Definitions

Norm

A norm \(N : E \rightarrow \mathbb R\) is a function that is (\(\forall \mathbf{x}, \mathbf{y}\in E\), \(\forall \lambda \in \mathbb R\)) :

  • positive, \(N(\mathbf{x}) \geq 0\),
  • definite, \(N(\mathbf{x}) = 0 \Rightarrow \mathbf{x}= 0\),
  • absolutely scalable, \(N(\lambda \mathbf{x}) \leq |\lambda|N(\mathbf{x})\),
  • subadditive \(N(\mathbf{x}+\mathbf{y}) \leq N(\mathbf{x}) + N(\mathbf{y})\)

\(\ell_p\)-norm

An \(\ell_p\)-norm, denoted \(\|\cdot\|_p\), with \(p \in \mathbb N\) is defined as \[ \|\mathbf{x}\|_p = \left(\sum_{i=1}^n x_i^p\right)^{\frac{1}{p}} \]

\(\ell_p\)-ball

We define an \(\ell_p\)-ball of radius \(r > 0\) as \[ \mathscr{B}_p(r) = \left\{ \mathbf{x}\in E \text{ s.t. } \|\mathbf{x}\|_p \leq r\right\} \] In the following, we will consider that if \(r\) is not specified, it is equal to 1.

A detour by the 2D world

Let’s represent \(\ell_p\)-balls in 2D.

\(\mathscr{B}_1\)

\(\mathscr{B}_2\)

\(\mathscr{B}_\infty\)

In 3D

\(\mathscr{B}_1\)

\(\mathscr{B}_2\)

\(\mathscr{B}_\infty\)