * measure + preschoolness * measure + helpfulness * 
## concreteness:     measure + concreteness + (1 | word)
## omnibus: value ~ frequency * measure + preschoolness * measure + helpfulness * 
## omnibus:     measure + concreteness * measure + (1 | word)
##              npar     AIC     BIC logLik deviance  Chisq Df Pr(>Chisq)
## concreteness   19 -724.87 -646.38 381.44  -762.87                     
## omnibus        22 -721.83 -630.94 382.91  -765.83 2.9553  3     0.3986

2.4.2 Plot

conc_115_plot <- ggplot(complete_predictors, aes(x = concreteness, y = value, color = as.factor(measure)))+
  geom_point()+
  geom_smooth(method="lm")+
  scale_color_brewer(palette = "Set1")+
  theme_classic()

conc_115_plot

2.4.3 Pairwise slope comparisons

measure_concreteness <- emtrends(omnibus, "measure", var = "concreteness")
print(measure_concreteness)
##  measure                 concreteness.trend    SE  df lower.CL upper.CL
##  picture_naming_inv                 0.19358 0.102 385 -0.00704    0.394
##  wordbank_inv                       0.11707 0.102 385 -0.08356    0.318
##  kuperman_inv                       0.00358 0.102 385 -0.19704    0.204
##  prop_say_naive_combined            0.02470 0.102 385 -0.17593    0.225
## 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95
pairs(measure_concreteness)
##  contrast                                     estimate    SE  df t.ratio
##  picture_naming_inv - wordbank_inv              0.0765 0.128 330  0.600 
##  picture_naming_inv - kuperman_inv              0.1900 0.128 330  1.490 
##  picture_naming_inv - prop_say_naive_combined   0.1689 0.128 330  1.324 
##  wordbank_inv - kuperman_inv                    0.1135 0.128 330  0.890 
##  wordbank_inv - prop_say_naive_combined         0.0924 0.128 330  0.724 
##  kuperman_inv - prop_say_naive_combined        -0.0211 0.128 330 -0.166 
##  p.value
##  0.9320 
##  0.4447 
##  0.5480 
##  0.8101 
##  0.8873 
##  0.9984 
## 
## Degrees-of-freedom method: kenward-roger 
## P value adjustment: tukey method for comparing a family of 4 estimates

2.5 Reliability of preschoolness interaction

Reference group: picture_naming_inv (shallowest slope)

2.5.1 Model

complete_predictors_presch <- complete_predictors
complete_predictors_presch$measure <- relevel(as.factor(complete_predictors_presch$measure), ref = "picture_naming_inv")

omnibus_presch <- lmer(value ~ frequency*measure + preschoolness*measure + helpfulness*measure + concreteness*measure +
             (1|word), data=complete_predictors_presch)
preschoolness <- lmer(value ~ frequency*measure + preschoolness + helpfulness*measure + concreteness*measure +
             (1|word), data=complete_predictors_presch)

summary(omnibus_presch)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: value ~ frequency * measure + preschoolness * measure + helpfulness *  
##     measure + concreteness * measure + (1 | word)
##    Data: complete_predictors_presch
## 
## REML criterion at convergence: -642.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2129 -0.4553 -0.0091  0.4356  3.2627 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  word     (Intercept) 0.002692 0.05188 
##  Residual             0.009596 0.09796 
## Number of obs: 460, groups:  word, 115
## 
## Fixed effects:
##                                               Estimate Std. Error        df
## (Intercept)                                   -0.82582    0.49946 384.62912
## frequency                                      0.06945    0.01003 384.62895
## measurewordbank_inv                            0.42422    0.62420 330.00002
## measurekuperman_inv                            0.85819    0.62420 330.00003
## measureprop_say_naive_combined                 0.03084    0.62420 329.99998
## preschoolness                                 -0.02781    0.01540 384.62895
## helpfulness                                   -0.05365    0.01749 384.62895
## concreteness                                   0.19358    0.10204 384.62911
## frequency:measurewordbank_inv                 -0.02286    0.01254 330.00000
## frequency:measurekuperman_inv                 -0.05099    0.01254 330.00000
## frequency:measureprop_say_naive_combined       0.06156    0.01254 330.00000
## measurewordbank_inv:preschoolness              0.04998    0.01925 330.00000
## measurekuperman_inv:preschoolness              0.05225    0.01925 330.00000
## measureprop_say_naive_combined:preschoolness   0.08583    0.01925 330.00000
## measurewordbank_inv:helpfulness                0.05094    0.02186 330.00000
## measurekuperman_inv:helpfulness                0.05753    0.02186 330.00000
## measureprop_say_naive_combined:helpfulness     0.10780    0.02186 330.00000
## measurewordbank_inv:concreteness              -0.07652    0.12752 330.00002
## measurekuperman_inv:concreteness              -0.19000    0.12752 330.00004
## measureprop_say_naive_combined:concreteness   -0.16889    0.12752 329.99998
##                                              t value Pr(>|t|)    
## (Intercept)                                   -1.653  0.09906 .  
## frequency                                      6.923 1.87e-11 ***
## measurewordbank_inv                            0.680  0.49722    
## measurekuperman_inv                            1.375  0.17011    
## measureprop_say_naive_combined                 0.049  0.96063    
## preschoolness                                 -1.805  0.07185 .  
## helpfulness                                   -3.067  0.00231 ** 
## concreteness                                   1.897  0.05855 .  
## frequency:measurewordbank_inv                 -1.823  0.06916 .  
## frequency:measurekuperman_inv                 -4.066 5.98e-05 ***
## frequency:measureprop_say_naive_combined       4.909 1.44e-06 ***
## measurewordbank_inv:preschoolness              2.596  0.00985 ** 
## measurekuperman_inv:preschoolness              2.714  0.00700 ** 
## measureprop_say_naive_combined:preschoolness   4.458 1.13e-05 ***
## measurewordbank_inv:helpfulness                2.330  0.02040 *  
## measurekuperman_inv:helpfulness                2.632  0.00889 ** 
## measureprop_say_naive_combined:helpfulness     4.932 1.30e-06 ***
## measurewordbank_inv:concreteness              -0.600  0.54889    
## measurekuperman_inv:concreteness              -1.490  0.13719    
## measureprop_say_naive_combined:concreteness   -1.324  0.18630    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(preschoolness)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: value ~ frequency * measure + preschoolness + helpfulness * measure +  
##     concreteness * measure + (1 | word)
##    Data: complete_predictors_presch
## 
## REML criterion at convergence: -642
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4421 -0.4126 -0.0238  0.4537  3.1603 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  word     (Intercept) 0.002568 0.05067 
##  Residual             0.010094 0.10047 
## Number of obs: 460, groups:  word, 115
## 
## Fixed effects:
##                                               Estimate Std. Error         df
## (Intercept)                                  -0.785718   0.506875 393.085074
## frequency                                     0.059255   0.009840 376.010180
## measurewordbank_inv                           0.381587   0.639943 333.000032
## measurekuperman_inv                           0.813619   0.639943 333.000034
## measureprop_say_naive_combined               -0.042378   0.639943 333.000026
## preschoolness                                 0.019207   0.009915 109.999999
## helpfulness                                  -0.052416   0.017751 393.106995
## concreteness                                  0.177373   0.103492 392.805119
## frequency:measurewordbank_inv                -0.012019   0.012125 333.000000
## frequency:measurekuperman_inv                -0.039653   0.012125 333.000000
## frequency:measureprop_say_naive_combined      0.080177   0.012125 333.000000
## measurewordbank_inv:helpfulness               0.049624   0.022412 333.000002
## measurekuperman_inv:helpfulness               0.056155   0.022412 333.000002
## measureprop_say_naive_combined:helpfulness    0.105546   0.022412 333.000001
## measurewordbank_inv:concreteness             -0.059283   0.130608 333.000033
## measurekuperman_inv:concreteness             -0.171986   0.130608 333.000035
## measureprop_say_naive_combined:concreteness  -0.139290   0.130608 333.000026
##                                             t value Pr(>|t|)    
## (Intercept)                                  -1.550  0.12192    
## frequency                                     6.022 4.11e-09 ***
## measurewordbank_inv                           0.596  0.55139    
## measurekuperman_inv                           1.271  0.20448    
## measureprop_say_naive_combined               -0.066  0.94724    
## preschoolness                                 1.937  0.05529 .  
## helpfulness                                  -2.953  0.00334 ** 
## concreteness                                  1.714  0.08734 .  
## frequency:measurewordbank_inv                -0.991  0.32229    
## frequency:measurekuperman_inv                -3.270  0.00119 ** 
## frequency:measureprop_say_naive_combined      6.613 1.50e-10 ***
## measurewordbank_inv:helpfulness               2.214  0.02749 *  
## measurekuperman_inv:helpfulness               2.506  0.01270 *  
## measureprop_say_naive_combined:helpfulness    4.709 3.65e-06 ***
## measurewordbank_inv:concreteness             -0.454  0.65019    
## measurekuperman_inv:concreteness             -1.317  0.18881    
## measureprop_say_naive_combined:concreteness  -1.066  0.28698    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(omnibus_presch, preschoolness)
## Data: complete_predictors_presch
## Models:
## preschoolness: value ~ frequency * measure + preschoolness + helpfulness * measure + 
## preschoolness:     concreteness * measure + (1 | word)
## omnibus_presch: value ~ frequency * measure + preschoolness * measure + helpfulness * 
## omnibus_presch:     measure + concreteness * measure + (1 | word)
##                npar     AIC     BIC logLik deviance  Chisq Df Pr(>Chisq)    
## preschoolness    19 -707.28 -628.79 372.64  -745.28                         
## omnibus_presch   22 -721.83 -630.94 382.91  -765.83 20.548  3  0.0001307 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

2.5.2 Plot

presch_115_plot <- ggplot(complete_predictors, aes(x = preschoolness, y = value, color = as.factor(measure)))+
  geom_point()+
  geom_smooth(method="lm")+
  scale_color_brewer(palette = "Set1")+
  theme_classic()

presch_115_plot

2.5.3 Pairwise slope comparisons

measure_preschoolness <- emtrends(omnibus, "measure", var = "preschoolness")
print(measure_preschoolness)
##  measure                 preschoolness.trend     SE  df lower.CL upper.CL
##  picture_naming_inv                  -0.0278 0.0154 385 -0.05809  0.00248
##  wordbank_inv                         0.0222 0.0154 385 -0.00811  0.05246
##  kuperman_inv                         0.0244 0.0154 385 -0.00585  0.05473
##  prop_say_naive_combined              0.0580 0.0154 385  0.02773  0.08831
## 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95
pairs(measure_preschoolness)
##  contrast                                     estimate     SE  df t.ratio
##  picture_naming_inv - wordbank_inv            -0.04998 0.0193 330 -2.596 
##  picture_naming_inv - kuperman_inv            -0.05225 0.0193 330 -2.714 
##  picture_naming_inv - prop_say_naive_combined -0.08583 0.0193 330 -4.458 
##  wordbank_inv - kuperman_inv                  -0.00226 0.0193 330 -0.118 
##  wordbank_inv - prop_say_naive_combined       -0.03585 0.0193 330 -1.862 
##  kuperman_inv - prop_say_naive_combined       -0.03358 0.0193 330 -1.744 
##  p.value
##  0.0482 
##  0.0351 
##  0.0001 
##  0.9994 
##  0.2466 
##  0.3025 
## 
## Degrees-of-freedom method: kenward-roger 
## P value adjustment: tukey method for comparing a family of 4 estimates

2.6 Reliability of helpfulness interaction

Reference group: Kuperman AoA (shallowest slope)

2.6.1 Model

helpfulness <- lmer(value ~ frequency*measure + preschoolness*measure + helpfulness + concreteness*measure +
             (1|word), data=complete_predictors)
summary(helpfulness)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: value ~ frequency * measure + preschoolness * measure + helpfulness +  
##     concreteness * measure + (1 | word)
##    Data: complete_predictors
## 
## REML criterion at convergence: -637.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5224 -0.4155  0.0028  0.4568  2.8569 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  word     (Intercept) 0.002538 0.05037 
##  Residual             0.010213 0.10106 
## Number of obs: 460, groups:  word, 115
## 
## Fixed effects:
##                                                Estimate Std. Error         df
## (Intercept)                                  -8.143e-01  5.088e-01  3.948e+02
## frequency                                     6.493e-02  1.015e-02  3.918e+02
## measurewordbank_inv                           4.133e-01  6.439e-01  3.330e+02
## measurekuperman_inv                           8.459e-01  6.439e-01  3.330e+02
## measureprop_say_naive_combined                7.801e-03  6.439e-01  3.330e+02
## preschoolness                                -2.670e-02  1.569e-02  3.947e+02
## helpfulness                                   4.156e-04  1.126e-02  1.100e+02
## concreteness                                  1.612e-01  1.036e-01  3.933e+02
## frequency:measurewordbank_inv                -1.860e-02  1.280e-02  3.330e+02
## frequency:measurekuperman_inv                -4.617e-02  1.280e-02  3.330e+02
## frequency:measureprop_say_naive_combined      7.059e-02  1.280e-02  3.330e+02
## measurewordbank_inv:preschoolness             4.894e-02  1.986e-02  3.330e+02
## measurekuperman_inv:preschoolness             5.107e-02  1.986e-02  3.330e+02
## measureprop_say_naive_combined:preschoolness  8.363e-02  1.986e-02  3.330e+02
## measurewordbank_inv:concreteness             -4.597e-02  1.309e-01  3.330e+02
## measurekuperman_inv:concreteness             -1.555e-01  1.309e-01  3.330e+02
## measureprop_say_naive_combined:concreteness  -1.042e-01  1.309e-01  3.330e+02
##                                              t value Pr(>|t|)    
## (Intercept)                                   -1.600 0.110293    
## frequency                                      6.394 4.61e-10 ***
## measurewordbank_inv                            0.642 0.521384    
## measurekuperman_inv                            1.314 0.189875    
## measureprop_say_naive_combined                 0.012 0.990341    
## preschoolness                                 -1.702 0.089523 .  
## helpfulness                                    0.037 0.970617    
## concreteness                                   1.555 0.120663    
## frequency:measurewordbank_inv                 -1.453 0.147126    
## frequency:measurekuperman_inv                 -3.608 0.000356 ***
## frequency:measureprop_say_naive_combined       5.516 6.98e-08 ***
## measurewordbank_inv:preschoolness              2.465 0.014206 *  
## measurekuperman_inv:preschoolness              2.572 0.010536 *  
## measureprop_say_naive_combined:preschoolness   4.212 3.26e-05 ***
## measurewordbank_inv:concreteness              -0.351 0.725619    
## measurekuperman_inv:concreteness              -1.188 0.235582    
## measureprop_say_naive_combined:concreteness   -0.796 0.426333    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(omnibus, helpfulness)
## Data: complete_predictors
## Models:
## helpfulness: value ~ frequency * measure + preschoolness * measure + helpfulness + 
## helpfulness:     concreteness * measure + (1 | word)
## omnibus: value ~ frequency * measure + preschoolness * measure + helpfulness * 
## omnibus:     measure + concreteness * measure + (1 | word)
##             npar     AIC     BIC logLik deviance  Chisq Df Pr(>Chisq)    
## helpfulness   19 -703.21 -624.71 370.60  -741.21                         
## omnibus       22 -721.83 -630.94 382.91  -765.83 24.621  3  1.853e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

2.6.2 Plot

help_115_plot <- ggplot(complete_predictors, aes(x = helpfulness, y = value, color = as.factor(measure)))+
  geom_point()+
  geom_smooth(method="lm")+
  scale_color_brewer(palette = "Set1")+
  theme_classic()

help_115_plot

2.6.3 Pairwise slope comparisons

measure_helpfulness <- emtrends(omnibus, "measure", var = "helpfulness")
print(measure_helpfulness)
##  measure                 helpfulness.trend     SE  df lower.CL upper.CL
##  picture_naming_inv               -0.05365 0.0175 385  -0.0880  -0.0193
##  wordbank_inv                     -0.00271 0.0175 385  -0.0371   0.0317
##  kuperman_inv                      0.00388 0.0175 385  -0.0305   0.0383
##  prop_say_naive_combined           0.05415 0.0175 385   0.0198   0.0885
## 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95
pairs(measure_helpfulness)
##  contrast                                     estimate     SE  df t.ratio
##  picture_naming_inv - wordbank_inv            -0.05094 0.0219 330 -2.330 
##  picture_naming_inv - kuperman_inv            -0.05753 0.0219 330 -2.632 
##  picture_naming_inv - prop_say_naive_combined -0.10780 0.0219 330 -4.932 
##  wordbank_inv - kuperman_inv                  -0.00659 0.0219 330 -0.301 
##  wordbank_inv - prop_say_naive_combined       -0.05686 0.0219 330 -2.601 
##  kuperman_inv - prop_say_naive_combined       -0.05027 0.0219 330 -2.300 
##  p.value
##  0.0933 
##  0.0439 
##  <.0001 
##  0.9905 
##  0.0476 
##  0.1001 
## 
## Degrees-of-freedom method: kenward-roger 
## P value adjustment: tukey method for comparing a family of 4 estimates

3 Analyses excluding picture-naming data (more words) - Inverse AoAs

3.1 Estimate only effects of measure: in general, how much do they differ?

#relevel measure so that picture-naming (closest thing we have to ground truth) is reference group
complete_predictors_wordbank$measure <- fct_relevel(as.factor(complete_predictors_wordbank$measure),
                                                    c("wordbank_inv","prop_say_naive_combined,","kuperman_inv"))

measure_aoa_wb <- lmer(value ~ measure + (1|word), data=complete_predictors_wordbank)
summary(measure_aoa_wb)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: value ~ measure + (1 | word)
##    Data: complete_predictors_wordbank
## 
## REML criterion at convergence: -1519
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.04565 -0.40539  0.00589  0.36801  2.84046 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  word     (Intercept) 0.006403 0.08002 
##  Residual             0.011477 0.10713 
## Number of obs: 1184, groups:  word, 396
## 
## Fixed effects:
##                                  Estimate Std. Error         df t value
## (Intercept)                      0.507937   0.006720 941.282821  75.591
## measurekuperman_inv             -0.265340   0.007614 786.940092 -34.851
## measureprop_say_naive_combined   0.016907   0.007638 788.528089   2.214
##                                Pr(>|t|)    
## (Intercept)                      <2e-16 ***
## measurekuperman_inv              <2e-16 ***
## measureprop_say_naive_combined   0.0271 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) msrkp_
## msrkprmn_nv -0.567       
## msrprp_sy__ -0.565  0.498

3.1.1 Plot what this main effect looks like

ggplot(complete_predictors_wordbank, aes(x = measure, y = value, color = measure, fill = measure))+
  geom_violin(alpha=.4)+
  geom_jitter(height=0.1, width=0.1, alpha=.2)+
  theme_classic()

3.2 Add interactions with word-level characteristics

omnibus_wb <- lmer(value ~ frequency*measure + preschoolness*measure + helpfulness*measure + concreteness*measure +
             (1|word), data=complete_predictors_wordbank)
summary(omnibus_wb)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: value ~ frequency * measure + preschoolness * measure + helpfulness *  
##     measure + concreteness * measure + (1 | word)
##    Data: complete_predictors_wordbank
## 
## REML criterion at convergence: -1993.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4493 -0.4089 -0.0174  0.3830  5.0502 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  word     (Intercept) 0.003285 0.05731 
##  Residual             0.007435 0.08622 
## Number of obs: 1181, groups:  word, 395
## 
## Fixed effects:
##                                                Estimate Std. Error         df
## (Intercept)                                    0.029733   0.074503 982.906510
## frequency                                      0.028415   0.004137 982.906100
## measurekuperman_inv                           -0.032033   0.087747 777.241602
## measureprop_say_naive_combined                -0.805139   0.088269 780.482946
## preschoolness                                  0.018640   0.006236 982.905903
## helpfulness                                   -0.008855   0.008336 982.906033
## concreteness                                   0.057833   0.009731 982.906349
## frequency:measurekuperman_inv                 -0.014893   0.004872 777.241842
## frequency:measureprop_say_naive_combined       0.062472   0.004926 783.190794
## measurekuperman_inv:preschoolness              0.003056   0.007345 777.241968
## measureprop_say_naive_combined:preschoolness   0.062909   0.007374 779.431631
## measurekuperman_inv:helpfulness                0.008049   0.009818 777.241888
## measureprop_say_naive_combined:helpfulness     0.019944   0.009855 779.303170
## measurekuperman_inv:concreteness              -0.036386   0.011461 777.241700
## measureprop_say_naive_combined:concreteness    0.034017   0.011537 780.881788
##                                              t value Pr(>|t|)    
## (Intercept)                                    0.399  0.68992    
## frequency                                      6.869 1.15e-11 ***
## measurekuperman_inv                           -0.365  0.71517    
## measureprop_say_naive_combined                -9.121  < 2e-16 ***
## preschoolness                                  2.989  0.00287 ** 
## helpfulness                                   -1.062  0.28838    
## concreteness                                   5.943 3.87e-09 ***
## frequency:measurekuperman_inv                 -3.057  0.00232 ** 
## frequency:measureprop_say_naive_combined      12.682  < 2e-16 ***
## measurekuperman_inv:preschoolness              0.416  0.67742    
## measureprop_say_naive_combined:preschoolness   8.531  < 2e-16 ***
## measurekuperman_inv:helpfulness                0.820  0.41254    
## measureprop_say_naive_combined:helpfulness     2.024  0.04333 *  
## measurekuperman_inv:concreteness              -3.175  0.00156 ** 
## measureprop_say_naive_combined:concreteness    2.948  0.00329 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

3.3 Pairwise comparisons of slopes for different measures

measure_frequency_wb <- emtrends(omnibus_wb, "measure", var = "frequency")
print(measure_frequency_wb)
##  measure                 frequency.trend      SE  df lower.CL upper.CL
##  wordbank_inv                     0.0284 0.00414 982   0.0203   0.0365
##  kuperman_inv                     0.0135 0.00414 982   0.0054   0.0216
##  prop_say_naive_combined          0.0909 0.00420 998   0.0826   0.0991
## 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95
pairs(measure_frequency_wb)
##  contrast                               estimate      SE  df t.ratio p.value
##  wordbank_inv - kuperman_inv              0.0149 0.00487 776   3.057 0.0065 
##  wordbank_inv - prop_say_naive_combined  -0.0625 0.00493 782 -12.682 <.0001 
##  kuperman_inv - prop_say_naive_combined  -0.0774 0.00493 782 -15.705 <.0001 
## 
## Degrees-of-freedom method: kenward-roger 
## P value adjustment: tukey method for comparing a family of 3 estimates
measure_preschoolness_wb <- emtrends(omnibus_wb, "measure", var = "preschoolness")
print(measure_preschoolness_wb)
##  measure                 preschoolness.trend      SE  df lower.CL upper.CL
##  wordbank_inv                         0.0186 0.00624 982  0.00640   0.0309
##  kuperman_inv                         0.0217 0.00624 982  0.00946   0.0339
##  prop_say_naive_combined              0.0815 0.00627 988  0.06924   0.0939
## 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95
pairs(measure_preschoolness_wb)
##  contrast                               estimate      SE  df t.ratio p.value
##  wordbank_inv - kuperman_inv            -0.00306 0.00734 776 -0.416  0.9090 
##  wordbank_inv - prop_say_naive_combined -0.06291 0.00737 778 -8.531  <.0001 
##  kuperman_inv - prop_say_naive_combined -0.05985 0.00737 778 -8.116  <.0001 
## 
## Degrees-of-freedom method: kenward-roger 
## P value adjustment: tukey method for comparing a family of 3 estimates
measure_helpfulness_wb <- emtrends(omnibus_wb, "measure", var = "helpfulness")
print(measure_helpfulness_wb)
##  measure                 helpfulness.trend      SE  df lower.CL upper.CL
##  wordbank_inv                    -0.008855 0.00834 982 -0.02521   0.0075
##  kuperman_inv                    -0.000806 0.00834 982 -0.01716   0.0156
##  prop_say_naive_combined          0.011089 0.00838 988 -0.00535   0.0275
## 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95
pairs(measure_helpfulness_wb)
##  contrast                               estimate      SE  df t.ratio p.value
##  wordbank_inv - kuperman_inv            -0.00805 0.00982 776 -0.820  0.6908 
##  wordbank_inv - prop_say_naive_combined -0.01994 0.00985 778 -2.024  0.1072 
##  kuperman_inv - prop_say_naive_combined -0.01189 0.00985 778 -1.207  0.4494 
## 
## Degrees-of-freedom method: kenward-roger 
## P value adjustment: tukey method for comparing a family of 3 estimates
measure_concreteness_wb <- emtrends(omnibus_wb, "measure", var = "concreteness")
print(measure_concreteness_wb)
##  measure                 concreteness.trend      SE  df lower.CL upper.CL
##  wordbank_inv                        0.0578 0.00973 982  0.03874   0.0769
##  kuperman_inv                        0.0214 0.00973 982  0.00235   0.0405
##  prop_say_naive_combined             0.0919 0.00982 992  0.07258   0.1111
## 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95
pairs(measure_concreteness_wb)
##  contrast                               estimate     SE  df t.ratio p.value
##  wordbank_inv - kuperman_inv              0.0364 0.0115 776  3.175  0.0044 
##  wordbank_inv - prop_say_naive_combined  -0.0340 0.0115 780 -2.948  0.0092 
##  kuperman_inv - prop_say_naive_combined  -0.0704 0.0115 780 -6.102  <.0001 
## 
## Degrees-of-freedom method: kenward-roger 
## P value adjustment: tukey method for comparing a family of 3 estimates

3.4 Reliability of frequency interaction

Reference group: Kuperman AoA (flattest slope) ### Model

frequency_wb <- lmer(value ~ frequency + preschoolness*measure + helpfulness*measure + concreteness*measure +
             (1|word), data=complete_predictors_wordbank)
summary(frequency_wb)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: value ~ frequency + preschoolness * measure + helpfulness * measure +  
##     concreteness * measure + (1 | word)
##    Data: complete_predictors_wordbank
## 
## REML criterion at convergence: -1774.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.0429 -0.4330 -0.0134  0.4068  3.4837 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  word     (Intercept) 0.002432 0.04931 
##  Residual             0.010041 0.10020 
## Number of obs: 1181, groups:  word, 395
## 
## Fixed effects:
##                                                Estimate Std. Error         df
## (Intercept)                                  -1.383e-01  7.188e-02  9.174e+02
## frequency                                     4.364e-02  3.049e-03  3.941e+02
## preschoolness                                 1.717e-02  6.719e-03  1.084e+03
## measurekuperman_inv                          -1.963e-01  8.059e-02  7.791e+02
## measureprop_say_naive_combined               -1.321e-01  8.159e-02  7.876e+02
## helpfulness                                  -1.006e-02  8.988e-03  1.085e+03
## concreteness                                  7.318e-02  9.969e-03  1.019e+03
## preschoolness:measurekuperman_inv             1.620e-03  8.518e-03  7.791e+02
## preschoolness:measureprop_say_naive_combined  6.953e-02  8.547e-03  7.815e+02
## measurekuperman_inv:helpfulness               6.869e-03  1.140e-02  7.791e+02
## measureprop_say_naive_combined:helpfulness    2.536e-02  1.144e-02  7.815e+02
## measurekuperman_inv:concreteness             -2.137e-02  1.203e-02  7.791e+02
## measureprop_say_naive_combined:concreteness  -2.598e-02  1.218e-02  7.877e+02
##                                              t value Pr(>|t|)    
## (Intercept)                                   -1.924   0.0547 .  
## frequency                                     14.312  < 2e-16 ***
## preschoolness                                  2.555   0.0107 *  
## measurekuperman_inv                           -2.436   0.0151 *  
## measureprop_say_naive_combined                -1.619   0.1059    
## helpfulness                                   -1.119   0.2632    
## concreteness                                   7.341 4.34e-13 ***
## preschoolness:measurekuperman_inv              0.190   0.8492    
## preschoolness:measureprop_say_naive_combined   8.134 1.63e-15 ***
## measurekuperman_inv:helpfulness                0.603   0.5470    
## measureprop_say_naive_combined:helpfulness     2.217   0.0269 *  
## measurekuperman_inv:concreteness              -1.776   0.0761 .  
## measureprop_say_naive_combined:concreteness   -2.132   0.0333 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(omnibus_wb, frequency_wb)
## Data: complete_predictors_wordbank
## Models:
## frequency_wb: value ~ frequency + preschoolness * measure + helpfulness * measure + 
## frequency_wb:     concreteness * measure + (1 | word)
## omnibus_wb: value ~ frequency * measure + preschoolness * measure + helpfulness * 
## omnibus_wb:     measure + concreteness * measure + (1 | word)
##              npar     AIC     BIC  logLik deviance  Chisq Df Pr(>Chisq)    
## frequency_wb   15 -1850.3 -1774.2  940.17  -1880.3                         
## omnibus_wb     17 -2085.9 -1999.6 1059.93  -2119.9 239.52  2  < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

3.4.1 Plot

freq_plot <- ggplot(filter(complete_predictors_wordbank, measure != "picture_naming_inv"),
       aes(x = frequency, y = value, color = as.factor(measure)))+
  geom_point()+
  geom_smooth(method="lm")+
  scale_color_brewer(palette = "Set1")+
  theme_classic()

freq_plot

3.5 Reliability of concreteness interaction

Reference group: Kuperman AoA ### Model

concreteness_wb <- lmer(value ~ frequency*measure + preschoolness*measure + helpfulness*measure + concreteness +
             (1|word), data=complete_predictors_wordbank)
summary(concreteness_wb)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: value ~ frequency * measure + preschoolness * measure + helpfulness *  
##     measure + concreteness + (1 | word)
##    Data: complete_predictors_wordbank
## 
## REML criterion at convergence: -1971.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.7393 -0.4207 -0.0134  0.3819  4.5825 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  word     (Intercept) 0.003172 0.05632 
##  Residual             0.007772 0.08816 
## Number of obs: 1181, groups:  word, 395
## 
## Fixed effects:
##                                                Estimate Std. Error         df
## (Intercept)                                    0.037055   0.060233 562.460939
## frequency                                      0.028216   0.003995 922.759101
## measurekuperman_inv                           -0.275414   0.043652 779.293478
## measureprop_say_naive_combined                -0.578107   0.043965 783.346800
## preschoolness                                  0.018569   0.006286 996.337843
## helpfulness                                   -0.009081   0.008307 977.784921
## concreteness                                   0.056739   0.007149 392.334768
## frequency:measurekuperman_inv                 -0.008263   0.004501 779.293563
## frequency:measureprop_say_naive_combined       0.056597   0.004580 789.016595
## measurekuperman_inv:preschoolness              0.005426   0.007470 779.293597
## measureprop_say_naive_combined:preschoolness   0.060557   0.007498 781.349561
## measurekuperman_inv:helpfulness                0.015560   0.009742 779.293562
## measureprop_say_naive_combined:helpfulness     0.012592   0.009763 780.481294
##                                              t value Pr(>|t|)    
## (Intercept)                                    0.615  0.53868    
## frequency                                      7.063 3.21e-12 ***
## measurekuperman_inv                           -6.309 4.70e-10 ***
## measureprop_say_naive_combined               -13.149  < 2e-16 ***
## preschoolness                                  2.954  0.00321 ** 
## helpfulness                                   -1.093  0.27457    
## concreteness                                   7.937 2.20e-14 ***
## frequency:measurekuperman_inv                 -1.836  0.06675 .  
## frequency:measureprop_say_naive_combined      12.358  < 2e-16 ***
## measurekuperman_inv:preschoolness              0.726  0.46784    
## measureprop_say_naive_combined:preschoolness   8.077 2.51e-15 ***
## measurekuperman_inv:helpfulness                1.597  0.11062    
## measureprop_say_naive_combined:helpfulness     1.290  0.19749    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(omnibus_wb, concreteness_wb)
## Data: complete_predictors_wordbank
## Models:
## concreteness_wb: value ~ frequency * measure + preschoolness * measure + helpfulness * 
## concreteness_wb:     measure + concreteness + (1 | word)
## omnibus_wb: value ~ frequency * measure + preschoolness * measure + helpfulness * 
## omnibus_wb:     measure + concreteness * measure + (1 | word)
##                 npar     AIC     BIC logLik deviance  Chisq Df Pr(>Chisq)    
## concreteness_wb   15 -2053.0 -1976.9 1041.5  -2083.0                         
## omnibus_wb        17 -2085.9 -1999.6 1059.9  -2119.9 36.866  2  9.877e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

3.5.1 Plot

conc_plot <- ggplot(filter(complete_predictors_wordbank, measure != "picture_naming_inv"),
       aes(x = concreteness, y = value, color = as.factor(measure)))+
  geom_point()+
  geom_smooth(method="lm")+
  scale_color_brewer(palette = "Set1")+
  theme_classic()

conc_plot

3.6 Reliability of preschoolness interaction

Reference group: Kuperman AoA ### Model

preschoolness_wb <- lmer(value ~ frequency*measure + preschoolness + helpfulness*measure + concreteness*measure +
             (1|word), data=complete_predictors_wordbank)
summary(preschoolness_wb)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: value ~ frequency * measure + preschoolness + helpfulness * measure +  
##     concreteness * measure + (1 | word)
##    Data: complete_predictors_wordbank
## 
## REML criterion at convergence: -1922.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6550 -0.3928 -0.0049  0.3837  5.6839 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  word     (Intercept) 0.003002 0.05479 
##  Residual             0.008295 0.09107 
## Number of obs: 1181, groups:  word, 395
## 
## Fixed effects:
##                                               Estimate Std. Error         df
## (Intercept)                                 -2.781e-02  7.556e-02  1.005e+03
## frequency                                    2.749e-02  4.243e-03  1.022e+03
## measurekuperman_inv                         -2.396e-02  9.039e-02  7.793e+02
## measureprop_say_naive_combined              -6.368e-01  9.088e-02  7.825e+02
## preschoolness                                4.042e-02  4.580e-03  3.913e+02
## helpfulness                                 -1.117e-02  8.544e-03  1.021e+03
## concreteness                                 6.129e-02  9.964e-03  1.020e+03
## frequency:measurekuperman_inv               -1.476e-02  5.136e-03  7.793e+02
## frequency:measureprop_say_naive_combined     6.543e-02  5.189e-03  7.855e+02
## measurekuperman_inv:helpfulness              8.374e-03  1.034e-02  7.793e+02
## measureprop_say_naive_combined:helpfulness   2.604e-02  1.038e-02  7.817e+02
## measurekuperman_inv:concreteness            -3.687e-02  1.204e-02  7.793e+02
## measureprop_say_naive_combined:concreteness  2.357e-02  1.212e-02  7.830e+02
##                                             t value Pr(>|t|)    
## (Intercept)                                  -0.368  0.71293    
## frequency                                     6.480 1.43e-10 ***
## measurekuperman_inv                          -0.265  0.79105    
## measureprop_say_naive_combined               -7.007 5.25e-12 ***
## preschoolness                                 8.825  < 2e-16 ***
## helpfulness                                  -1.307  0.19143    
## concreteness                                  6.151 1.11e-09 ***
## frequency:measurekuperman_inv                -2.874  0.00416 ** 
## frequency:measureprop_say_naive_combined     12.608  < 2e-16 ***
## measurekuperman_inv:helpfulness               0.810  0.41814    
## measureprop_say_naive_combined:helpfulness    2.509  0.01232 *  
## measurekuperman_inv:concreteness             -3.062  0.00228 ** 
## measureprop_say_naive_combined:concreteness   1.945  0.05209 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(omnibus_wb, preschoolness_wb)
## Data: complete_predictors_wordbank
## Models:
## preschoolness_wb: value ~ frequency * measure + preschoolness + helpfulness * measure + 
## preschoolness_wb:     concreteness * measure + (1 | word)
## omnibus_wb: value ~ frequency * measure + preschoolness * measure + helpfulness * 
## omnibus_wb:     measure + concreteness * measure + (1 | word)
##                  npar     AIC     BIC logLik deviance  Chisq Df Pr(>Chisq)    
## preschoolness_wb   15 -2001.5 -1925.4 1015.8  -2031.5                         
## omnibus_wb         17 -2085.9 -1999.6 1059.9  -2119.9 88.365  2  < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

3.6.1 Plot

presch_plot <- ggplot(filter(complete_predictors_wordbank, measure != "picture_naming_inv"),
       aes(x = preschoolness, y = value, color = as.factor(measure)))+
  geom_point()+
  geom_smooth(method="lm")+
  scale_color_brewer(palette = "Set1")+
  theme_classic()

presch_plot

3.7 Reliability of helpfulness interaction

Reference group: Kuperman AoA ### Model

helpfulness_wb <- lmer(value ~ frequency*measure + preschoolness*measure + helpfulness + concreteness*measure +
             (1|word), data=complete_predictors_wordbank)
summary(helpfulness_wb)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: value ~ frequency * measure + preschoolness * measure + helpfulness +  
##     concreteness * measure + (1 | word)
##    Data: complete_predictors_wordbank
## 
## REML criterion at convergence: -2004.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5484 -0.4061 -0.0182  0.3865  4.8688 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  word     (Intercept) 0.003278 0.05725 
##  Residual             0.007455 0.08634 
## Number of obs: 1181, groups:  word, 395
## 
## Fixed effects:
##                                                Estimate Std. Error         df
## (Intercept)                                  -1.148e-02  7.017e-02  8.754e+02
## frequency                                     2.823e-02  4.138e-03  9.841e+02
## measurekuperman_inv                           3.718e-03  7.625e-02  7.792e+02
## measureprop_say_naive_combined               -7.157e-01  7.654e-02  7.813e+02
## preschoolness                                 1.809e-02  6.231e-03  9.823e+02
## helpfulness                                   4.232e-04  6.119e-03  3.912e+02
## concreteness                                  6.044e-02  9.605e-03  9.619e+02
## frequency:measurekuperman_inv                -1.474e-02  4.875e-03  7.792e+02
## frequency:measureprop_say_naive_combined      6.290e-02  4.928e-03  7.851e+02
## measurekuperman_inv:preschoolness             3.535e-03  7.332e-03  7.792e+02
## measureprop_say_naive_combined:preschoolness  6.401e-02  7.364e-03  7.817e+02
## measurekuperman_inv:concreteness             -3.865e-02  1.114e-02  7.792e+02
## measureprop_say_naive_combined:concreteness   2.823e-02  1.119e-02  7.820e+02
##                                              t value Pr(>|t|)    
## (Intercept)                                   -0.164 0.870132    
## frequency                                      6.823 1.56e-11 ***
## measurekuperman_inv                            0.049 0.961125    
## measureprop_say_naive_combined                -9.351  < 2e-16 ***
## preschoolness                                  2.903 0.003779 ** 
## helpfulness                                    0.069 0.944896    
## concreteness                                   6.293 4.74e-10 ***
## frequency:measurekuperman_inv                 -3.022 0.002589 ** 
## frequency:measureprop_say_naive_combined      12.763  < 2e-16 ***
## measurekuperman_inv:preschoolness              0.482 0.629817    
## measureprop_say_naive_combined:preschoolness   8.692  < 2e-16 ***
## measurekuperman_inv:concreteness              -3.470 0.000549 ***
## measureprop_say_naive_combined:concreteness    2.522 0.011862 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(omnibus_wb, helpfulness_wb)
## Data: complete_predictors_wordbank
## Models:
## helpfulness_wb: value ~ frequency * measure + preschoolness * measure + helpfulness + 
## helpfulness_wb:     concreteness * measure + (1 | word)
## omnibus_wb: value ~ frequency * measure + preschoolness * measure + helpfulness * 
## omnibus_wb:     measure + concreteness * measure + (1 | word)
##                npar     AIC     BIC logLik deviance  Chisq Df Pr(>Chisq)
## helpfulness_wb   15 -2085.7 -2009.6 1057.8  -2115.7                     
## omnibus_wb       17 -2085.9 -1999.6 1059.9  -2119.9 4.1849  2     0.1234

3.7.1 Plot

help_plot <- ggplot(filter(complete_predictors_wordbank, measure != "picture_naming_inv"),
       aes(x = helpfulness, y = value, color = as.factor(measure)))+
  geom_point()+
  geom_smooth(method="lm")+
  scale_color_brewer(palette = "Set1")+
  theme_classic()

help_plot