Econometria em R - Aula 5

Marcos J Ribeiro

21/09/2020

MQO

\[\begin{equation} \sum \epsilon_i^2 = \sum(Y_i - \hat{Y_i})^2 \end{equation}\]

\[\begin{equation} \hat{Y_i} = \hat{\beta_1} + \hat{\beta_2}X_i \end{equation}\]

Variância dos estimadores

\[\begin{equation} ep(\hat{\beta}_2) = \frac{\sigma}{\sqrt{\sum x_i^2}} \end{equation}\]

\[\begin{equation} var(\beta_1) = \sigma^2 \frac{\sum X_i^2}{n\sum x_i^2} \end{equation}\]

\[\begin{equation} ep(\beta_1) = \sigma \sqrt{\frac{\sum X_i^2}{n\sum x_i^2} } \end{equation}\]

Teste de Hipóteses

\[H0: \beta_2 = 0\] \[H1: \beta_2 \neq 0\]

\[\begin{equation} Pr \left[-t_{\alpha/2} \leq \frac{\hat{\beta}_2 - \beta_2}{ep(\hat{\beta}_2)} \leq t_{\alpha/2} \right] = 1 - \alpha \end{equation}\]

\[\begin{equation} t = \frac{\hat{\beta}_2 - \beta_2 }{ep(\beta_2)} \end{equation}\]

Intervalo de confiança

\[\begin{equation} \hat{\beta}_1 \pm t_{\alpha/2}ep(\hat{\beta}_1) \end{equation}\]

\[\begin{equation} \hat{\beta}_2 \pm t_{\alpha/2}ep(\hat{\beta}_2) \end{equation}\]

\(R^2\)

\[\begin{equation} SQR = \sum (Y_i - \hat{Y_i})^2 \end{equation}\]

\[\begin{equation} SQE = \sum (\hat{Y}_i - \bar{Y})^2 \end{equation}\]

\[\begin{equation} SQT = \sum (Y_i - \bar{Y})^2 = SQR + SQE \end{equation}\]

\[\begin{equation} R^2 = \frac{SQE}{SQT} = 1 - \frac{SQR}{SQT} \end{equation}\]

Critérios de informação de Akaike e Schwartz

\[\begin{equation} AIC = \frac{2k}{n} + \ln \left( \frac{SQR}{n} \right) \end{equation}\]

\[\begin{equation} BIC = \frac{k}{n} \ln (n) + \ln \left( \frac{SQR}{n} \right) \end{equation}\]