Data Frame in R

In this assignment, data frame - an useful R oject will be discussed. A data frame has two dimensional structure where each component has equal length. It is designed to store tabular data similar like the table in Excel spreadsheet with rows representing the records of observation and the columns representing different variables. Data frame is an extension to list and more general than a matrix as it can hold element of different data types in different columns which then combined into one object. Commonly, datasets in R are stored in data frames before using for data analysis.

How can data frame be created

Import from external sources

It is common to get external data into R from various sources such as CSV, delimited file, excel, SAS, SPSS and etc. While importing, R read the data and store it in an organized table called data frame which can be easily used for further analysis and processing. Below are some sample functions used to import data from different sources:

# Read CSV file
file_path="c:/sample.csv"
read.csv(file_path, header=TRUE)

# Read tab-delimited file
file_path="c:/mydata.txt"
read.table(file_path, header=TRUE)

# Read Excel file
install.packages("readxl")
library(readxl)
file_path="sample.xls"
read_excel(file_path, sheet = "data")

# Read SAS dataset
install.packages("haven")
library("haven")
read_sas("c:/sample.sas7bdat")

# Read SPSS dataset
install.packages("haven")
library("haven")
read_spss("c:/sample.sav")

Creating data frame

Data frame can be created by passing vectors with the same length to data.frame() function. The vectors can made up of different types, for example characters, numeric, factors etc. However, you have to set argument stringAsFactors to FALSE, otherwise all strings are setted as factors.

# Create vectors
name = c("Susan","Amy","Patrick","Hanson","Kris")
age  = c(21,34,28,27,30)
gender = c("Female","Female","Male","Male","Male")

# Create data frame
df= data.frame(name,age,gender,stringsAsFactors = FALSE)
df
##      name age gender
## 1   Susan  21 Female
## 2     Amy  34 Female
## 3 Patrick  28   Male
## 4  Hanson  27   Male
## 5    Kris  30   Male

Note that the columns are unnamed, thus variable names are shown above the columns. You can assign name when passing the vectors created as arguments to the data.frame() function. Otherwise, you can also reassign using names() or colnames(). Both give the same output.

# Assign name in data.frame()
df = data.frame("Name"=name,"Age"=age,"Gender"=gender,stringsAsFactors = FALSE)

# Use names()
df = data.frame(name,age,gender,stringsAsFactors = FALSE)
names(df)=c("Name","Age","Gender")

# Use colnames()
df = data.frame(name,age,gender,stringsAsFactors = FALSE)
colnames(df)=c("Name","Age","Gender")
df
##      Name Age Gender
## 1   Susan  21 Female
## 2     Amy  34 Female
## 3 Patrick  28   Male
## 4  Hanson  27   Male
## 5    Kris  30   Male

You can also change the name of each row of observations using rownames().

# Use rownames() to label the row
rownames(df)=c("Person 1","Person 2","Person 3","Person 4","Person 5")
df
##             Name Age Gender
## Person 1   Susan  21 Female
## Person 2     Amy  34 Female
## Person 3 Patrick  28   Male
## Person 4  Hanson  27   Male
## Person 5    Kris  30   Male

Load dataset from library

You can access dataset from the library and load it. In fact, the loaded dataset is a data frame. The function class() and is.data.frame() help us to check whether the dataset is data frame.

dslabs library is installed and the dataset gapminder is loaded. This dataset will be used to demonstrate for more examples in the following code chunks.

# Load gapminder library
library(gapminder)
data(gapminder)

# Check whether the dataset is data frame
class(gapminder)
## [1] "tbl_df"     "tbl"        "data.frame"

is.data.frame(gapminder)
## [1] TRUE

Examing structure of object

You can check the structure of the data frame using the functions as follows:

  • ncol() returns the number of columns in data frame
  • nrow() returns the number of rows in data frame
  • dim() returns the dimension. For example, 3 x 2 shows that there is 3 rows and 2 columns in the data frame.
  • attributes() which returns the class of object, colume names and row names in data frame
# Number of columns
ncol(gapminder)
## [1] 6
# Number of rows
nrow(gapminder)
## [1] 1704
# Dimension
dim(gapminder)
## [1] 1704    6
# Class of object, column and row names
attributes(gapminder)
## $names
## [1] "country"   "continent" "year"      "lifeExp"  
## [5] "pop"       "gdpPercap"
## 
## $class
## [1] "tbl_df"     "tbl"        "data.frame"
## 
## $row.names
##    [1]    1    2    3    4    5    6    7    8    9   10
##   [11]   11   12   13   14   15   16   17   18   19   20
##   [21]   21   22   23   24   25   26   27   28   29   30
##   [31]   31   32   33   34   35   36   37   38   39   40
##   [41]   41   42   43   44   45   46   47   48   49   50
##   [51]   51   52   53   54   55   56   57   58   59   60
##   [61]   61   62   63   64   65   66   67   68   69   70
##   [71]   71   72   73   74   75   76   77   78   79   80
##   [81]   81   82   83   84   85   86   87   88   89   90
##   [91]   91   92   93   94   95   96   97   98   99  100
##  [101]  101  102  103  104  105  106  107  108  109  110
##  [111]  111  112  113  114  115  116  117  118  119  120
##  [121]  121  122  123  124  125  126  127  128  129  130
##  [131]  131  132  133  134  135  136  137  138  139  140
##  [141]  141  142  143  144  145  146  147  148  149  150
##  [151]  151  152  153  154  155  156  157  158  159  160
##  [161]  161  162  163  164  165  166  167  168  169  170
##  [171]  171  172  173  174  175  176  177  178  179  180
##  [181]  181  182  183  184  185  186  187  188  189  190
##  [191]  191  192  193  194  195  196  197  198  199  200
##  [201]  201  202  203  204  205  206  207  208  209  210
##  [211]  211  212  213  214  215  216  217  218  219  220
##  [221]  221  222  223  224  225  226  227  228  229  230
##  [231]  231  232  233  234  235  236  237  238  239  240
##  [241]  241  242  243  244  245  246  247  248  249  250
##  [251]  251  252  253  254  255  256  257  258  259  260
##  [261]  261  262  263  264  265  266  267  268  269  270
##  [271]  271  272  273  274  275  276  277  278  279  280
##  [281]  281  282  283  284  285  286  287  288  289  290
##  [291]  291  292  293  294  295  296  297  298  299  300
##  [301]  301  302  303  304  305  306  307  308  309  310
##  [311]  311  312  313  314  315  316  317  318  319  320
##  [321]  321  322  323  324  325  326  327  328  329  330
##  [331]  331  332  333  334  335  336  337  338  339  340
##  [341]  341  342  343  344  345  346  347  348  349  350
##  [351]  351  352  353  354  355  356  357  358  359  360
##  [361]  361  362  363  364  365  366  367  368  369  370
##  [371]  371  372  373  374  375  376  377  378  379  380
##  [381]  381  382  383  384  385  386  387  388  389  390
##  [391]  391  392  393  394  395  396  397  398  399  400
##  [401]  401  402  403  404  405  406  407  408  409  410
##  [411]  411  412  413  414  415  416  417  418  419  420
##  [421]  421  422  423  424  425  426  427  428  429  430
##  [431]  431  432  433  434  435  436  437  438  439  440
##  [441]  441  442  443  444  445  446  447  448  449  450
##  [451]  451  452  453  454  455  456  457  458  459  460
##  [461]  461  462  463  464  465  466  467  468  469  470
##  [471]  471  472  473  474  475  476  477  478  479  480
##  [481]  481  482  483  484  485  486  487  488  489  490
##  [491]  491  492  493  494  495  496  497  498  499  500
##  [501]  501  502  503  504  505  506  507  508  509  510
##  [511]  511  512  513  514  515  516  517  518  519  520
##  [521]  521  522  523  524  525  526  527  528  529  530
##  [531]  531  532  533  534  535  536  537  538  539  540
##  [541]  541  542  543  544  545  546  547  548  549  550
##  [551]  551  552  553  554  555  556  557  558  559  560
##  [561]  561  562  563  564  565  566  567  568  569  570
##  [571]  571  572  573  574  575  576  577  578  579  580
##  [581]  581  582  583  584  585  586  587  588  589  590
##  [591]  591  592  593  594  595  596  597  598  599  600
##  [601]  601  602  603  604  605  606  607  608  609  610
##  [611]  611  612  613  614  615  616  617  618  619  620
##  [621]  621  622  623  624  625  626  627  628  629  630
##  [631]  631  632  633  634  635  636  637  638  639  640
##  [641]  641  642  643  644  645  646  647  648  649  650
##  [651]  651  652  653  654  655  656  657  658  659  660
##  [661]  661  662  663  664  665  666  667  668  669  670
##  [671]  671  672  673  674  675  676  677  678  679  680
##  [681]  681  682  683  684  685  686  687  688  689  690
##  [691]  691  692  693  694  695  696  697  698  699  700
##  [701]  701  702  703  704  705  706  707  708  709  710
##  [711]  711  712  713  714  715  716  717  718  719  720
##  [721]  721  722  723  724  725  726  727  728  729  730
##  [731]  731  732  733  734  735  736  737  738  739  740
##  [741]  741  742  743  744  745  746  747  748  749  750
##  [751]  751  752  753  754  755  756  757  758  759  760
##  [761]  761  762  763  764  765  766  767  768  769  770
##  [771]  771  772  773  774  775  776  777  778  779  780
##  [781]  781  782  783  784  785  786  787  788  789  790
##  [791]  791  792  793  794  795  796  797  798  799  800
##  [801]  801  802  803  804  805  806  807  808  809  810
##  [811]  811  812  813  814  815  816  817  818  819  820
##  [821]  821  822  823  824  825  826  827  828  829  830
##  [831]  831  832  833  834  835  836  837  838  839  840
##  [841]  841  842  843  844  845  846  847  848  849  850
##  [851]  851  852  853  854  855  856  857  858  859  860
##  [861]  861  862  863  864  865  866  867  868  869  870
##  [871]  871  872  873  874  875  876  877  878  879  880
##  [881]  881  882  883  884  885  886  887  888  889  890
##  [891]  891  892  893  894  895  896  897  898  899  900
##  [901]  901  902  903  904  905  906  907  908  909  910
##  [911]  911  912  913  914  915  916  917  918  919  920
##  [921]  921  922  923  924  925  926  927  928  929  930
##  [931]  931  932  933  934  935  936  937  938  939  940
##  [941]  941  942  943  944  945  946  947  948  949  950
##  [951]  951  952  953  954  955  956  957  958  959  960
##  [961]  961  962  963  964  965  966  967  968  969  970
##  [971]  971  972  973  974  975  976  977  978  979  980
##  [981]  981  982  983  984  985  986  987  988  989  990
##  [991]  991  992  993  994  995  996  997  998  999 1000
## [1001] 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
## [1011] 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
## [1021] 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
## [1031] 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
## [1041] 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
## [1051] 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
## [1061] 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
## [1071] 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
## [1081] 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
## [1091] 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
## [1101] 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
## [1111] 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
## [1121] 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
## [1131] 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
## [1141] 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
## [1151] 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
## [1161] 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
## [1171] 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
## [1181] 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
## [1191] 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
## [1201] 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
## [1211] 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
## [1221] 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
## [1231] 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
## [1241] 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
## [1251] 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
## [1261] 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
## [1271] 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
## [1281] 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
## [1291] 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
## [1301] 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
## [1311] 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
## [1321] 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
## [1331] 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
## [1341] 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
## [1351] 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
## [1361] 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
## [1371] 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
## [1381] 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
## [1391] 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
## [1401] 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
## [1411] 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
## [1421] 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
## [1431] 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
## [1441] 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
## [1451] 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
## [1461] 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
## [1471] 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
## [1481] 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
## [1491] 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
## [1501] 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
## [1511] 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
## [1521] 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
## [1531] 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
## [1541] 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
## [1551] 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
## [1561] 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
## [1571] 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
## [1581] 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
## [1591] 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
## [1601] 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
## [1611] 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
## [1621] 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
## [1631] 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
## [1641] 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
## [1651] 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
## [1661] 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
## [1671] 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
## [1681] 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
## [1691] 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
## [1701] 1701 1702 1703 1704

Alternatively, you could use function str() to display the structure of the data frame as it provides detailed information on the dimension of the data frame, data types and peek for first few records for each variable.

str(gapminder)
## tibble [1,704 x 6] (S3: tbl_df/tbl/data.frame)
##  $ country  : Factor w/ 142 levels "Afghanistan",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ continent: Factor w/ 5 levels "Africa","Americas",..: 3 3 3 3 3 3 3 3 3 3 ...
##  $ year     : int [1:1704] 1952 1957 1962 1967 1972 1977 1982 1987 1992 1997 ...
##  $ lifeExp  : num [1:1704] 28.8 30.3 32 34 36.1 ...
##  $ pop      : int [1:1704] 8425333 9240934 10267083 11537966 13079460 14880372 12881816 13867957 16317921 22227415 ...
##  $ gdpPercap: num [1:1704] 779 821 853 836 740 ...

You can check the data frame by passing dataset gapminder to view(). A spreadsheet-style of data viewer will appear for you.

view(gapminder)

Data frame can store massive records. You can obtain the first few rows of data frame using head() and use tail() to obtain the last few rows instead. By default, only 6 rows are displayed.

# By default, only the first 6 observations are displayed
head(gapminder)
## # A tibble: 6 x 6
##   country     continent  year lifeExp      pop gdpPercap
##   <fct>       <fct>     <int>   <dbl>    <int>     <dbl>
## 1 Afghanistan Asia       1952    28.8  8425333      779.
## 2 Afghanistan Asia       1957    30.3  9240934      821.
## 3 Afghanistan Asia       1962    32.0 10267083      853.
## 4 Afghanistan Asia       1967    34.0 11537966      836.
## 5 Afghanistan Asia       1972    36.1 13079460      740.
## 6 Afghanistan Asia       1977    38.4 14880372      786.
# By default, only the last 6 observations are displayed
tail(gapminder)
## # A tibble: 6 x 6
##   country  continent  year lifeExp      pop gdpPercap
##   <fct>    <fct>     <int>   <dbl>    <int>     <dbl>
## 1 Zimbabwe Africa     1982    60.4  7636524      789.
## 2 Zimbabwe Africa     1987    62.4  9216418      706.
## 3 Zimbabwe Africa     1992    60.4 10704340      693.
## 4 Zimbabwe Africa     1997    46.8 11404948      792.
## 5 Zimbabwe Africa     2002    40.0 11926563      672.
## 6 Zimbabwe Africa     2007    43.5 12311143      470.

But you can adjust the argument n in the function for desired number of rows to be shown. The code below will output top 10 and bottom 10 rows of obeservation respectively.

## # A tibble: 10 x 6
##    country     continent  year lifeExp      pop gdpPercap
##    <fct>       <fct>     <int>   <dbl>    <int>     <dbl>
##  1 Afghanistan Asia       1952    28.8  8425333      779.
##  2 Afghanistan Asia       1957    30.3  9240934      821.
##  3 Afghanistan Asia       1962    32.0 10267083      853.
##  4 Afghanistan Asia       1967    34.0 11537966      836.
##  5 Afghanistan Asia       1972    36.1 13079460      740.
##  6 Afghanistan Asia       1977    38.4 14880372      786.
##  7 Afghanistan Asia       1982    39.9 12881816      978.
##  8 Afghanistan Asia       1987    40.8 13867957      852.
##  9 Afghanistan Asia       1992    41.7 16317921      649.
## 10 Afghanistan Asia       1997    41.8 22227415      635.
## # A tibble: 10 x 6
##    country  continent  year lifeExp      pop gdpPercap
##    <fct>    <fct>     <int>   <dbl>    <int>     <dbl>
##  1 Zimbabwe Africa     1962    52.4  4277736      527.
##  2 Zimbabwe Africa     1967    54.0  4995432      570.
##  3 Zimbabwe Africa     1972    55.6  5861135      799.
##  4 Zimbabwe Africa     1977    57.7  6642107      686.
##  5 Zimbabwe Africa     1982    60.4  7636524      789.
##  6 Zimbabwe Africa     1987    62.4  9216418      706.
##  7 Zimbabwe Africa     1992    60.4 10704340      693.
##  8 Zimbabwe Africa     1997    46.8 11404948      792.
##  9 Zimbabwe Africa     2002    40.0 11926563      672.
## 10 Zimbabwe Africa     2007    43.5 12311143      470.

Slice and subset from data frame

Using single square bracket []

We can enter the certain row and column coordinates in the single square bracket [] to retrieve data from data frame. Taking data frame, df as an example, we can slice the data by specifying rows and columns coordinates separated by comma. Take note that the order cannot be reverted.

# Taking the data frame df as example
# Obtain data from 3rd row and 2nd column
df[3,2]
## [1] 28

# Obtain data from 3rd row and column named "Age"
df[3,"Age"]
## [1] 28

# Obtain the entire 3rd row of observations
df[3,]
##             Name Age Gender
## Person 3 Patrick  28   Male

# Obtain the entire row of "Age" column
df[,"Age"]
## [1] 21 34 28 27 30

We can subset the data by using either the vector of index, column name or row name. List is returned. Take note that when only one column is selected, vector is returned as the elements are made up of the same type. You may include drop=FALSE to return the normal data frame.

# Taking the data frame df as an example

# Obtain data from 3rd row and 2nd column
# Vector is returned
df[c(1,2),c(2)]
## [1] 21 34

class(df[c(1,2),c(2)])
## [1] "numeric"

# Obtain data from 3rd row and 2nd column, with drop=FALSE
# Data Frame is returned
df[c(1,2),c(2),drop=FALSE]
##          Age
## Person 1  21
## Person 2  34

class(df[c(1,2),c(2),drop=FALSE])
## [1] "data.frame"

# Obtain data from 3rd row and column named "Age"
# Data Frame is returned because having column of different types
df[c("Person 3"),c("Age","Gender")]
##          Age Gender
## Person 3  28   Male

class(df[c("Person 3"),c("Age","Gender")])
## [1] "data.frame"

# Obtain the entire 3rd row of observations
df[2]
##          Age
## Person 1  21
## Person 2  34
## Person 3  28
## Person 4  27
## Person 5  30

class(df[2])
## [1] "data.frame"

# Return the entire row of "Age" column
df["Age"]
##          Age
## Person 1  21
## Person 2  34
## Person 3  28
## Person 4  27
## Person 5  30

class(df["Age"])
## [1] "data.frame"

Using [[]] or $

By using double brackets [[]] or dollar sign $, list of data frame is returned. If you are using [[]] and the names to subset the column, you need to enclose the names in double quotes or single quotes. The 3 lines of code below show the same output.

df$Name
## [1] "Susan"   "Amy"     "Patrick" "Hanson"  "Kris"

df[["Name"]]
## [1] "Susan"   "Amy"     "Patrick" "Hanson"  "Kris"

df[[1]]
## [1] "Susan"   "Amy"     "Patrick" "Hanson"  "Kris"

Subset with condition

The usage of $ or [[]] to subset data frame can be used together with logical operators. Let’s say, you would like to know who is 30 years old and above. The condition is df$Age>=30 which return logical vectors with TRUE for each person who are in 30s. To see who they are, we can create index of logicals. To get the total number of count which meet the condition, we can use sum() as logical value implicityly coerced to numeric where TRUE is coerced to 1 and FALSE is coerced to 0.

df[df$Age>=30,]
##          Name Age Gender
## Person 2  Amy  34 Female
## Person 5 Kris  30   Male

sum(df$Age>=30)
## [1] 2

df[df$Age>=30 & df$Gender=="Male",]
##          Name Age Gender
## Person 5 Kris  30   Male

sum(df$Age>=30 & df$Gender=="Male")
## [1] 1

In addition, you can also use:

  • which() that show which entries of logical vector is TRUE
  • match() that tells which indexes of second subsetted data frame match with the element in first vector.
# Function which()
cond=which(df$Age>=30)
df[cond,]
##          Name Age Gender
## Person 2  Amy  34 Female
## Person 5 Kris  30   Male

# Function match()
cond=match(c("Female"),df$Gender)
df[cond,]
##           Name Age Gender
## Person 1 Susan  21 Female

In fact, we can also subset the observations with largest and smallest value from a variable using which.max() and which.min() respectively.

# Who is eldest
index_max = which.max(df$Age)
df[index_max,]
##          Name Age Gender
## Person 2  Amy  34 Female
# Who is youngest
index_min = which.max(df$Age)
df[index_max,]
##          Name Age Gender
## Person 2  Amy  34 Female

Expand and extend data frame

Add columns

We can expand the data frame by adding new columns to the existing data frame. You can add the new column by assigning a vector to the new column with the $ or [[]]. Another way is by using function cbind() to bind the columns from the existing data frame with the new column and form new data frame.

job=c("teacher","professor","doctor","engineer","solicitor")
df[["Job"]]=job  # or df$job = job

salary=c(3000,4000,3500,3500,3200)
df=cbind(df,salary)
df
##             Name Age Gender       Job salary
## Person 1   Susan  21 Female   teacher   3000
## Person 2     Amy  34 Female professor   4000
## Person 3 Patrick  28   Male    doctor   3500
## Person 4  Hanson  27   Male  engineer   3500
## Person 5    Kris  30   Male solicitor   3200

Add rows

New rows can be appended to existing data frame using rbind() function.

# Add list of observation
add_row = list(Name="Ben",Age=35,Gender="Male",Job="Scientist",salary=5000)
new_df = rbind(df,add_row)
new_df
##             Name Age Gender       Job salary
## Person 1   Susan  21 Female   teacher   3000
## Person 2     Amy  34 Female professor   4000
## Person 3 Patrick  28   Male    doctor   3500
## Person 4  Hanson  27   Male  engineer   3500
## Person 5    Kris  30   Male solicitor   3200
## 6            Ben  35   Male Scientist   5000

# Add new data frame
add_row = data.frame(Name="Ben",Age=35,Gender="Male",Job="Scientist",salary=5000)
new_df = rbind(df,add_row)

new_df
##             Name Age Gender       Job salary
## Person 1   Susan  21 Female   teacher   3000
## Person 2     Amy  34 Female professor   4000
## Person 3 Patrick  28   Male    doctor   3500
## Person 4  Hanson  27   Male  engineer   3500
## Person 5    Kris  30   Male solicitor   3200
## 1            Ben  35   Male Scientist   5000

Sorting of data frame

The function order() provide outputs of the indexes that sorts the input vector. We can use the indexes to sort the data frame by specific variable. By setting the argument decreasing=TRUE, you are ordering the value from largest to smallest and vice versa.

# By default, it is arranged by ascending order
rank = order(df$salary)
df[rank,]
##             Name Age Gender       Job salary
## Person 1   Susan  21 Female   teacher   3000
## Person 5    Kris  30   Male solicitor   3200
## Person 3 Patrick  28   Male    doctor   3500
## Person 4  Hanson  27   Male  engineer   3500
## Person 2     Amy  34 Female professor   4000
# By descending order
rank = order(df$salary, decreasing =TRUE)
df[rank,]
##             Name Age Gender       Job salary
## Person 2     Amy  34 Female professor   4000
## Person 3 Patrick  28   Male    doctor   3500
## Person 4  Hanson  27   Male  engineer   3500
## Person 5    Kris  30   Male solicitor   3200
## Person 1   Susan  21 Female   teacher   3000

summary()

The function summary() is a generally used to produce descriptive statistics measure such as mean, median, Q1, Q3, minimun and maximum of numerical variable in data frame, whereby for strings and factor, the summary table will display the frequency of occurence of the elements. You can observe the difference from the example below.

summary(gapminder)
##         country        continent        year     
##  Afghanistan:  12   Africa  :624   Min.   :1952  
##  Albania    :  12   Americas:300   1st Qu.:1966  
##  Algeria    :  12   Asia    :396   Median :1980  
##  Angola     :  12   Europe  :360   Mean   :1980  
##  Argentina  :  12   Oceania : 24   3rd Qu.:1993  
##  Australia  :  12                  Max.   :2007  
##  (Other)    :1632                                
##     lifeExp           pop              gdpPercap       
##  Min.   :23.60   Min.   :6.001e+04   Min.   :   241.2  
##  1st Qu.:48.20   1st Qu.:2.794e+06   1st Qu.:  1202.1  
##  Median :60.71   Median :7.024e+06   Median :  3531.8  
##  Mean   :59.47   Mean   :2.960e+07   Mean   :  7215.3  
##  3rd Qu.:70.85   3rd Qu.:1.959e+07   3rd Qu.:  9325.5  
##  Max.   :82.60   Max.   :1.319e+09   Max.   :113523.1  
## 

Tibble vs Data Frame

Tibble is the brand new and modern data frame which is commonly use along with tidyverse package to replace the older outdated data frame especially while working with tidy data. Hadley Wickham created Tidyverse package and it is an useful packages widely used by data scientists for manipulating with the data frames.

Tidyverse: Manipulate Data Frame

There are some operations which are useful when working with data frames. The dplyr package from tidyverse has many handy functions such as:

  • filter() for subsetting the data frame.
  • mutate() for adding new column.
  • select() for selecting certain columns
  • group_by() for grouppig or spliting the data into groups and it is frequently use with summarize()
  • summarize() for computing of summary statistics such as mean, median, interquatile ranges and etc.

Although the dplyr package will be discussed in the coming lecture, it is worth to briefly show you some functions that work with data frames. With dplyr, we can perform a series of steps. We can use %>% to send the output of one function to another without having an intermediate steps. Let’s start with the simple one, passing data frame to the functions. All these functions are aware of the column names and you can omit the quotes when specifying the column names.

Function filter() can be used to keep only specific rows of data frame.

filter_df = df %>% filter(Gender == "Female")
# same: filter_df = filter(df,Gender == "Female")
filter_df
##           Name Age Gender       Job salary
## Person 1 Susan  21 Female   teacher   3000
## Person 2   Amy  34 Female professor   4000

Function mutate() can be used to add columns to the data frame.

mutate_df = df %>% mutate(Year_Income = 12*salary)
# same: mutate_df = mutate(df, Year_Income = 12*salary)
mutate_df
##      Name Age Gender       Job salary Year_Income
## 1   Susan  21 Female   teacher   3000       36000
## 2     Amy  34 Female professor   4000       48000
## 3 Patrick  28   Male    doctor   3500       42000
## 4  Hanson  27   Male  engineer   3500       42000
## 5    Kris  30   Male solicitor   3200       38400

Funtion select() can be used to subset data with selected columns

select_df= df %>% select(Name, Job, salary)
# same: select_df= select(df, Name, Job, salary)
select_df
##             Name       Job salary
## Person 1   Susan   teacher   3000
## Person 2     Amy professor   4000
## Person 3 Patrick    doctor   3500
## Person 4  Hanson  engineer   3500
## Person 5    Kris solicitor   3200

Function group() is to split data into groups and summarize() will summarize the data for computation by the grouped data frame.

mean_salary_by_gender_df = df %>% group_by(Gender) %>% summarize(average_salary=mean(salary))
## `summarise()` ungrouping output (override with `.groups` argument)
# same: 
# salary_by_gender_df = group_by(df,Gender) 
# mean_salary_by_gender = summarize(salary_by_gender_df,average_salary=mean(salary))
mean_salary_by_gender_df
## # A tibble: 2 x 2
##   Gender average_salary
##   <chr>           <dbl>
## 1 Female           3500
## 2 Male             3400

Let’s recap what have been shared in this assignment. In summary, we have learned about data frame and how to create data frame for the use of analysis in future. A few functions that are useful to understand the structure of the data frame are discussed and we learned different ways on how to slice and access values from data frame. There are more advanced library available in tidyverse package that are handy for data frame manipulation expecially the functions in dplyr package that can make your works efficient with data frame. We have just showed a few essential here. I hope you find these useful. Enjoy learning R!