In this assignment, data frame - an useful R oject will be discussed. A data frame has two dimensional structure where each component has equal length. It is designed to store tabular data similar like the table in Excel spreadsheet with rows representing the records of observation and the columns representing different variables. Data frame is an extension to list and more general than a matrix as it can hold element of different data types in different columns which then combined into one object. Commonly, datasets in R are stored in data frames before using for data analysis.
It is common to get external data into R from various sources such as CSV, delimited file, excel, SAS, SPSS and etc. While importing, R read the data and store it in an organized table called data frame which can be easily used for further analysis and processing. Below are some sample functions used to import data from different sources:
# Read CSV file
file_path="c:/sample.csv"
read.csv(file_path, header=TRUE)
# Read tab-delimited file
file_path="c:/mydata.txt"
read.table(file_path, header=TRUE)
# Read Excel file
install.packages("readxl")
library(readxl)
file_path="sample.xls"
read_excel(file_path, sheet = "data")
# Read SAS dataset
install.packages("haven")
library("haven")
read_sas("c:/sample.sas7bdat")
# Read SPSS dataset
install.packages("haven")
library("haven")
read_spss("c:/sample.sav")
Data frame can be created by passing vectors with the same length to data.frame() function. The vectors can made up of different types, for example characters, numeric, factors etc. However, you have to set argument stringAsFactors to FALSE, otherwise all strings are setted as factors.
# Create vectors
name = c("Susan","Amy","Patrick","Hanson","Kris")
age = c(21,34,28,27,30)
gender = c("Female","Female","Male","Male","Male")
# Create data frame
df= data.frame(name,age,gender,stringsAsFactors = FALSE)
df
## name age gender
## 1 Susan 21 Female
## 2 Amy 34 Female
## 3 Patrick 28 Male
## 4 Hanson 27 Male
## 5 Kris 30 Male
Note that the columns are unnamed, thus variable names are shown above the columns. You can assign name when passing the vectors created as arguments to the data.frame() function. Otherwise, you can also reassign using names() or colnames(). Both give the same output.
# Assign name in data.frame()
df = data.frame("Name"=name,"Age"=age,"Gender"=gender,stringsAsFactors = FALSE)
# Use names()
df = data.frame(name,age,gender,stringsAsFactors = FALSE)
names(df)=c("Name","Age","Gender")
# Use colnames()
df = data.frame(name,age,gender,stringsAsFactors = FALSE)
colnames(df)=c("Name","Age","Gender")
df
## Name Age Gender
## 1 Susan 21 Female
## 2 Amy 34 Female
## 3 Patrick 28 Male
## 4 Hanson 27 Male
## 5 Kris 30 Male
You can also change the name of each row of observations using rownames().
# Use rownames() to label the row
rownames(df)=c("Person 1","Person 2","Person 3","Person 4","Person 5")
df
## Name Age Gender
## Person 1 Susan 21 Female
## Person 2 Amy 34 Female
## Person 3 Patrick 28 Male
## Person 4 Hanson 27 Male
## Person 5 Kris 30 Male
You can access dataset from the library and load it. In fact, the loaded dataset is a data frame. The function class() and is.data.frame() help us to check whether the dataset is data frame.
dslabs library is installed and the dataset gapminder is loaded. This dataset will be used to demonstrate for more examples in the following code chunks.
# Load gapminder library
library(gapminder)
data(gapminder)
# Check whether the dataset is data frame
class(gapminder)
## [1] "tbl_df" "tbl" "data.frame"
is.data.frame(gapminder)
## [1] TRUE
You can check the structure of the data frame using the functions as follows:
ncol() returns the number of columns in data framenrow() returns the number of rows in data framedim() returns the dimension. For example, 3 x 2 shows that there is 3 rows and 2 columns in the data frame.attributes() which returns the class of object, colume names and row names in data frame# Number of columns
ncol(gapminder)
## [1] 6
# Number of rows
nrow(gapminder)
## [1] 1704
# Dimension
dim(gapminder)
## [1] 1704 6
# Class of object, column and row names
attributes(gapminder)
## $names
## [1] "country" "continent" "year" "lifeExp"
## [5] "pop" "gdpPercap"
##
## $class
## [1] "tbl_df" "tbl" "data.frame"
##
## $row.names
## [1] 1 2 3 4 5 6 7 8 9 10
## [11] 11 12 13 14 15 16 17 18 19 20
## [21] 21 22 23 24 25 26 27 28 29 30
## [31] 31 32 33 34 35 36 37 38 39 40
## [41] 41 42 43 44 45 46 47 48 49 50
## [51] 51 52 53 54 55 56 57 58 59 60
## [61] 61 62 63 64 65 66 67 68 69 70
## [71] 71 72 73 74 75 76 77 78 79 80
## [81] 81 82 83 84 85 86 87 88 89 90
## [91] 91 92 93 94 95 96 97 98 99 100
## [101] 101 102 103 104 105 106 107 108 109 110
## [111] 111 112 113 114 115 116 117 118 119 120
## [121] 121 122 123 124 125 126 127 128 129 130
## [131] 131 132 133 134 135 136 137 138 139 140
## [141] 141 142 143 144 145 146 147 148 149 150
## [151] 151 152 153 154 155 156 157 158 159 160
## [161] 161 162 163 164 165 166 167 168 169 170
## [171] 171 172 173 174 175 176 177 178 179 180
## [181] 181 182 183 184 185 186 187 188 189 190
## [191] 191 192 193 194 195 196 197 198 199 200
## [201] 201 202 203 204 205 206 207 208 209 210
## [211] 211 212 213 214 215 216 217 218 219 220
## [221] 221 222 223 224 225 226 227 228 229 230
## [231] 231 232 233 234 235 236 237 238 239 240
## [241] 241 242 243 244 245 246 247 248 249 250
## [251] 251 252 253 254 255 256 257 258 259 260
## [261] 261 262 263 264 265 266 267 268 269 270
## [271] 271 272 273 274 275 276 277 278 279 280
## [281] 281 282 283 284 285 286 287 288 289 290
## [291] 291 292 293 294 295 296 297 298 299 300
## [301] 301 302 303 304 305 306 307 308 309 310
## [311] 311 312 313 314 315 316 317 318 319 320
## [321] 321 322 323 324 325 326 327 328 329 330
## [331] 331 332 333 334 335 336 337 338 339 340
## [341] 341 342 343 344 345 346 347 348 349 350
## [351] 351 352 353 354 355 356 357 358 359 360
## [361] 361 362 363 364 365 366 367 368 369 370
## [371] 371 372 373 374 375 376 377 378 379 380
## [381] 381 382 383 384 385 386 387 388 389 390
## [391] 391 392 393 394 395 396 397 398 399 400
## [401] 401 402 403 404 405 406 407 408 409 410
## [411] 411 412 413 414 415 416 417 418 419 420
## [421] 421 422 423 424 425 426 427 428 429 430
## [431] 431 432 433 434 435 436 437 438 439 440
## [441] 441 442 443 444 445 446 447 448 449 450
## [451] 451 452 453 454 455 456 457 458 459 460
## [461] 461 462 463 464 465 466 467 468 469 470
## [471] 471 472 473 474 475 476 477 478 479 480
## [481] 481 482 483 484 485 486 487 488 489 490
## [491] 491 492 493 494 495 496 497 498 499 500
## [501] 501 502 503 504 505 506 507 508 509 510
## [511] 511 512 513 514 515 516 517 518 519 520
## [521] 521 522 523 524 525 526 527 528 529 530
## [531] 531 532 533 534 535 536 537 538 539 540
## [541] 541 542 543 544 545 546 547 548 549 550
## [551] 551 552 553 554 555 556 557 558 559 560
## [561] 561 562 563 564 565 566 567 568 569 570
## [571] 571 572 573 574 575 576 577 578 579 580
## [581] 581 582 583 584 585 586 587 588 589 590
## [591] 591 592 593 594 595 596 597 598 599 600
## [601] 601 602 603 604 605 606 607 608 609 610
## [611] 611 612 613 614 615 616 617 618 619 620
## [621] 621 622 623 624 625 626 627 628 629 630
## [631] 631 632 633 634 635 636 637 638 639 640
## [641] 641 642 643 644 645 646 647 648 649 650
## [651] 651 652 653 654 655 656 657 658 659 660
## [661] 661 662 663 664 665 666 667 668 669 670
## [671] 671 672 673 674 675 676 677 678 679 680
## [681] 681 682 683 684 685 686 687 688 689 690
## [691] 691 692 693 694 695 696 697 698 699 700
## [701] 701 702 703 704 705 706 707 708 709 710
## [711] 711 712 713 714 715 716 717 718 719 720
## [721] 721 722 723 724 725 726 727 728 729 730
## [731] 731 732 733 734 735 736 737 738 739 740
## [741] 741 742 743 744 745 746 747 748 749 750
## [751] 751 752 753 754 755 756 757 758 759 760
## [761] 761 762 763 764 765 766 767 768 769 770
## [771] 771 772 773 774 775 776 777 778 779 780
## [781] 781 782 783 784 785 786 787 788 789 790
## [791] 791 792 793 794 795 796 797 798 799 800
## [801] 801 802 803 804 805 806 807 808 809 810
## [811] 811 812 813 814 815 816 817 818 819 820
## [821] 821 822 823 824 825 826 827 828 829 830
## [831] 831 832 833 834 835 836 837 838 839 840
## [841] 841 842 843 844 845 846 847 848 849 850
## [851] 851 852 853 854 855 856 857 858 859 860
## [861] 861 862 863 864 865 866 867 868 869 870
## [871] 871 872 873 874 875 876 877 878 879 880
## [881] 881 882 883 884 885 886 887 888 889 890
## [891] 891 892 893 894 895 896 897 898 899 900
## [901] 901 902 903 904 905 906 907 908 909 910
## [911] 911 912 913 914 915 916 917 918 919 920
## [921] 921 922 923 924 925 926 927 928 929 930
## [931] 931 932 933 934 935 936 937 938 939 940
## [941] 941 942 943 944 945 946 947 948 949 950
## [951] 951 952 953 954 955 956 957 958 959 960
## [961] 961 962 963 964 965 966 967 968 969 970
## [971] 971 972 973 974 975 976 977 978 979 980
## [981] 981 982 983 984 985 986 987 988 989 990
## [991] 991 992 993 994 995 996 997 998 999 1000
## [1001] 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
## [1011] 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
## [1021] 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
## [1031] 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
## [1041] 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
## [1051] 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
## [1061] 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
## [1071] 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
## [1081] 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
## [1091] 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
## [1101] 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
## [1111] 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
## [1121] 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
## [1131] 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
## [1141] 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
## [1151] 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
## [1161] 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
## [1171] 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
## [1181] 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
## [1191] 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
## [1201] 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
## [1211] 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
## [1221] 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
## [1231] 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
## [1241] 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
## [1251] 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
## [1261] 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
## [1271] 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
## [1281] 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
## [1291] 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
## [1301] 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
## [1311] 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
## [1321] 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
## [1331] 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
## [1341] 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
## [1351] 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
## [1361] 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
## [1371] 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
## [1381] 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
## [1391] 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
## [1401] 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
## [1411] 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
## [1421] 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
## [1431] 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
## [1441] 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
## [1451] 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
## [1461] 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
## [1471] 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
## [1481] 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
## [1491] 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
## [1501] 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
## [1511] 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
## [1521] 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
## [1531] 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
## [1541] 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
## [1551] 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
## [1561] 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
## [1571] 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
## [1581] 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
## [1591] 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
## [1601] 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
## [1611] 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
## [1621] 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
## [1631] 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
## [1641] 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
## [1651] 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
## [1661] 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
## [1671] 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
## [1681] 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
## [1691] 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
## [1701] 1701 1702 1703 1704
Alternatively, you could use function str() to display the structure of the data frame as it provides detailed information on the dimension of the data frame, data types and peek for first few records for each variable.
str(gapminder)
## tibble [1,704 x 6] (S3: tbl_df/tbl/data.frame)
## $ country : Factor w/ 142 levels "Afghanistan",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ continent: Factor w/ 5 levels "Africa","Americas",..: 3 3 3 3 3 3 3 3 3 3 ...
## $ year : int [1:1704] 1952 1957 1962 1967 1972 1977 1982 1987 1992 1997 ...
## $ lifeExp : num [1:1704] 28.8 30.3 32 34 36.1 ...
## $ pop : int [1:1704] 8425333 9240934 10267083 11537966 13079460 14880372 12881816 13867957 16317921 22227415 ...
## $ gdpPercap: num [1:1704] 779 821 853 836 740 ...
You can check the data frame by passing dataset gapminder to view(). A spreadsheet-style of data viewer will appear for you.
view(gapminder)
Data frame can store massive records. You can obtain the first few rows of data frame using head() and use tail() to obtain the last few rows instead. By default, only 6 rows are displayed.
# By default, only the first 6 observations are displayed
head(gapminder)
## # A tibble: 6 x 6
## country continent year lifeExp pop gdpPercap
## <fct> <fct> <int> <dbl> <int> <dbl>
## 1 Afghanistan Asia 1952 28.8 8425333 779.
## 2 Afghanistan Asia 1957 30.3 9240934 821.
## 3 Afghanistan Asia 1962 32.0 10267083 853.
## 4 Afghanistan Asia 1967 34.0 11537966 836.
## 5 Afghanistan Asia 1972 36.1 13079460 740.
## 6 Afghanistan Asia 1977 38.4 14880372 786.
# By default, only the last 6 observations are displayed
tail(gapminder)
## # A tibble: 6 x 6
## country continent year lifeExp pop gdpPercap
## <fct> <fct> <int> <dbl> <int> <dbl>
## 1 Zimbabwe Africa 1982 60.4 7636524 789.
## 2 Zimbabwe Africa 1987 62.4 9216418 706.
## 3 Zimbabwe Africa 1992 60.4 10704340 693.
## 4 Zimbabwe Africa 1997 46.8 11404948 792.
## 5 Zimbabwe Africa 2002 40.0 11926563 672.
## 6 Zimbabwe Africa 2007 43.5 12311143 470.
But you can adjust the argument n in the function for desired number of rows to be shown. The code below will output top 10 and bottom 10 rows of obeservation respectively.
## # A tibble: 10 x 6
## country continent year lifeExp pop gdpPercap
## <fct> <fct> <int> <dbl> <int> <dbl>
## 1 Afghanistan Asia 1952 28.8 8425333 779.
## 2 Afghanistan Asia 1957 30.3 9240934 821.
## 3 Afghanistan Asia 1962 32.0 10267083 853.
## 4 Afghanistan Asia 1967 34.0 11537966 836.
## 5 Afghanistan Asia 1972 36.1 13079460 740.
## 6 Afghanistan Asia 1977 38.4 14880372 786.
## 7 Afghanistan Asia 1982 39.9 12881816 978.
## 8 Afghanistan Asia 1987 40.8 13867957 852.
## 9 Afghanistan Asia 1992 41.7 16317921 649.
## 10 Afghanistan Asia 1997 41.8 22227415 635.
## # A tibble: 10 x 6
## country continent year lifeExp pop gdpPercap
## <fct> <fct> <int> <dbl> <int> <dbl>
## 1 Zimbabwe Africa 1962 52.4 4277736 527.
## 2 Zimbabwe Africa 1967 54.0 4995432 570.
## 3 Zimbabwe Africa 1972 55.6 5861135 799.
## 4 Zimbabwe Africa 1977 57.7 6642107 686.
## 5 Zimbabwe Africa 1982 60.4 7636524 789.
## 6 Zimbabwe Africa 1987 62.4 9216418 706.
## 7 Zimbabwe Africa 1992 60.4 10704340 693.
## 8 Zimbabwe Africa 1997 46.8 11404948 792.
## 9 Zimbabwe Africa 2002 40.0 11926563 672.
## 10 Zimbabwe Africa 2007 43.5 12311143 470.
[]We can enter the certain row and column coordinates in the single square bracket [] to retrieve data from data frame. Taking data frame, df as an example, we can slice the data by specifying rows and columns coordinates separated by comma. Take note that the order cannot be reverted.
# Taking the data frame df as example
# Obtain data from 3rd row and 2nd column
df[3,2]
## [1] 28
# Obtain data from 3rd row and column named "Age"
df[3,"Age"]
## [1] 28
# Obtain the entire 3rd row of observations
df[3,]
## Name Age Gender
## Person 3 Patrick 28 Male
# Obtain the entire row of "Age" column
df[,"Age"]
## [1] 21 34 28 27 30
We can subset the data by using either the vector of index, column name or row name. List is returned. Take note that when only one column is selected, vector is returned as the elements are made up of the same type. You may include drop=FALSE to return the normal data frame.
# Taking the data frame df as an example
# Obtain data from 3rd row and 2nd column
# Vector is returned
df[c(1,2),c(2)]
## [1] 21 34
class(df[c(1,2),c(2)])
## [1] "numeric"
# Obtain data from 3rd row and 2nd column, with drop=FALSE
# Data Frame is returned
df[c(1,2),c(2),drop=FALSE]
## Age
## Person 1 21
## Person 2 34
class(df[c(1,2),c(2),drop=FALSE])
## [1] "data.frame"
# Obtain data from 3rd row and column named "Age"
# Data Frame is returned because having column of different types
df[c("Person 3"),c("Age","Gender")]
## Age Gender
## Person 3 28 Male
class(df[c("Person 3"),c("Age","Gender")])
## [1] "data.frame"
# Obtain the entire 3rd row of observations
df[2]
## Age
## Person 1 21
## Person 2 34
## Person 3 28
## Person 4 27
## Person 5 30
class(df[2])
## [1] "data.frame"
# Return the entire row of "Age" column
df["Age"]
## Age
## Person 1 21
## Person 2 34
## Person 3 28
## Person 4 27
## Person 5 30
class(df["Age"])
## [1] "data.frame"
[[]] or $By using double brackets [[]] or dollar sign $, list of data frame is returned. If you are using [[]] and the names to subset the column, you need to enclose the names in double quotes or single quotes. The 3 lines of code below show the same output.
df$Name
## [1] "Susan" "Amy" "Patrick" "Hanson" "Kris"
df[["Name"]]
## [1] "Susan" "Amy" "Patrick" "Hanson" "Kris"
df[[1]]
## [1] "Susan" "Amy" "Patrick" "Hanson" "Kris"
The usage of $ or [[]] to subset data frame can be used together with logical operators. Let’s say, you would like to know who is 30 years old and above. The condition is df$Age>=30 which return logical vectors with TRUE for each person who are in 30s. To see who they are, we can create index of logicals. To get the total number of count which meet the condition, we can use sum() as logical value implicityly coerced to numeric where TRUE is coerced to 1 and FALSE is coerced to 0.
df[df$Age>=30,]
## Name Age Gender
## Person 2 Amy 34 Female
## Person 5 Kris 30 Male
sum(df$Age>=30)
## [1] 2
df[df$Age>=30 & df$Gender=="Male",]
## Name Age Gender
## Person 5 Kris 30 Male
sum(df$Age>=30 & df$Gender=="Male")
## [1] 1
In addition, you can also use:
which() that show which entries of logical vector is TRUEmatch() that tells which indexes of second subsetted data frame match with the element in first vector.# Function which()
cond=which(df$Age>=30)
df[cond,]
## Name Age Gender
## Person 2 Amy 34 Female
## Person 5 Kris 30 Male
# Function match()
cond=match(c("Female"),df$Gender)
df[cond,]
## Name Age Gender
## Person 1 Susan 21 Female
In fact, we can also subset the observations with largest and smallest value from a variable using which.max() and which.min() respectively.
# Who is eldest
index_max = which.max(df$Age)
df[index_max,]
## Name Age Gender
## Person 2 Amy 34 Female
# Who is youngest
index_min = which.max(df$Age)
df[index_max,]
## Name Age Gender
## Person 2 Amy 34 Female
We can expand the data frame by adding new columns to the existing data frame. You can add the new column by assigning a vector to the new column with the $ or [[]]. Another way is by using function cbind() to bind the columns from the existing data frame with the new column and form new data frame.
job=c("teacher","professor","doctor","engineer","solicitor")
df[["Job"]]=job # or df$job = job
salary=c(3000,4000,3500,3500,3200)
df=cbind(df,salary)
df
## Name Age Gender Job salary
## Person 1 Susan 21 Female teacher 3000
## Person 2 Amy 34 Female professor 4000
## Person 3 Patrick 28 Male doctor 3500
## Person 4 Hanson 27 Male engineer 3500
## Person 5 Kris 30 Male solicitor 3200
New rows can be appended to existing data frame using rbind() function.
# Add list of observation
add_row = list(Name="Ben",Age=35,Gender="Male",Job="Scientist",salary=5000)
new_df = rbind(df,add_row)
new_df
## Name Age Gender Job salary
## Person 1 Susan 21 Female teacher 3000
## Person 2 Amy 34 Female professor 4000
## Person 3 Patrick 28 Male doctor 3500
## Person 4 Hanson 27 Male engineer 3500
## Person 5 Kris 30 Male solicitor 3200
## 6 Ben 35 Male Scientist 5000
# Add new data frame
add_row = data.frame(Name="Ben",Age=35,Gender="Male",Job="Scientist",salary=5000)
new_df = rbind(df,add_row)
new_df
## Name Age Gender Job salary
## Person 1 Susan 21 Female teacher 3000
## Person 2 Amy 34 Female professor 4000
## Person 3 Patrick 28 Male doctor 3500
## Person 4 Hanson 27 Male engineer 3500
## Person 5 Kris 30 Male solicitor 3200
## 1 Ben 35 Male Scientist 5000
The function order() provide outputs of the indexes that sorts the input vector. We can use the indexes to sort the data frame by specific variable. By setting the argument decreasing=TRUE, you are ordering the value from largest to smallest and vice versa.
# By default, it is arranged by ascending order
rank = order(df$salary)
df[rank,]
## Name Age Gender Job salary
## Person 1 Susan 21 Female teacher 3000
## Person 5 Kris 30 Male solicitor 3200
## Person 3 Patrick 28 Male doctor 3500
## Person 4 Hanson 27 Male engineer 3500
## Person 2 Amy 34 Female professor 4000
# By descending order
rank = order(df$salary, decreasing =TRUE)
df[rank,]
## Name Age Gender Job salary
## Person 2 Amy 34 Female professor 4000
## Person 3 Patrick 28 Male doctor 3500
## Person 4 Hanson 27 Male engineer 3500
## Person 5 Kris 30 Male solicitor 3200
## Person 1 Susan 21 Female teacher 3000
The function summary() is a generally used to produce descriptive statistics measure such as mean, median, Q1, Q3, minimun and maximum of numerical variable in data frame, whereby for strings and factor, the summary table will display the frequency of occurence of the elements. You can observe the difference from the example below.
summary(gapminder)
## country continent year
## Afghanistan: 12 Africa :624 Min. :1952
## Albania : 12 Americas:300 1st Qu.:1966
## Algeria : 12 Asia :396 Median :1980
## Angola : 12 Europe :360 Mean :1980
## Argentina : 12 Oceania : 24 3rd Qu.:1993
## Australia : 12 Max. :2007
## (Other) :1632
## lifeExp pop gdpPercap
## Min. :23.60 Min. :6.001e+04 Min. : 241.2
## 1st Qu.:48.20 1st Qu.:2.794e+06 1st Qu.: 1202.1
## Median :60.71 Median :7.024e+06 Median : 3531.8
## Mean :59.47 Mean :2.960e+07 Mean : 7215.3
## 3rd Qu.:70.85 3rd Qu.:1.959e+07 3rd Qu.: 9325.5
## Max. :82.60 Max. :1.319e+09 Max. :113523.1
##
Tibble is the brand new and modern data frame which is commonly use along with tidyverse package to replace the older outdated data frame especially while working with tidy data. Hadley Wickham created Tidyverse package and it is an useful packages widely used by data scientists for manipulating with the data frames.
There are some operations which are useful when working with data frames. The dplyr package from tidyverse has many handy functions such as:
filter() for subsetting the data frame.mutate() for adding new column.select() for selecting certain columnsgroup_by() for grouppig or spliting the data into groups and it is frequently use with summarize()summarize() for computing of summary statistics such as mean, median, interquatile ranges and etc.Although the dplyr package will be discussed in the coming lecture, it is worth to briefly show you some functions that work with data frames. With dplyr, we can perform a series of steps. We can use %>% to send the output of one function to another without having an intermediate steps. Let’s start with the simple one, passing data frame to the functions. All these functions are aware of the column names and you can omit the quotes when specifying the column names.
Function filter() can be used to keep only specific rows of data frame.
filter_df = df %>% filter(Gender == "Female")
# same: filter_df = filter(df,Gender == "Female")
filter_df
## Name Age Gender Job salary
## Person 1 Susan 21 Female teacher 3000
## Person 2 Amy 34 Female professor 4000
Function mutate() can be used to add columns to the data frame.
mutate_df = df %>% mutate(Year_Income = 12*salary)
# same: mutate_df = mutate(df, Year_Income = 12*salary)
mutate_df
## Name Age Gender Job salary Year_Income
## 1 Susan 21 Female teacher 3000 36000
## 2 Amy 34 Female professor 4000 48000
## 3 Patrick 28 Male doctor 3500 42000
## 4 Hanson 27 Male engineer 3500 42000
## 5 Kris 30 Male solicitor 3200 38400
Funtion select() can be used to subset data with selected columns
select_df= df %>% select(Name, Job, salary)
# same: select_df= select(df, Name, Job, salary)
select_df
## Name Job salary
## Person 1 Susan teacher 3000
## Person 2 Amy professor 4000
## Person 3 Patrick doctor 3500
## Person 4 Hanson engineer 3500
## Person 5 Kris solicitor 3200
Function group() is to split data into groups and summarize() will summarize the data for computation by the grouped data frame.
mean_salary_by_gender_df = df %>% group_by(Gender) %>% summarize(average_salary=mean(salary))
## `summarise()` ungrouping output (override with `.groups` argument)
# same:
# salary_by_gender_df = group_by(df,Gender)
# mean_salary_by_gender = summarize(salary_by_gender_df,average_salary=mean(salary))
mean_salary_by_gender_df
## # A tibble: 2 x 2
## Gender average_salary
## <chr> <dbl>
## 1 Female 3500
## 2 Male 3400
Let’s recap what have been shared in this assignment. In summary, we have learned about data frame and how to create data frame for the use of analysis in future. A few functions that are useful to understand the structure of the data frame are discussed and we learned different ways on how to slice and access values from data frame. There are more advanced library available in tidyverse package that are handy for data frame manipulation expecially the functions in dplyr package that can make your works efficient with data frame. We have just showed a few essential here. I hope you find these useful. Enjoy learning R!