7.2 Friedman (1991) introduced several benchmark data sets create by simulation. One of these simulations used the following nonlinear equation to create data:

\[ y = 10 sin(\pi x_1x_2) + 20(x_3 − 0.5)^2 + 10x_4 + 5x_5 + N(0, \sigma^2) \]

where the x values are random variables uniformly distributed between [0, 1] (there are also 5 other non-informative variables also created in the simulation). The package mlbench contains a function called mlbench.friedman1 that simulates these data:

library(mlbench)
library(kableExtra)
library(caret)
## Loading required package: lattice
## Loading required package: ggplot2
set.seed(200)
trainingData <- mlbench.friedman1(200, sd = 1)
## We convert the 'x' data from a matrix to a data frame
## One reason is that this will give the columns names.
trainingData$x <- data.frame(trainingData$x)
## Look at the data using
featurePlot(trainingData$x, trainingData$y)

## or other methods.
## This creates a list with a vector 'y' and a matrix
## of predictors 'x'. Also simulate a large test set to
## estimate the true error rate with good precision:
testData <- mlbench.friedman1(5000, sd = 1)
testData$x <- data.frame(testData$x)

Knn Model :

knnModel <- train(x = trainingData$x,
                  y = trainingData$y,
                  method = "knn",
                  preProc = c("center", "scale"),
                  tuneLength = 10)
knnModel
## k-Nearest Neighbors 
## 
## 200 samples
##  10 predictor
## 
## Pre-processing: centered (10), scaled (10) 
## Resampling: Bootstrapped (25 reps) 
## Summary of sample sizes: 200, 200, 200, 200, 200, 200, ... 
## Resampling results across tuning parameters:
## 
##   k   RMSE      Rsquared   MAE     
##    5  3.466085  0.5121775  2.816838
##    7  3.349428  0.5452823  2.727410
##    9  3.264276  0.5785990  2.660026
##   11  3.214216  0.6024244  2.603767
##   13  3.196510  0.6176570  2.591935
##   15  3.184173  0.6305506  2.577482
##   17  3.183130  0.6425367  2.567787
##   19  3.198752  0.6483184  2.592683
##   21  3.188993  0.6611428  2.588787
##   23  3.200458  0.6638353  2.604529
## 
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was k = 17.
knnPred <- predict(knnModel, newdata = testData$x)
## The function 'postResample' can be used to get the test set perforamnce values
postResample(pred = knnPred, obs = testData$y)
##      RMSE  Rsquared       MAE 
## 3.2040595 0.6819919 2.5683461
knnAccuracy <- postResample(pred = knnPred, obs = testData$y)

SVM Model :

SvmRadialModel <- train(x = trainingData$x,
                        y = trainingData$y,
                        method = "svmRadial",
                        tuneLength=10,
                        preProc = c("center", "scale"))
SvmRadialModel
## Support Vector Machines with Radial Basis Function Kernel 
## 
## 200 samples
##  10 predictor
## 
## Pre-processing: centered (10), scaled (10) 
## Resampling: Bootstrapped (25 reps) 
## Summary of sample sizes: 200, 200, 200, 200, 200, 200, ... 
## Resampling results across tuning parameters:
## 
##   C       RMSE      Rsquared   MAE     
##     0.25  2.545335  0.7804647  2.015121
##     0.50  2.319786  0.7965148  1.830009
##     1.00  2.188349  0.8119636  1.726027
##     2.00  2.103655  0.8241314  1.655842
##     4.00  2.066879  0.8294322  1.631051
##     8.00  2.052681  0.8313929  1.623550
##    16.00  2.049867  0.8318312  1.621820
##    32.00  2.049867  0.8318312  1.621820
##    64.00  2.049867  0.8318312  1.621820
##   128.00  2.049867  0.8318312  1.621820
## 
## Tuning parameter 'sigma' was held constant at a value of 0.06802164
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were sigma = 0.06802164 and C = 16.
svmRadialPred <- predict(SvmRadialModel, newdata = testData$x)
#Use postResample function to get the test set performance values
postResample(pred = svmRadialPred, obs = testData$y)
##      RMSE  Rsquared       MAE 
## 2.0864652 0.8236735 1.5854649
svmRadialAccuracy <- postResample(pred = svmRadialPred, obs = testData$y)

Neural Networks Model :

nnetGrid <- expand.grid(.decay=c(0, 0.01, 0.1, 0.5, 0.9),
                        .size=c(1, 10, 15, 20),
                        .bag=FALSE)
nnet <- train(x = trainingData$x,
                  y = trainingData$y,
                  method = "avNNet",
                  tuneGrid = nnetGrid,
                  preProc = c("center", "scale"),
                  trace=FALSE,
                  linout=TRUE,
                  maxit=500)
nnet
## Model Averaged Neural Network 
## 
## 200 samples
##  10 predictor
## 
## Pre-processing: centered (10), scaled (10) 
## Resampling: Bootstrapped (25 reps) 
## Summary of sample sizes: 200, 200, 200, 200, 200, 200, ... 
## Resampling results across tuning parameters:
## 
##   decay  size  RMSE      Rsquared   MAE     
##   0.00    1    2.589902  0.7324403  2.014450
##   0.00   10    3.082909  0.6581005  2.345346
##   0.00   15    2.666684  0.7202739  2.135432
##   0.00   20    2.634394  0.7273102  2.116201
##   0.01    1    2.567190  0.7363972  1.993021
##   0.01   10    2.714509  0.7118994  2.173845
##   0.01   15    2.435366  0.7634558  1.935705
##   0.01   20    2.346376  0.7801847  1.850974
##   0.10    1    2.580129  0.7336990  2.000459
##   0.10   10    2.528971  0.7492960  2.003431
##   0.10   15    2.309856  0.7879857  1.823430
##   0.10   20    2.289300  0.7922572  1.799799
##   0.50    1    2.620985  0.7251648  2.034073
##   0.50   10    2.389468  0.7734132  1.893293
##   0.50   15    2.248817  0.7979988  1.778851
##   0.50   20    2.257951  0.7973906  1.768133
##   0.90    1    2.649162  0.7195330  2.057453
##   0.90   10    2.339031  0.7803865  1.849270
##   0.90   15    2.247236  0.7980673  1.774157
##   0.90   20    2.248629  0.7989807  1.770371
## 
## Tuning parameter 'bag' was held constant at a value of FALSE
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were size = 15, decay = 0.9 and bag = FALSE.
nnetPred <- predict(nnet, newdata = testData$x)
# Use postResample function to get the test set performance values
postResample(pred = nnetPred, obs = testData$y)
##     RMSE Rsquared      MAE 
## 1.894755 0.856176 1.441820
nnetAccuracy <- postResample(pred = nnetPred, obs = testData$y)

MARS Model :

marsGrid <- expand.grid(.degree=1:2,
                        .nprune=2:20)

marsModel <- train(x = trainingData$x,
                   y = trainingData$y,
                   method = "earth",
                   tuneGrid = marsGrid,
                   preProc = c("center", "scale"))
## Loading required package: earth
## Loading required package: Formula
## Loading required package: plotmo
## Loading required package: plotrix
## Loading required package: TeachingDemos
marsModel
## Multivariate Adaptive Regression Spline 
## 
## 200 samples
##  10 predictor
## 
## Pre-processing: centered (10), scaled (10) 
## Resampling: Bootstrapped (25 reps) 
## Summary of sample sizes: 200, 200, 200, 200, 200, 200, ... 
## Resampling results across tuning parameters:
## 
##   degree  nprune  RMSE      Rsquared   MAE     
##   1        2      4.416233  0.2187486  3.630918
##   1        3      3.716956  0.4495842  2.981710
##   1        4      2.829383  0.6783492  2.285456
##   1        5      2.500824  0.7495068  2.002628
##   1        6      2.377484  0.7721684  1.897799
##   1        7      1.964112  0.8402449  1.540566
##   1        8      1.849850  0.8590078  1.446960
##   1        9      1.760287  0.8734284  1.379551
##   1       10      1.745434  0.8758361  1.358502
##   1       11      1.721573  0.8784527  1.333126
##   1       12      1.741003  0.8757510  1.341457
##   1       13      1.762562  0.8729306  1.355525
##   1       14      1.779852  0.8704986  1.376884
##   1       15      1.796118  0.8682289  1.386179
##   1       16      1.801970  0.8673854  1.392551
##   1       17      1.801970  0.8673854  1.392551
##   1       18      1.801970  0.8673854  1.392551
##   1       19      1.801970  0.8673854  1.392551
##   1       20      1.801970  0.8673854  1.392551
##   2        2      4.421087  0.2136318  3.622047
##   2        3      3.738888  0.4424544  3.004778
##   2        4      2.878704  0.6647839  2.315845
##   2        5      2.556082  0.7359640  2.039618
##   2        6      2.448842  0.7590378  1.941403
##   2        7      2.076809  0.8217323  1.631062
##   2        8      1.919449  0.8477097  1.506739
##   2        9      1.750995  0.8737507  1.383005
##   2       10      1.589003  0.8961730  1.262151
##   2       11      1.503925  0.9077370  1.182204
##   2       12      1.459184  0.9131975  1.139692
##   2       13      1.465062  0.9130346  1.140011
##   2       14      1.440347  0.9155789  1.123394
##   2       15      1.462849  0.9131866  1.141915
##   2       16      1.477622  0.9110707  1.148694
##   2       17      1.479198  0.9110804  1.152683
##   2       18      1.480900  0.9108744  1.151674
##   2       19      1.475717  0.9116473  1.146616
##   2       20      1.475717  0.9116473  1.146616
## 
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were nprune = 14 and degree = 2.
marsPred <- predict(marsModel, newdata = testData$x)
# Use postResample function to get the test set performance values
postResample(pred = marsPred, obs = testData$y)
##      RMSE  Rsquared       MAE 
## 1.2779993 0.9338365 1.0147070
marsAccuracy <- postResample(pred = marsPred, obs = testData$y)

Compare the models to find the best one

accuracies <- rbind(marsAccuracy,svmRadialAccuracy,knnAccuracy,nnetAccuracy)
rownames(accuracies )<- c("MARS","SVM","KNN", "NeuralNet")
accuracies%>%
  kable() %>%
  kable_styling()
RMSE Rsquared MAE
MARS 1.277999 0.9338365 1.014707
SVM 2.086465 0.8236735 1.585465
KNN 3.204060 0.6819919 2.568346
NeuralNet 1.894755 0.8561760 1.441820

Based on the above results we can find that MARS has the best accuracy when compared to KNN, SVM and Neural Network. RMSE value of MARS model is much lower when compared to other models.

Does MARS select the informative predictors (those named X1–X5)?

We can use varImp function to find out the informative variables that MARS model selected.

varImp(marsModel)
## earth variable importance
## 
##    Overall
## X1  100.00
## X4   75.40
## X2   49.00
## X5   15.72
## X3    0.00

7.5. Exercise 6.3 describes data for a chemical manufacturing process. Use the same data imputation, data splitting, and pre-processing steps as before and train several nonlinear regression models.

library(AppliedPredictiveModeling)
library(Amelia)
## Loading required package: Rcpp
## ## 
## ## Amelia II: Multiple Imputation
## ## (Version 1.7.6, built: 2019-11-24)
## ## Copyright (C) 2005-2020 James Honaker, Gary King and Matthew Blackwell
## ## Refer to http://gking.harvard.edu/amelia/ for more information
## ##
library(missForest)
## Loading required package: randomForest
## randomForest 4.6-14
## Type rfNews() to see new features/changes/bug fixes.
## 
## Attaching package: 'randomForest'
## The following object is masked from 'package:ggplot2':
## 
##     margin
## Loading required package: foreach
## Loading required package: itertools
## Loading required package: iterators
library(nnet)
library(corrgram)
## 
## Attaching package: 'corrgram'
## The following object is masked from 'package:lattice':
## 
##     panel.fill
library(ggplot2)

Use missmap function to find the missing values

data(ChemicalManufacturingProcess)
missmap(ChemicalManufacturingProcess, col = c("red", "lightgreen"))

In previous instance i used bagImpute to replace missing values. This time i will use missForest function to impute missing values

Original_df <- ChemicalManufacturingProcess
Imputed_df <- missForest(Original_df)
##   missForest iteration 1 in progress...done!
##   missForest iteration 2 in progress...done!
##   missForest iteration 3 in progress...done!
##   missForest iteration 4 in progress...done!
##   missForest iteration 5 in progress...done!
df <- Imputed_df$ximp

Split the data into test and training dataset

data <- df[, 2:58]
target <- df[,1]
train <- createDataPartition(target, p=0.75)
train_pred <- data[train$Resample1,]
train_target <- target[train$Resample]
test_pred <- data[-train$Resample1,]
test_target <- target[-train$Resample1]
control <- trainControl(method = "cv", number=10)

(a) Which nonlinear regression model gives the optimal resampling and test set performance?

Knn Model :

set.seed(1)
knnModel <- train(x = train_pred,
                  y = train_target,
                  method = "knn",
                  tuneLength = 10)
knnModel
## k-Nearest Neighbors 
## 
## 132 samples
##  57 predictor
## 
## No pre-processing
## Resampling: Bootstrapped (25 reps) 
## Summary of sample sizes: 132, 132, 132, 132, 132, 132, ... 
## Resampling results across tuning parameters:
## 
##   k   RMSE      Rsquared   MAE     
##    5  1.722106  0.2152919  1.400652
##    7  1.696309  0.2170071  1.382955
##    9  1.696599  0.2075752  1.378167
##   11  1.689217  0.2104431  1.371941
##   13  1.681288  0.2175028  1.371749
##   15  1.675921  0.2192990  1.365006
##   17  1.675337  0.2211266  1.358179
##   19  1.673974  0.2225404  1.359908
##   21  1.675164  0.2198840  1.358720
##   23  1.681794  0.2145043  1.356062
## 
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was k = 19.
knn.Predict <- predict(knnModel, newdata = test_pred)
# Use PostResample function
postResample(pred = knn.Predict, obs = test_target)
##      RMSE  Rsquared       MAE 
## 1.6591763 0.3388975 1.3013158
knnAccuracy <- postResample(pred = knn.Predict, obs = test_target)

Svm Model :

set.seed(1)
svmModel <- train(x = train_pred, 
                  y = train_target, 
                  method='svmRadial', 
                  tuneLength=14, 
                  trControl = trainControl(method = "cv"),
                  preProc = c("center", "scale"))
svmModel
## Support Vector Machines with Radial Basis Function Kernel 
## 
## 132 samples
##  57 predictor
## 
## Pre-processing: centered (57), scaled (57) 
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 119, 119, 119, 118, 119, 118, ... 
## Resampling results across tuning parameters:
## 
##   C        RMSE      Rsquared   MAE      
##      0.25  1.426859  0.4930403  1.1553090
##      0.50  1.299018  0.5499885  1.0420521
##      1.00  1.189160  0.6049125  0.9514879
##      2.00  1.141489  0.6329814  0.9128962
##      4.00  1.141144  0.6373573  0.9156004
##      8.00  1.115601  0.6531527  0.8996701
##     16.00  1.113618  0.6546783  0.8981607
##     32.00  1.113618  0.6546783  0.8981607
##     64.00  1.113618  0.6546783  0.8981607
##    128.00  1.113618  0.6546783  0.8981607
##    256.00  1.113618  0.6546783  0.8981607
##    512.00  1.113618  0.6546783  0.8981607
##   1024.00  1.113618  0.6546783  0.8981607
##   2048.00  1.113618  0.6546783  0.8981607
## 
## Tuning parameter 'sigma' was held constant at a value of 0.01398119
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were sigma = 0.01398119 and C = 16.
svm.Predict <- predict (svmModel, test_pred)
# Use PostResample function
postResample(pred = svm.Predict, obs = test_target)
##      RMSE  Rsquared       MAE 
## 1.0326586 0.7074344 0.8384875
svmRadialAccuracy <- postResample(pred = svm.Predict, obs = test_target)

Neural Network Model :

set.seed(1)
nnetModel <- nnet(train_pred,
                  train_target,
                  size=5,
                  decay=0.01,
                  linout= T,
                  trace=F,
                  maxit = 500 ,
                  MaxNWts = 5 * (ncol(train_pred) + 1) + 5 + 1)
nnetPredict <- predict(nnetModel, test_pred)
# Use PostResample function
postResample(pred = nnetPredict, obs = test_target)
##      RMSE  Rsquared       MAE 
## 2.9292442 0.1673242 2.3167136
nnetAccuracy <- postResample(pred = nnetPredict, obs = test_target)

MARS Model :

set.seed(1)
marsModel <- train(x = train_pred,
                   y = train_target,
                   method='earth',
                   tuneLength=10,
                   trControl = trainControl(method = "cv"))
marsModel
## Multivariate Adaptive Regression Spline 
## 
## 132 samples
##  57 predictor
## 
## No pre-processing
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 119, 119, 119, 118, 119, 118, ... 
## Resampling results across tuning parameters:
## 
##   nprune  RMSE      Rsquared   MAE      
##    2      1.414798  0.4364493  1.1195825
##    3      1.190013  0.5992537  0.9679315
##    5      1.119823  0.6159515  0.9068656
##    7      1.147665  0.6119270  0.9529042
##    8      1.167424  0.6026739  0.9707559
##   10      1.159271  0.6099304  0.9829971
##   12      1.226075  0.5719064  1.0406675
##   13      1.259002  0.5538101  1.0751039
##   15      1.305346  0.5356789  1.0979933
##   17      1.305006  0.5382960  1.1034235
## 
## Tuning parameter 'degree' was held constant at a value of 1
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were nprune = 5 and degree = 1.
mars.Predict <- predict (marsModel, test_pred)
# Use PostResample function
postResample(pred = mars.Predict, obs = test_target)
##      RMSE  Rsquared       MAE 
## 1.2250658 0.6062770 0.9706621
marsAccuracy <- postResample(pred = mars.Predict, obs = test_target)

Compare Models

accuracies1 <- rbind(marsAccuracy,svmRadialAccuracy,knnAccuracy,nnetAccuracy)
rownames(accuracies1)<- c("MARS","SVM","KNN", "NeuralNet")
accuracies1%>%
  kable() %>%
  kable_styling()
RMSE Rsquared MAE
MARS 1.225066 0.6062770 0.9706621
SVM 1.032659 0.7074344 0.8384875
KNN 1.659176 0.3388975 1.3013158
NeuralNet 2.929244 0.1673242 2.3167136

SVM model was slightly performing better than MARS model. Here we can observe the least RMSE for SVM.

(b) Which predictors are most important in the optimal nonlinear regression model? Do either the biological or process variables dominate the list? How do the top ten important predictors compare to the top ten predictors from the optimal linear model?

varImp(svmModel)
## loess r-squared variable importance
## 
##   only 20 most important variables shown (out of 57)
## 
##                        Overall
## ManufacturingProcess32  100.00
## ManufacturingProcess13   94.26
## ManufacturingProcess17   80.60
## BiologicalMaterial06     67.90
## ManufacturingProcess09   64.43
## BiologicalMaterial03     62.21
## BiologicalMaterial12     58.04
## ManufacturingProcess36   55.82
## ManufacturingProcess06   51.42
## BiologicalMaterial02     50.70
## ManufacturingProcess31   46.60
## ManufacturingProcess11   43.88
## ManufacturingProcess30   39.49
## ManufacturingProcess33   38.76
## ManufacturingProcess12   37.05
## ManufacturingProcess29   36.88
## BiologicalMaterial08     36.68
## BiologicalMaterial11     36.49
## BiologicalMaterial09     33.27
## BiologicalMaterial04     33.09
plot(varImp(svmModel), top=10)

Manufacturing process 32 and Maunfacturing process 13 are in top 3 list for the selected SVM model. In top 10 we got 6 Manufacturing processes and 4 Biological processes. By this we can say Manufacturing processes dominates Biological processes.

(c) Explore the relationships between the top predictors and the response for the predictors that are unique to the optimal nonlinear regression model. Do these plots reveal intuition about the biological or process predictors and their relationship with yield?

library(dplyr)
## 
## Attaching package: 'dplyr'
## The following object is masked from 'package:randomForest':
## 
##     combine
## The following object is masked from 'package:kableExtra':
## 
##     group_rows
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
cor_model <- train_pred %>% select(ManufacturingProcess32, ManufacturingProcess13, ManufacturingProcess17, BiologicalMaterial12, BiologicalMaterial03, ManufacturingProcess09, BiologicalMaterial06, ManufacturingProcess36, ManufacturingProcess06, BiologicalMaterial02) 

corrgram(cor_model, order=TRUE, upper.panel=panel.cor)

The plot above shows correlation between the top 10 variables from the SVM model. Manufacturing Process 32 has the most positive correlation and Manufacturing process 06 has the most negative correlation.