Initial Claims (ICNSA)
usa_claims <-
"ICNSA" %>%
tq_get(get = "economic.data",
from = "2019-01-01") %>%
rename(claims = price)
usa_claims %>%
ggplot(aes(x = date, y = claims)) +
geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('12-11-2020'), ymin = -Inf, ymax = Inf),
fill = "white", alpha = 0.02)+
geom_line(color = "blue",size=1) +
labs(
x = "Weekly",
y = "Number of claims",
title = "New Initial Unemployment (Insured) Claims _ National",
caption = "Data source: FRED Philadelphia Federal Reserve\nIllustration by @JoeLongSanDiego",
subtitle = str_glue("From {min(usa_claims$date)} through {max(usa_claims$date)}")
) +
theme_economist() +
scale_y_continuous(labels = scales::comma)

Continued Claims (Insured Unemployment) (CCNSA)
indicator <-
"CCNSA" %>%
tq_get(get = "economic.data",
from = "2019-01-01") %>%
rename(claims = price)
indicator %>%
ggplot(aes(x = date, y = claims)) +
geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('10-11-2020'), ymin = -Inf, ymax = Inf),
fill = "white", alpha = 0.02)+
geom_line(color = "blue",size=1) +
labs(
x = "Weekly",
y = "Number of Persons",
title = "Continued Unemployment Claims\n(Insured only)",
caption = "Data source: FRED Philadelphia Federal Reserve\nIllustration by @JoeLongSanDiego",
subtitle = str_glue("From {min(usa_claims$date)} through {max(usa_claims$date)}\nNot counting exhausted claims")
) +
theme_economist() +
scale_y_continuous(labels = scales::comma)

National Unemployment Rate (UNRATE)
usa_claims <-
"UNRATE" %>%
tq_get(get = "economic.data",
from = "2019-01-01") %>%
rename(claims = price)
usa_claims %>%
ggplot(aes(x = date, y = claims)) +
geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('11-10-2020'), ymin = -Inf, ymax = Inf),
fill = "white", alpha = 0.02)+
geom_line(color = "blue",size=1) +
labs(
x = "Monthly",
y = "Percent",
title = "New Unemployment Claims _ National ",
caption = "Data source: FRED Philadelphia Federal Reserve\nIllustration by @JoeLongSanDiego",
subtitle = str_glue("From {min(usa_claims$date)} through {max(usa_claims$date)}")
) +
theme_economist() +
scale_y_continuous(labels = scales::comma)

Labor Force Participation Rate (LNU01300000)
indicator <-
"LNU01300000" %>%
tq_get(get = "economic.data",
from = "2019-01-01")
indicator %>%
ggplot(aes(x = date, y = price)) +
geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-11-2020'), ymin = -Inf, ymax = Inf),
fill = "grey", alpha = 0.02)+
geom_line(color = "blue",size=1) +
labs(
x = "Monthly",
y = "Percent",
title = "Labor Force Participation Rate (LNU01300000)",
caption = "Data source: FRED Philadelphia Federal Reserve\nIllustration by @JoeLongSanDiego",
subtitle = str_glue("From {min(usa_claims$date)} through {max(usa_claims$date)}")
) +
theme_economist() +
scale_y_continuous(labels = scales::comma)

Labor Force Participation Rate (LNU01300000)
indicator <-
"LNU01300000" %>%
tq_get(get = "economic.data",
from = "1980-01-01")
indicator %>%
ggplot(aes(x = date, y = price)) +
geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-11-2020'), ymin = -Inf, ymax = Inf),
fill = "grey", alpha = 0.02)+
geom_line(color = "blue",size=1) +
labs(
x = "Monthly",
y = "Percent",
title = "Labor Force Participation Rate (LNU01300000)",
caption = "Data source: FRED Philadelphia Federal Reserve\nIllustration by @JoeLongSanDiego",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}")
) +
theme_economist() +
scale_y_continuous(labels = scales::comma)

Labor Force Participation Rate - Women (LNU01300002)
indicator <-
"LNU01300002" %>%
tq_get(get = "economic.data",
from = "1980-01-01")
indicator %>%
ggplot(aes(x = date, y = price)) +
geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-11-2020'), ymin = -Inf, ymax = Inf),
fill = "grey", alpha = 0.02)+
geom_line(color = "blue",size=1) +
labs(
x = "Monthly",
y = "Percent",
title = "Women _ Labor Force Participation Rate (LNU01300002)",
caption = "Data source: FRED Philadelphia Federal Reserve\nIllustration by @JoeLongSanDiego",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}")
) +
theme_economist() +
scale_y_continuous(labels = scales::comma)

Labor Force Participation Rate - Men (LNU01300001)
indicator <-
"LNU01300002" %>%
tq_get(get = "economic.data",
from = "1980-01-01")
indicator %>%
ggplot(aes(x = date, y = price)) +
geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-11-2020'), ymin = -Inf, ymax = Inf),
fill = "grey", alpha = 0.02)+
geom_line(color = "blue",size=1) +
labs(
x = "Monthly",
y = "Percent",
title = "Men _ Labor Force Participation Rate (LNU01300001)",
caption = "Data source: FRED Philadelphia Federal Reserve\nIllustration by @JoeLongSanDiego",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}")
) +
theme_economist() +
scale_y_continuous(labels = scales::comma)

All Employees, Leisure and Hospitality (CEU7000000001)
indicator <-fredr_series_observations(series_id = "CEU7000000001",
observation_start = as.Date("2019-01-01"))
indicator[,c(1,3)] %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed"))
date
|
value
|
2019-01-01
|
15739
|
2019-02-01
|
15841
|
2019-03-01
|
16090
|
2019-04-01
|
16406
|
2019-05-01
|
16788
|
2019-06-01
|
17219
|
2019-07-01
|
17289
|
2019-08-01
|
17244
|
2019-09-01
|
16759
|
2019-10-01
|
16648
|
2019-11-01
|
16439
|
2019-12-01
|
16450
|
2020-01-01
|
16092
|
2020-02-01
|
16264
|
2020-03-01
|
15714
|
2020-04-01
|
8485
|
2020-05-01
|
10109
|
2020-06-01
|
12437
|
2020-07-01
|
13152
|
2020-08-01
|
13226
|
2020-09-01
|
13207
|
2020-10-01
|
13365
|
# plotting data
indicator %>% ggplot() +
geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('10-11-2020'), ymin = -Inf, ymax = Inf),
fill = "grey", alpha = 0.02)+
geom_line(mapping = aes(x=date,y=value),
color = "blue4",size=1) +
labs(title = "All Employees, Leisure and Hospitality Industries",
subtitle = str_glue("from {min(indicator$date)} through {max(indicator$date)}"),
x="Monthly", y="Thousands of Persons",
caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego")+
theme_economist()

All Employees, Accommodation and Food Services (CEU7072000001)
indicator <-fredr_series_observations(series_id = "CEU7072000001",
observation_start = as.Date("2019-01-01"))
indicator[,c(1,3)] %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed"))
date
|
value
|
2019-01-01
|
13576
|
2019-02-01
|
13649
|
2019-03-01
|
13826
|
2019-04-01
|
14036
|
2019-05-01
|
14289
|
2019-06-01
|
14505
|
2019-07-01
|
14507
|
2019-08-01
|
14533
|
2019-09-01
|
14275
|
2019-10-01
|
14237
|
2019-11-01
|
14141
|
2019-12-01
|
14138
|
2020-01-01
|
13855
|
2020-02-01
|
14003
|
2020-03-01
|
13480
|
2020-04-01
|
7371
|
2020-05-01
|
8877
|
2020-06-01
|
10773
|
2020-07-01
|
11326
|
2020-08-01
|
11427
|
2020-09-01
|
11484
|
2020-10-01
|
11644
|
# plotting data
indicator %>% ggplot() +
geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-11-2020'), ymin = -Inf, ymax = Inf),
fill = "grey", alpha = 0.03)+
geom_line(mapping = aes(x=date,y=value),
color = "blue4",size=1) +
labs(title = "All Employees, Hospitality Accommodation and Food Services",
subtitle = str_glue("from {min(indicator$date)} through {max(indicator$date)}"),
x="Monthly", y="Thousands of Persons",
caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego")+
theme_economist()

All Employees, Amusements, Gambling, and Recreation (CEU7071300001)
indicator <-fredr_series_observations(series_id = "CEU7071300001",
observation_start = as.Date("2019-01-01"))
indicator[,c(1,3)] %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed"))
date
|
value
|
2019-01-01
|
1556.9
|
2019-02-01
|
1564.2
|
2019-03-01
|
1608.5
|
2019-04-01
|
1663.6
|
2019-05-01
|
1768.6
|
2019-06-01
|
1974.1
|
2019-07-01
|
2050.1
|
2019-08-01
|
1989.1
|
2019-09-01
|
1771.7
|
2019-10-01
|
1713.2
|
2019-11-01
|
1622.9
|
2019-12-01
|
1646.9
|
2020-01-01
|
1618.4
|
2020-02-01
|
1625.5
|
2020-03-01
|
1607.9
|
2020-04-01
|
717.3
|
2020-05-01
|
831.9
|
2020-06-01
|
1242.8
|
2020-07-01
|
1414.6
|
2020-08-01
|
1376.4
|
2020-09-01
|
1305.0
|
2020-10-01
|
1279.8
|
# plotting data
indicator %>% ggplot() +
geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-11-2020'), ymin = -Inf, ymax = Inf),
fill = "grey", alpha = 0.03)+
geom_line(mapping = aes(x=date,y=value),
color = "blue4",size=1) +
labs(title = "All Employees, Amusements, Gambling, and Recreation",
subtitle = str_glue("from {min(indicator$date)} through {max(indicator$date)}"),
x="Monthly", y="Thousands of Persons",
caption = "Data source: U.S. Bureau of Labor Statistics (CEU7071300001)\nIllustration by @JoeLongSanDiego")+
theme_economist()

All Employees, Construction of Buildings (CEU2023600001)
indicator <-fredr_series_observations(series_id = "CEU2023600001",
observation_start = as.Date("2019-01-01"))
indicator[,c(1,3)] %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed"))
date
|
value
|
2019-01-01
|
1603
|
2019-02-01
|
1602
|
2019-03-01
|
1616
|
2019-04-01
|
1629
|
2019-05-01
|
1647
|
2019-06-01
|
1686
|
2019-07-01
|
1701
|
2019-08-01
|
1708
|
2019-09-01
|
1686
|
2019-10-01
|
1696
|
2019-11-01
|
1680
|
2019-12-01
|
1666
|
2020-01-01
|
1632
|
2020-02-01
|
1636
|
2020-03-01
|
1636
|
2020-04-01
|
1434
|
2020-05-01
|
1556
|
2020-06-01
|
1616
|
2020-07-01
|
1638
|
2020-08-01
|
1650
|
2020-09-01
|
1642
|
2020-10-01
|
1670
|
# plotting data
indicator %>% ggplot() +
geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-11-2020'), ymin = -Inf, ymax = Inf),
fill = "grey", alpha = 0.03)+
geom_line(mapping = aes(x=date,y=value),
color = "blue4",size=1) +
labs(title = "All Employees, Construction of Buildings",
subtitle = str_glue("from {min(indicator$date)} through {max(indicator$date)}"),
x="Monthly", y="Thousands of Persons",
caption = "Data source: U.S. Bureau of Labor Statistics (CEU2023600001)\nIllustration by @JoeLongSanDiego")+
theme_economist()

All Employees, Clothing and Clothing Accessories Stores (CEU4244800001)
indicator <-fredr_series_observations(series_id = "CEU4244800001",
observation_start = as.Date("2019-01-01"))
# plotting data
ggplot(indicator) +
geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-11-2020'), ymin = -Inf, ymax = Inf),
fill = "lightyellow", alpha = 0.02)+
geom_line(mapping = aes(x=date,y=value), color = "blue4") +
labs(title = "All Employees, Clothing and Clothing Accessories Stores",
subtitle = str_glue("from {min(indicator$date)} through {max(indicator$date)}\nNot Seasonally Adjusted"),
x="Monthly", y="Thousand of Persons",
caption = "Data source: FRED Federal Reserve.\nIllustration by @JoeLongSanDiego")+
theme_economist()

All Employees, Automobile Dealers (CEU4244110001)
indicator <-fredr_series_observations(series_id = "CEU4244100001",
observation_start = as.Date("2019-01-01"))
# plotting data
ggplot(indicator) +
geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-11-2020'), ymin = -Inf, ymax = Inf),
fill = "lightyellow", alpha = 0.02)+
geom_line(mapping = aes(x=date,y=value), color = "red4") +
labs(title = "All Employees, Automobile Dealers",
subtitle = str_glue("from {min(indicator$date)} through {max(indicator$date)}\nNot Seasonally Adjusted"),
x="Monthly", y="Thousand of Persons",
caption = "Data source: FRED Federal Reserve.\nIllustration by @JoeLongSanDiego")+
theme_economist()

All Employees, General Merchandise Stores (CEU4245200001)
indicator <-fredr_series_observations(series_id = "CEU4245200001",
observation_start = as.Date("2019-01-01"))
# plotting data
ggplot(indicator) +
geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-11-2020'), ymin = -Inf, ymax = Inf),
fill = "lightyellow", alpha = 0.02)+
geom_line(mapping = aes(x=date,y=value), color = "red4") +
labs(title = "All Employees, General Merchandise Stores",
subtitle = str_glue("from {min(indicator$date)} through {max(indicator$date)}\nNot Seasonally Adjusted"),
x="Monthly", y="Thousand of Persons",
caption = "Data source: FRED Federal Reserve.\nIllustration by @JoeLongSanDiego")+
theme_economist()

All Employees, Motor Vehicle and Parts Dealers (CEU4244100001)
indicator <-fredr_series_observations(series_id = "CEU4244100001",
observation_start = as.Date("2019-01-01"))
# plotting data
ggplot(indicator) +
geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-11-2020'), ymin = -Inf, ymax = Inf),
fill = "lightyellow", alpha = 0.02)+
geom_line(mapping = aes(x=date,y=value), color = "red4") +
labs(title = "All Employees, Motor Vehicle and Parts Dealers",
subtitle = str_glue("from {min(indicator$date)} through {max(indicator$date)}\nNot Seasonally Adjusted"),
x="Monthly", y="Thousand of Persons",
caption = "Data source: FRED Federal Reserve.\nIllustration by @JoeLongSanDiego")+
theme_economist()

All Employees, Building Material and Garden Supply Stores (CEU4244400001)
indicator <-fredr_series_observations(series_id = "CEU4244400001",
observation_start = as.Date("2019-01-01"))
# plotting data
ggplot(indicator) +
geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-11-2020'), ymin = -Inf, ymax = Inf),
fill = "lightyellow", alpha = 0.02)+
geom_line(mapping = aes(x=date,y=value), color = "red4") +
labs(title = "All Employees, Building Material and Garden Supply Stores",
subtitle = str_glue("from {min(indicator$date)} through {max(indicator$date)}\nNot Seasonally Adjusted"),
x="Monthly", y="Thousand of Persons",
caption = "Data source: FRED Federal Reserve.\nIllustration by @JoeLongSanDiego")+
theme_economist()

All Employees, Health and Personal Care Stores (CEU4244600001)
indicator <-fredr_series_observations(series_id = "CEU4244600001",
observation_start = as.Date("2019-01-01"))
# plotting data
ggplot(indicator) +
geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-11-2020'), ymin = -Inf, ymax = Inf),
fill = "lightyellow", alpha = 0.02)+
geom_line(mapping = aes(x=date,y=value), color = "red4") +
labs(title = "All Employees, Health and Personal Care Stores",
subtitle = str_glue("from {min(indicator$date)} through {max(indicator$date)}\nNot Seasonally Adjusted"),
x="Monthly", y="Thousand of Persons",
caption = "Data source: FRED Federal Reserve.\nIllustration by @JoeLongSanDiego")+
theme_economist()

All Employees, Food and Beverage Stores (CEU4244500001)
indicator <-fredr_series_observations(series_id = "CEU4244500001",
observation_start = as.Date("2019-01-01"))
# plotting data
ggplot(indicator) +
geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-11-2020'), ymin = -Inf, ymax = Inf),
fill = "lightyellow", alpha = 0.02)+
geom_line(mapping = aes(x=date,y=value), color = "red4") +
labs(title = "All Employees, Food and Beverage Stores",
subtitle = str_glue("from {min(indicator$date)} through {max(indicator$date)}\nNot Seasonally Adjusted"),
x="Monthly", y="Thousand of Persons",
caption = "Data source: FRED Federal Reserve.\nIllustration by @JoeLongSanDiego")+
theme_economist()

* All Employees, Retail Trade (USTRADE)
indicator <-fredr_series_observations(series_id = "USTRADE",
observation_start = as.Date("2019-01-01"))
# plotting data
ggplot(indicator) +
geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-11-2020'), ymin = -Inf, ymax = Inf),
fill = "lightyellow", alpha = 0.02)+
geom_line(mapping = aes(x=date,y=value), color = "red4") +
labs(title = "All Employees, Retail Trade",
subtitle = str_glue("from {min(indicator$date)} through {max(indicator$date)}\nSeasonally Adjusted"),
x="Monthly", y="Thousand of Persons",
caption = "Data source: FRED Federal Reserve.\nIllustration by @JoeLongSanDiego")+
theme_economist()

All Employees, Manufacturing (CEU3000000001)
indicator <-
"CEU3000000001" %>%
tq_get(get = "economic.data",
from = "2019-01-01") %>%
rename(claims = price)
indicator %>%
ggplot(aes(x = date, y = claims)) +
geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-11-2020'), ymin = -Inf, ymax = Inf),
fill = "grey", alpha = 0.03)+
geom_line(color = "blue",size=1) +
labs(
x = "Monthly",
y = "Thousands",
title = "All Employees, Manufacturing (CEU3000000001)",
caption = "Data source: FRED Philadelphia Federal Reserve\nIllustration by @JoeLongSanDiego",
subtitle = str_glue("From {min(usa_claims$date)} through {max(usa_claims$date)}")
) +
theme_economist() +
scale_y_continuous(labels = scales::comma)

Chicago Fed Survey of Business Conditions: Manufacturing Activity Index (CFSBCACTIVITYMFG)
indicator <-fredr_series_observations(series_id = "CFSBCACTIVITYMFG",
observation_start = as.Date("2010-01-01"))
# plotting data
ggplot(indicator)+
geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-11-2020'), ymin = -Inf, ymax = Inf),
fill = "lightyellow", alpha = 0.02)+
geom_line(mapping = aes(x=date,y=value),
color = "blue4") +
labs(title = "Survey of Business Conditions: Manufacturing Activity Index",
subtitle = str_glue("from {min(indicator$date)} through {max(indicator$date)}"),
x="Monthly", y="Index",
caption = "Data source: FRED Chicago Federal Reserve\nIllustration by @JoeLongSanDiego")+
theme_economist()

Unemployment Rate - Women (LNU04000002)
Unemployment Rate - Men (LNS14000001)
symbol1 <-fredr_series_observations(series_id = "LNS14000001",
observation_start = as.Date("2019-01-01"))
indicator1 <-as.data.frame(symbol1)[,c(1,3)]
symbol2 <-fredr_series_observations(series_id = "LNS14000002",
observation_start = as.Date("2019-01-01"))
indicator2 <-as.data.frame(symbol2)[,c(1,3)]
indicator <-full_join(indicator1,indicator2, by="date")
colnames(indicator) <- c("date","Male","Female")
#------------------------
indicator %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
column_spec(2, T, color = "red" ) %>%
column_spec(3, T, color = "blue" )
date
|
Male
|
Female
|
2019-01-01
|
4.1
|
3.9
|
2019-02-01
|
3.9
|
3.7
|
2019-03-01
|
3.9
|
3.7
|
2019-04-01
|
3.8
|
3.4
|
2019-05-01
|
3.7
|
3.6
|
2019-06-01
|
3.7
|
3.6
|
2019-07-01
|
3.7
|
3.7
|
2019-08-01
|
3.7
|
3.6
|
2019-09-01
|
3.6
|
3.4
|
2019-10-01
|
3.6
|
3.5
|
2019-11-01
|
3.5
|
3.5
|
2019-12-01
|
3.5
|
3.5
|
2020-01-01
|
3.6
|
3.5
|
2020-02-01
|
3.6
|
3.4
|
2020-03-01
|
4.4
|
4.4
|
2020-04-01
|
13.5
|
16.2
|
2020-05-01
|
12.2
|
14.5
|
2020-06-01
|
10.6
|
11.7
|
2020-07-01
|
9.8
|
10.6
|
2020-08-01
|
8.3
|
8.6
|
2020-09-01
|
7.7
|
8.0
|
2020-10-01
|
7.0
|
6.7
|
chart <- indicator %>% ggplot() +
geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-11-2020'), ymin = -Inf, ymax = Inf),
fill = "grey", alpha = 0.03)+
geom_line(mapping = aes(x=date,y=Male),color="red",size=1) +
geom_line(mapping = aes(x=date,y=Female),color="blue",size=1) +
labs(title = "Unemployment Rate By Gender",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}\nMale = Red - Female = Blue"),
x="Monthly", y="Percentage",
caption = "Data source: FRED Philadelphia Federal Reserve\nIllustration by @JoeLongSanDiego")+
theme_economist()
chart + geom_text(aes(x = max(date),y=last(Male),label="Male"))+
geom_text(aes(x = max(date),y=last(Female),label="Female"))
