Олеся Волченко
11 ноября 2020
| Бинарная | Номинальная/ординальная | Интервальная/отношений | |
|---|---|---|---|
| Бинарная | Тест хи-квадрат с поправкой Йетса | Тест хи-квадрат | t-test; тест Манна-Уитни-Вилкоксона |
| Номинальная/ординальная | Тест хи-квадрат | Тест хи-квадрат | anova, тест Краскела-Уоллиса |
| Интервальная/отношений | t-test; тест Манна-Уитни-Вилкоксона | anova, тест Краскела-Уоллиса | ? |
\[ r = \frac{N \sum xy - \left(\sum x\right) \left(\sum y\right)}{\sqrt{[N \sum x^2 - (\sum x)^2][N \sum y^2 - (\sum y)^2]}} \]
\[r_s = 1 - \frac{6 \sum d^2}{n(n^2-1)}\]
\[\tau _B = \frac{n_c - n_d}{\frac{1}{2}n(n-1)}\]
| Correlation Coefficient | Dancey & Reidy (Psychology) | Quinnipiac University (Politics) | Chan YH (Medicine) |
|---|---|---|---|
| +1 −1 | Perfect | Perfect | Perfect |
| +0.9 −0.9 | Strong | Very Strong | Very Strong |
| +0.8 −0.8 | Strong | Very Strong | Very Strong |
| +0.7 −0.7 | Strong | Very Strong | Moderate |
| +0.6 −0.6 | Moderate | Strong | Moderate |
| +0.5 −0.5 | Moderate | Strong | Fair |
| +0.4 −0.4 | Moderate | Strong | Fair |
| +0.3 −0.3 | Weak | Moderate | Fair |
| +0.2 −0.2 | Weak | Weak | Poor |
| +0.1 −0.1 | Weak | Negligible | Poor |
| 0 | Zero | None | None |
Давайте узнаем, связано ли количество алкоголя, потребляемого по выходным, с количеством алкоголя, потребляемого по будням для жителей Великобритании.
Данные - 7 волна ESS
##
## Shapiro-Wilk normality test
##
## data: d2$alcwkdy1
## W = 0.58301, p-value < 2.2e-16
##
## Shapiro-Wilk normality test
##
## data: d2$alcwknd1
## W = 0.67011, p-value < 2.2e-16
##
## Pearson's product-moment correlation
##
## data: d2$alcwkdy1 and d2$alcwknd1
## t = 23.875, df = 1179, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.5311421 0.6081278
## sample estimates:
## cor
## 0.5708885
##
## Spearman's rank correlation rho
##
## data: d2$alcwkdy1 and d2$alcwknd1
## S = 107694888, p-value < 2.2e-16
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
## rho
## 0.6077193
##
## Kendall's rank correlation tau
##
## data: d2$alcwkdy1 and d2$alcwknd1
## z = 23.105, p-value < 2.2e-16
## alternative hypothesis: true tau is not equal to 0
## sample estimates:
## tau
## 0.4652268
##
## Shapiro-Wilk normality test
##
## data: d2$alcwkdylog
## W = 0.96539, p-value = 3.681e-16
##
## Shapiro-Wilk normality test
##
## data: d2$alcwkndlog
## W = 0.98681, p-value = 7.608e-09
##
## Pearson's product-moment correlation
##
## data: d2$alcwkdylog and d2$alcwkndlog
## t = 27.034, df = 1179, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.5821045 0.6526207
## sample estimates:
## cor
## 0.6186068
## Warning in cor.test.default(d2$alcwkdylog, d2$alcwkndlog, method = "spearman"):
## Cannot compute exact p-value with ties
##
## Spearman's rank correlation rho
##
## data: d2$alcwkdylog and d2$alcwkndlog
## S = 107694888, p-value < 2.2e-16
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
## rho
## 0.6077193
##
## Kendall's rank correlation tau
##
## data: d2$alcwkdylog and d2$alcwkndlog
## z = 23.105, p-value < 2.2e-16
## alternative hypothesis: true tau is not equal to 0
## sample estimates:
## tau
## 0.4652268
d$Conformity <- (as.numeric(d$ipfrule) + as.numeric(d$ipbhprp))/2
d$Tradition <- (as.numeric(d$ipmodst) + as.numeric(d$imptrad))/2
d$Benevolence <- (as.numeric(d$iphlppl) + as.numeric(d$iplylfr))/2
d$Universalism <- (as.numeric(d$ipeqopt) + as.numeric(d$ipudrst)
+ as.numeric(d$impenv))/3
d$SelfDirection <- (as.numeric(d$ipcrtiv) + as.numeric(d$impfree))/2
d$Stimulation <- (as.numeric(d$impdiff) + as.numeric(d$ipadvnt))/2
d$Hedonism <- (as.numeric(d$ipgdtim) + as.numeric(d$impfun))/2
d$Achievement <- (as.numeric(d$ipshabt) + as.numeric(d$ipsuces))/2
d$Power <- (as.numeric(d$imprich) + as.numeric(d$iprspot))/2
d$Security <- (as.numeric(d$impsafe) + as.numeric(d$ipstrgv))/2| d.Conformity | d.Tradition | d.Benevolence | d.Universalism | d.SelfDirection | d.Stimulation | d.Hedonism | d.Achievement | d.Power | d.Security | |
|---|---|---|---|---|---|---|---|---|---|---|
| d.Conformity | 0.341*** | 0.208*** | 0.181*** | 0.051*** | 0.011** | 0.037*** | 0.153*** | 0.204*** | 0.326*** | |
| d.Tradition | 0.341*** | 0.261*** | 0.231*** | 0.043*** | -0.026*** | 0.047*** | 0.069*** | 0.080*** | 0.316*** | |
| d.Benevolence | 0.208*** | 0.261*** | 0.422*** | 0.271*** | 0.151*** | 0.208*** | 0.154*** | 0.048*** | 0.251*** | |
| d.Universalism | 0.181*** | 0.231*** | 0.422*** | 0.275*** | 0.147*** | 0.144*** | 0.115*** | -0.003 | 0.232*** | |
| d.SelfDirection | 0.051*** | 0.043*** | 0.271*** | 0.275*** | 0.309*** | 0.262*** | 0.253*** | 0.147*** | 0.126*** | |
| d.Stimulation | 0.011** | -0.026*** | 0.151*** | 0.147*** | 0.309*** | 0.401*** | 0.324*** | 0.229*** | 0.004 | |
| d.Hedonism | 0.037*** | 0.047*** | 0.208*** | 0.144*** | 0.262*** | 0.401*** | 0.290*** | 0.215*** | 0.099*** | |
| d.Achievement | 0.153*** | 0.069*** | 0.154*** | 0.115*** | 0.253*** | 0.324*** | 0.290*** | 0.432*** | 0.211*** | |
| d.Power | 0.204*** | 0.080*** | 0.048*** | -0.003 | 0.147*** | 0.229*** | 0.215*** | 0.432*** | 0.186*** | |
| d.Security | 0.326*** | 0.316*** | 0.251*** | 0.232*** | 0.126*** | 0.004 | 0.099*** | 0.211*** | 0.186*** | |
| Computed correlation used kendall-method with listwise-deletion. | ||||||||||
https://seeing-theory.brown.edu/regression-analysis/index.html#section2
| Бинарная | Номинальная/ординальная | Интервальная/отношений | |
|---|---|---|---|
| Бинарная | Тест хи-квадрат с поправкой Йетса | Тест хи-квадрат | t-test; тест Манна-Уитни-Вилкоксона |
| Номинальная/ординальная | Тест хи-квадрат | Тест хи-квадрат | anova, тест Краскела-Уоллиса |
| Интервальная/отношений | t-test; тест Манна-Уитни-Вилкоксона | anova, тест Краскела-Уоллиса | Корреляция |