Intoduction

This document looks at clustering for house types.In particular, it looks at data from the Mount_Pleasant_Real_Estate.csv and the HosuePrices.csv. The goal is to create create clusters for houses and see if there are any similarities between the two csvs.

Mount_Pleasant_Real_Estate.csv

house[1:3,]
## # A tibble: 3 x 24
##      ID `List Price` `Duplex?` Bedrooms `Baths - Total` `Baths - Full`
##   <dbl>        <dbl> <chr>        <dbl>           <dbl>          <dbl>
## 1   115       369900 Yes              3             2.5              2
## 2   117       375000 Yes              3             2.5              2
## 3     5       769900 No               4             3.5              3
## # ... with 18 more variables: `Baths - Half` <dbl>, Stories <dbl>,
## #   Subdivision <chr>, `Square Footage` <dbl>, `Year Built` <dbl>,
## #   Acreage <dbl>, `New Owned?` <chr>, `House Style` <chr>, `Covered Parking
## #   Spots` <dbl>, `Misc Exterior` <chr>, `Has Pool?` <chr>, `Has Dock?` <chr>,
## #   `Fenced Yard` <chr>, `Screened Porch?` <chr>, Amenities <chr>, `Golf
## #   Course?` <chr>, `Fireplace?` <chr>, `Number of Fireplaces` <dbl>
set.seed(1)
grpHouse <- kmeans(house[,c("List Price","Square Footage")], centers=3, nstart=10)
grpHouse
## K-means clustering with 3 clusters of sizes 16, 148, 81
## 
## Cluster means:
##   List Price Square Footage
## 1  1534312.5       4942.812
## 2   451724.2       2438.318
## 3   797579.1       3782.148
## 
## Clustering vector:
##   [1] 2 2 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
##  [38] 2 2 2 2 2 2 2 3 3 3 3 3 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3
##  [75] 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1
## [112] 1 1 1 1 2 2 2 2 2 1 2 2 2 2 3 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [149] 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [186] 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 3
## [223] 2 2 3 2 2 3 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 3
## 
## Within cluster sum of squares by cluster:
## [1] 8.951311e+11 1.775633e+12 1.062754e+12
##  (between_SS / total_SS =  84.3 %)
## 
## Available components:
## 
## [1] "cluster"      "centers"      "totss"        "withinss"     "tot.withinss"
## [6] "betweenss"    "size"         "iter"         "ifault"
o=order(grpHouse$cluster)
data.frame(house$ID[o],grpHouse$cluster[o])
##     house.ID.o. grpHouse.cluster.o.
## 1           135                   1
## 2           136                   1
## 3           137                   1
## 4           138                   1
## 5           139                   1
## 6           140                   1
## 7           142                   1
## 8           143                   1
## 9           144                   1
## 10          150                   1
## 11          141                   1
## 12          241                   1
## 13          240                   1
## 14          242                   1
## 15          243                   1
## 16          244                   1
## 17          115                   2
## 18          117                   2
## 19           62                   2
## 20           61                   2
## 21           25                   2
## 22           27                   2
## 23           60                   2
## 24           59                   2
## 25           32                   2
## 26           40                   2
## 27           57                   2
## 28           58                   2
## 29           56                   2
## 30           54                   2
## 31           52                   2
## 32           55                   2
## 33           50                   2
## 34           49                   2
## 35           47                   2
## 36           46                   2
## 37           45                   2
## 38           44                   2
## 39           43                   2
## 40           42                   2
## 41           41                   2
## 42           38                   2
## 43           37                   2
## 44           36                   2
## 45           35                   2
## 46           33                   2
## 47           34                   2
## 48           31                   2
## 49           30                   2
## 50           28                   2
## 51           29                   2
## 52           24                   2
## 53           22                   2
## 54           23                   2
## 55           19                   2
## 56           18                   2
## 57           15                   2
## 58           13                   2
## 59          158                   2
## 60          164                   2
## 61          163                   2
## 62          172                   2
## 63          167                   2
## 64          176                   2
## 65          116                   2
## 66          109                   2
## 67          114                   2
## 68          111                   2
## 69          112                   2
## 70          118                   2
## 71          119                   2
## 72          120                   2
## 73          121                   2
## 74          122                   2
## 75          123                   2
## 76          124                   2
## 77          125                   2
## 78          126                   2
## 79          127                   2
## 80          128                   2
## 81          129                   2
## 82          130                   2
## 83          131                   2
## 84          132                   2
## 85          133                   2
## 86          134                   2
## 87          145                   2
## 88          146                   2
## 89          147                   2
## 90          148                   2
## 91          149                   2
## 92          113                   2
## 93          153                   2
## 94          154                   2
## 95          155                   2
## 96          162                   2
## 97          165                   2
## 98          110                   2
## 99            1                   2
## 100           3                   2
## 101         231                   2
## 102         229                   2
## 103           8                   2
## 104          10                   2
## 105          11                   2
## 106         228                   2
## 107         225                   2
## 108          14                   2
## 109         226                   2
## 110          16                   2
## 111          17                   2
## 112         223                   2
## 113          20                   2
## 114          21                   2
## 115         222                   2
## 116         221                   2
## 117          26                   2
## 118         218                   2
## 119         215                   2
## 120         214                   2
## 121         213                   2
## 122          39                   2
## 123         212                   2
## 124         211                   2
## 125         210                   2
## 126          48                   2
## 127         205                   2
## 128          51                   2
## 129          53                   2
## 130         203                   2
## 131         202                   2
## 132         201                   2
## 133         200                   2
## 134         198                   2
## 135         197                   2
## 136          63                   2
## 137         196                   2
## 138         195                   2
## 139         192                   2
## 140         190                   2
## 141         191                   2
## 142         193                   2
## 143         194                   2
## 144         199                   2
## 145         204                   2
## 146         206                   2
## 147         207                   2
## 148         208                   2
## 149         209                   2
## 150         216                   2
## 151         217                   2
## 152         219                   2
## 153         220                   2
## 154         224                   2
## 155         227                   2
## 156         230                   2
## 157         232                   2
## 158         233                   2
## 159         234                   2
## 160         235                   2
## 161         236                   2
## 162         237                   2
## 163         238                   2
## 164         239                   2
## 165           5                   3
## 166           9                   3
## 167          12                   3
## 168           7                   3
## 169           6                   3
## 170           4                   3
## 171           2                   3
## 172          64                   3
## 173          66                   3
## 174          67                   3
## 175          69                   3
## 176          70                   3
## 177          72                   3
## 178          73                   3
## 179          74                   3
## 180          77                   3
## 181          80                   3
## 182          81                   3
## 183          85                   3
## 184          87                   3
## 185          91                   3
## 186          92                   3
## 187          93                   3
## 188          95                   3
## 189          97                   3
## 190          98                   3
## 191          99                   3
## 192         100                   3
## 193         101                   3
## 194         102                   3
## 195         103                   3
## 196         104                   3
## 197         105                   3
## 198         106                   3
## 199         107                   3
## 200         108                   3
## 201         156                   3
## 202          96                   3
## 203          94                   3
## 204          90                   3
## 205          88                   3
## 206          89                   3
## 207          86                   3
## 208          84                   3
## 209          83                   3
## 210          82                   3
## 211          79                   3
## 212          78                   3
## 213          76                   3
## 214          75                   3
## 215          71                   3
## 216          68                   3
## 217          65                   3
## 218         157                   3
## 219         152                   3
## 220         151                   3
## 221         159                   3
## 222         161                   3
## 223         166                   3
## 224         168                   3
## 225         169                   3
## 226         171                   3
## 227         189                   3
## 228         174                   3
## 229         175                   3
## 230         177                   3
## 231         178                   3
## 232         179                   3
## 233         180                   3
## 234         181                   3
## 235         182                   3
## 236         183                   3
## 237         184                   3
## 238         185                   3
## 239         186                   3
## 240         187                   3
## 241         188                   3
## 242         173                   3
## 243         170                   3
## 244         160                   3
## 245         245                   3
plot(house$`List Price`, house$`Square Footage`, type="n", xlim=c(119900,2000000), xlab="List Price", ylab="Square Footage")
text(x=house$`List Price`, y=house$`Square Footage`, labels=house$ID, col=grpHouse$cluster+1)

set.seed(1)
grpHouse <- kmeans(house[,c("List Price","Square Footage")], centers=7, nstart=10)
o=order(grpHouse$cluster)
data.frame(house$ID[o],grpHouse$cluster[o])
##     house.ID.o. grpHouse.cluster.o.
## 1           149                   1
## 2           153                   1
## 3           154                   1
## 4           155                   1
## 5           165                   1
## 6             3                   1
## 7             8                   1
## 8            10                   1
## 9            20                   1
## 10           39                   1
## 11           51                   1
## 12           53                   1
## 13           63                   1
## 14            2                   2
## 15           64                   2
## 16           66                   2
## 17           67                   2
## 18           69                   2
## 19           70                   2
## 20           72                   2
## 21           73                   2
## 22           74                   2
## 23           77                   2
## 24          156                   2
## 25           79                   2
## 26           78                   2
## 27           76                   2
## 28           75                   2
## 29           71                   2
## 30           68                   2
## 31           65                   2
## 32          157                   2
## 33          159                   2
## 34          161                   2
## 35          166                   2
## 36          168                   2
## 37          169                   2
## 38          171                   2
## 39          174                   2
## 40          175                   2
## 41          173                   2
## 42          170                   2
## 43          160                   2
## 44            5                   3
## 45            9                   3
## 46           12                   3
## 47            7                   3
## 48            6                   3
## 49            4                   3
## 50           80                   3
## 51           81                   3
## 52           85                   3
## 53           87                   3
## 54           91                   3
## 55           92                   3
## 56           93                   3
## 57           95                   3
## 58           97                   3
## 59           98                   3
## 60           99                   3
## 61          100                   3
## 62          101                   3
## 63          102                   3
## 64          103                   3
## 65          104                   3
## 66          105                   3
## 67          106                   3
## 68          107                   3
## 69          108                   3
## 70           96                   3
## 71           94                   3
## 72           90                   3
## 73           88                   3
## 74           89                   3
## 75           86                   3
## 76           84                   3
## 77           83                   3
## 78           82                   3
## 79          189                   3
## 80          177                   3
## 81          178                   3
## 82          179                   3
## 83          180                   3
## 84          181                   3
## 85          182                   3
## 86          183                   3
## 87          184                   3
## 88          185                   3
## 89          186                   3
## 90          187                   3
## 91          188                   3
## 92           25                   4
## 93           27                   4
## 94           60                   4
## 95           59                   4
## 96           32                   4
## 97           40                   4
## 98           57                   4
## 99           58                   4
## 100          56                   4
## 101          54                   4
## 102          52                   4
## 103          55                   4
## 104          50                   4
## 105          49                   4
## 106          47                   4
## 107          46                   4
## 108          45                   4
## 109          44                   4
## 110          43                   4
## 111          42                   4
## 112          41                   4
## 113          38                   4
## 114          37                   4
## 115          36                   4
## 116          35                   4
## 117          33                   4
## 118          34                   4
## 119          31                   4
## 120          30                   4
## 121          28                   4
## 122          29                   4
## 123          24                   4
## 124          22                   4
## 125          23                   4
## 126          19                   4
## 127          18                   4
## 128          15                   4
## 129          13                   4
## 130         164                   4
## 131         163                   4
## 132         172                   4
## 133         167                   4
## 134         176                   4
## 135         116                   4
## 136         109                   4
## 137         114                   4
## 138         111                   4
## 139         112                   4
## 140         118                   4
## 141         119                   4
## 142         120                   4
## 143         121                   4
## 144         122                   4
## 145         113                   4
## 146         110                   4
## 147         215                   4
## 148         214                   4
## 149         213                   4
## 150         212                   4
## 151         211                   4
## 152         210                   4
## 153         205                   4
## 154         203                   4
## 155         202                   4
## 156         201                   4
## 157         200                   4
## 158         198                   4
## 159         197                   4
## 160         196                   4
## 161         195                   4
## 162         192                   4
## 163         190                   4
## 164         191                   4
## 165         193                   4
## 166         194                   4
## 167         199                   4
## 168         204                   4
## 169         206                   4
## 170         207                   4
## 171         208                   4
## 172         209                   4
## 173         216                   4
## 174         217                   4
## 175         115                   5
## 176         117                   5
## 177          62                   5
## 178          61                   5
## 179         158                   5
## 180         123                   5
## 181         124                   5
## 182         125                   5
## 183         126                   5
## 184         127                   5
## 185         128                   5
## 186         129                   5
## 187         130                   5
## 188         131                   5
## 189         132                   5
## 190         133                   5
## 191         134                   5
## 192         145                   5
## 193         146                   5
## 194         147                   5
## 195         148                   5
## 196         162                   5
## 197           1                   5
## 198         231                   5
## 199         229                   5
## 200          11                   5
## 201         228                   5
## 202         225                   5
## 203          14                   5
## 204         226                   5
## 205          16                   5
## 206          17                   5
## 207         223                   5
## 208          21                   5
## 209         222                   5
## 210         221                   5
## 211          26                   5
## 212         218                   5
## 213          48                   5
## 214         219                   5
## 215         220                   5
## 216         224                   5
## 217         227                   5
## 218         230                   5
## 219         232                   5
## 220         233                   5
## 221         234                   5
## 222         235                   5
## 223         236                   5
## 224         237                   5
## 225         238                   5
## 226         239                   5
## 227         135                   6
## 228         136                   6
## 229         137                   6
## 230         138                   6
## 231         139                   6
## 232         140                   6
## 233         241                   6
## 234         240                   6
## 235         242                   6
## 236         142                   7
## 237         143                   7
## 238         144                   7
## 239         150                   7
## 240         152                   7
## 241         151                   7
## 242         141                   7
## 243         243                   7
## 244         244                   7
## 245         245                   7
plot(house$`List Price`, house$`Square Footage`, type="n", xlim=c(119900,2000000), xlab="List Price", ylab="Square Footage")
text(x=house$`List Price`, y=house$`Square Footage`, labels=house$ID, col=rainbow(7)[grpHouse$cluster])

## HousePrices.csv

price$Brick<-ifelse(price$Brick=="Yes",1,0)

price$Neighborhood <- ifelse(price$Neighborhood == "East",0,
                              ifelse(price$Neighborhood == "North",1,2))
price[1:3,]
## # A tibble: 3 x 8
##   HomeID  Price  SqFt Bedrooms Bathrooms Offers Brick Neighborhood
##    <dbl>  <dbl> <dbl>    <dbl>     <dbl>  <dbl> <dbl>        <dbl>
## 1      1 114300  1790        2         2      2     0            0
## 2      2 114200  2030        4         2      3     0            0
## 3      3 114800  1740        3         2      1     0            0
set.seed(1)
grpPrice <- kmeans(price[,c("Price","SqFt")], centers=3, nstart=10)
grpHouse
## K-means clustering with 7 clusters of sizes 13, 30, 48, 83, 52, 9, 10
## 
## Cluster means:
##   List Price Square Footage
## 1   202676.9       1226.692
## 2   889835.9       4024.800
## 3   719980.1       3621.208
## 4   529085.0       2780.012
## 5   390506.4       2195.827
## 6  1703555.6       5337.444
## 7  1256678.5       4284.000
## 
## Clustering vector:
##   [1] 5 5 3 3 5 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
##  [38] 4 4 4 4 4 4 4 3 3 3 3 2 5 4 4 4 4 4 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4 3
##  [75] 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6
## [112] 6 7 7 7 5 5 5 5 1 7 4 1 1 1 2 5 1 4 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 7 7
## [149] 7 5 1 5 5 1 1 5 5 5 5 5 5 5 5 1 5 5 5 5 5 4 4 4 1 4 4 4 5 4 1 1 4 4 4 4 4
## [186] 4 1 4 4 4 2 2 2 2 2 2 3 2 2 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 2
## [223] 4 4 2 5 5 2 5 5 5 5 5 5 5 5 5 5 5 6 6 6 7 7 7
## 
## Within cluster sum of squares by cluster:
## [1]  19574867214  94603319520 117755598618 159035680150  99066014324
## [6] 244996767968 145702188467
##  (between_SS / total_SS =  96.3 %)
## 
## Available components:
## 
## [1] "cluster"      "centers"      "totss"        "withinss"     "tot.withinss"
## [6] "betweenss"    "size"         "iter"         "ifault"
o=order(grpPrice$cluster)
data.frame(price$HomeID[o],grpPrice$cluster[o])
##     price.HomeID.o. grpPrice.cluster.o.
## 1                15                   1
## 2                20                   1
## 3                30                   1
## 4                31                   1
## 5                45                   1
## 6                61                   1
## 7                63                   1
## 8                70                   1
## 9                71                   1
## 10               78                   1
## 11               82                   1
## 12               83                   1
## 13               86                   1
## 14               88                   1
## 15               95                   1
## 16              100                   1
## 17              104                   1
## 18              117                   1
## 19                1                   2
## 20                2                   2
## 21                3                   2
## 22                4                   2
## 23                5                   2
## 24                6                   2
## 25                9                   2
## 26               10                   2
## 27               12                   2
## 28               13                   2
## 29               18                   2
## 30               19                   2
## 31               21                   2
## 32               22                   2
## 33               23                   2
## 34               24                   2
## 35               28                   2
## 36               29                   2
## 37               32                   2
## 38               35                   2
## 39               36                   2
## 40               37                   2
## 41               40                   2
## 42               41                   2
## 43               43                   2
## 44               46                   2
## 45               48                   2
## 46               49                   2
## 47               50                   2
## 48               52                   2
## 49               53                   2
## 50               55                   2
## 51               62                   2
## 52               64                   2
## 53               66                   2
## 54               69                   2
## 55               73                   2
## 56               76                   2
## 57               79                   2
## 58               85                   2
## 59               87                   2
## 60               90                   2
## 61               92                   2
## 62              101                   2
## 63              102                   2
## 64              105                   2
## 65              107                   2
## 66              109                   2
## 67              110                   2
## 68              111                   2
## 69              112                   2
## 70              113                   2
## 71              114                   2
## 72              115                   2
## 73              116                   2
## 74              118                   2
## 75              120                   2
## 76              121                   2
## 77              122                   2
## 78              124                   2
## 79              126                   2
## 80              128                   2
## 81                7                   3
## 82                8                   3
## 83               11                   3
## 84               14                   3
## 85               16                   3
## 86               17                   3
## 87               25                   3
## 88               26                   3
## 89               27                   3
## 90               33                   3
## 91               34                   3
## 92               38                   3
## 93               39                   3
## 94               42                   3
## 95               44                   3
## 96               47                   3
## 97               51                   3
## 98               54                   3
## 99               56                   3
## 100              57                   3
## 101              58                   3
## 102              59                   3
## 103              60                   3
## 104              65                   3
## 105              67                   3
## 106              68                   3
## 107              72                   3
## 108              74                   3
## 109              75                   3
## 110              77                   3
## 111              80                   3
## 112              81                   3
## 113              84                   3
## 114              89                   3
## 115              91                   3
## 116              93                   3
## 117              94                   3
## 118              96                   3
## 119              97                   3
## 120              98                   3
## 121              99                   3
## 122             103                   3
## 123             106                   3
## 124             108                   3
## 125             119                   3
## 126             123                   3
## 127             125                   3
## 128             127                   3
plot(price$`Price`, price$`SqFt`, type="n", xlim=c(69100,211200), xlab="Price", ylab="SqFt")
text(x=price$`Price`, y=price$`SqFt`, labels=price$HomeID, col=grpPrice$cluster+1)

set.seed(1)
grpPrice <- kmeans(price[,c("Price","SqFt")], centers=7, nstart=10)
o=order(grpPrice$cluster)
data.frame(price$HomeID[o],grpPrice$cluster[o])
##     price.HomeID.o. grpPrice.cluster.o.
## 1                30                   1
## 2                31                   1
## 3                61                   1
## 4                82                   1
## 5                86                   1
## 6               104                   1
## 7               117                   1
## 8                 1                   2
## 9                 2                   2
## 10                3                   2
## 11                5                   2
## 12                6                   2
## 13                9                   2
## 14               12                   2
## 15               19                   2
## 16               21                   2
## 17               22                   2
## 18               32                   2
## 19               35                   2
## 20               36                   2
## 21               37                   2
## 22               49                   2
## 23               53                   2
## 24               64                   2
## 25               66                   2
## 26               79                   2
## 27               92                   2
## 28              102                   2
## 29              109                   2
## 30              111                   2
## 31              112                   2
## 32              113                   2
## 33              114                   2
## 34              118                   2
## 35              124                   2
## 36              126                   2
## 37                4                   3
## 38               18                   3
## 39               23                   3
## 40               29                   3
## 41               48                   3
## 42               52                   3
## 43               55                   3
## 44               69                   3
## 45               85                   3
## 46              105                   3
## 47                7                   4
## 48                8                   4
## 49               16                   4
## 50               17                   4
## 51               25                   4
## 52               26                   4
## 53               38                   4
## 54               44                   4
## 55               51                   4
## 56               57                   4
## 57               58                   4
## 58               60                   4
## 59               68                   4
## 60               72                   4
## 61               75                   4
## 62               80                   4
## 63               81                   4
## 64               84                   4
## 65               91                   4
## 66               93                   4
## 67               94                   4
## 68               96                   4
## 69               99                   4
## 70              106                   4
## 71              119                   4
## 72              123                   4
## 73              125                   4
## 74              127                   4
## 75               15                   5
## 76               20                   5
## 77               45                   5
## 78               63                   5
## 79               70                   5
## 80               71                   5
## 81               78                   5
## 82               83                   5
## 83               88                   5
## 84               95                   5
## 85              100                   5
## 86               11                   6
## 87               14                   6
## 88               27                   6
## 89               33                   6
## 90               34                   6
## 91               39                   6
## 92               42                   6
## 93               47                   6
## 94               54                   6
## 95               56                   6
## 96               59                   6
## 97               65                   6
## 98               67                   6
## 99               74                   6
## 100              77                   6
## 101              89                   6
## 102              97                   6
## 103              98                   6
## 104             103                   6
## 105             108                   6
## 106             115                   6
## 107             128                   6
## 108              10                   7
## 109              13                   7
## 110              24                   7
## 111              28                   7
## 112              40                   7
## 113              41                   7
## 114              43                   7
## 115              46                   7
## 116              50                   7
## 117              62                   7
## 118              73                   7
## 119              76                   7
## 120              87                   7
## 121              90                   7
## 122             101                   7
## 123             107                   7
## 124             110                   7
## 125             116                   7
## 126             120                   7
## 127             121                   7
## 128             122                   7
plot(price$`Price`, price$`SqFt`, type="n", xlim=c(69100,211200), xlab="Price", ylab="SqFt")
text(x=price$`Price`, y=price$`SqFt`, labels=price$HomeID, col=rainbow(7)[grpPrice$cluster])

Conclusion

The plots for Mount_Pleasant_Real_Estate.csv and the HousePrices.csv showed that the relationship between Square Footage vs. Price looked somewhat linear as price increased with larger square footage. In regards to clustering, it was noticeable that there were more clusters with the Mount_Pleasant_Real_Estate.csv. Some of the clusters so dense that it made it difficult to identify what the ID was for each house. In those cases, they clusters looked a bright blob of color. Since the clustering was closer for houses in the Mount_Pleasant_Real_Estate.csv, that seemed to indicate that square footage and pricing was similar among them. This was a good indication that the housing for the Mount_Pleasant_Real_Estate.csv is more defined and easy to differentiate in comparison to the HousePrices.csv