##Creating lists of vector
farmer.name = c("Luna","Kleen","Ningguang","Keqing","Sucrose","Barbara","Diluc","Kaeya","Lisa","Bennett")
item=c("Fowl","Crab","Sweet Flower","Radish","Mint","Smoked Ham","Shrimp Meat","Cream","Valberry","Glaze Lily")
weight=c(11,4,7,35,217,6,20,10,29,18)
unit.price=c(80,250,50,30,8,180,300,15,5,20)
total.payout=weight*unit.price

##Creating data frame on Wholesale Market
wholesale_df=data.frame(farmer.name,item,weight,unit.price,total.payout)
wholesale_df
##    farmer.name         item weight unit.price total.payout
## 1         Luna         Fowl     11         80          880
## 2        Kleen         Crab      4        250         1000
## 3    Ningguang Sweet Flower      7         50          350
## 4       Keqing       Radish     35         30         1050
## 5      Sucrose         Mint    217          8         1736
## 6      Barbara   Smoked Ham      6        180         1080
## 7        Diluc  Shrimp Meat     20        300         6000
## 8        Kaeya        Cream     10         15          150
## 9         Lisa     Valberry     29          5          145
## 10     Bennett   Glaze Lily     18         20          360
#adding single row to data frame
new.farmer = data.frame("Jean","Potato",38,12,38*12)
names(new.farmer)=c("farmer.name","item","weight","unit.price","total.payout")
wholesale_df=rbind(wholesale_df,new.farmer)
wholesale_df
##    farmer.name         item weight unit.price total.payout
## 1         Luna         Fowl     11         80          880
## 2        Kleen         Crab      4        250         1000
## 3    Ningguang Sweet Flower      7         50          350
## 4       Keqing       Radish     35         30         1050
## 5      Sucrose         Mint    217          8         1736
## 6      Barbara   Smoked Ham      6        180         1080
## 7        Diluc  Shrimp Meat     20        300         6000
## 8        Kaeya        Cream     10         15          150
## 9         Lisa     Valberry     29          5          145
## 10     Bennett   Glaze Lily     18         20          360
## 11        Jean       Potato     38         12          456
#adding multiple rows using Vector
new.farmers=data.frame(c("Venti","Amber","ZhongLi"),c("Mushroom","Apple","Cabbage"),c(55,20,37),c(13,5,25),c(55*13,20*5,37*25))
names(new.farmers)=c("farmer.name","item","weight","unit.price","total.payout")
wholesale_df=rbind(wholesale_df,new.farmers)
wholesale_df
##    farmer.name         item weight unit.price total.payout
## 1         Luna         Fowl     11         80          880
## 2        Kleen         Crab      4        250         1000
## 3    Ningguang Sweet Flower      7         50          350
## 4       Keqing       Radish     35         30         1050
## 5      Sucrose         Mint    217          8         1736
## 6      Barbara   Smoked Ham      6        180         1080
## 7        Diluc  Shrimp Meat     20        300         6000
## 8        Kaeya        Cream     10         15          150
## 9         Lisa     Valberry     29          5          145
## 10     Bennett   Glaze Lily     18         20          360
## 11        Jean       Potato     38         12          456
## 12       Venti     Mushroom     55         13          715
## 13       Amber        Apple     20          5          100
## 14     ZhongLi      Cabbage     37         25          925
#adding column using R Package
library(tibble)
newwholesale_df=wholesale_df %>% add_column(recipient="WJ")
newwholesale_df
##    farmer.name         item weight unit.price total.payout recipient
## 1         Luna         Fowl     11         80          880        WJ
## 2        Kleen         Crab      4        250         1000        WJ
## 3    Ningguang Sweet Flower      7         50          350        WJ
## 4       Keqing       Radish     35         30         1050        WJ
## 5      Sucrose         Mint    217          8         1736        WJ
## 6      Barbara   Smoked Ham      6        180         1080        WJ
## 7        Diluc  Shrimp Meat     20        300         6000        WJ
## 8        Kaeya        Cream     10         15          150        WJ
## 9         Lisa     Valberry     29          5          145        WJ
## 10     Bennett   Glaze Lily     18         20          360        WJ
## 11        Jean       Potato     38         12          456        WJ
## 12       Venti     Mushroom     55         13          715        WJ
## 13       Amber        Apple     20          5          100        WJ
## 14     ZhongLi      Cabbage     37         25          925        WJ
##Change the titles of the data frame
colnames(newwholesale_df)=c("Farmer Name","Item","Weight","Price per Kg","Total Payout","Received by")
newwholesale_df
##    Farmer Name         Item Weight Price per Kg Total Payout Received by
## 1         Luna         Fowl     11           80          880          WJ
## 2        Kleen         Crab      4          250         1000          WJ
## 3    Ningguang Sweet Flower      7           50          350          WJ
## 4       Keqing       Radish     35           30         1050          WJ
## 5      Sucrose         Mint    217            8         1736          WJ
## 6      Barbara   Smoked Ham      6          180         1080          WJ
## 7        Diluc  Shrimp Meat     20          300         6000          WJ
## 8        Kaeya        Cream     10           15          150          WJ
## 9         Lisa     Valberry     29            5          145          WJ
## 10     Bennett   Glaze Lily     18           20          360          WJ
## 11        Jean       Potato     38           12          456          WJ
## 12       Venti     Mushroom     55           13          715          WJ
## 13       Amber        Apple     20            5          100          WJ
## 14     ZhongLi      Cabbage     37           25          925          WJ
##showcase the structure of data frame
str(newwholesale_df)
## 'data.frame':    14 obs. of  6 variables:
##  $ Farmer Name : chr  "Luna" "Kleen" "Ningguang" "Keqing" ...
##  $ Item        : chr  "Fowl" "Crab" "Sweet Flower" "Radish" ...
##  $ Weight      : num  11 4 7 35 217 6 20 10 29 18 ...
##  $ Price per Kg: num  80 250 50 30 8 180 300 15 5 20 ...
##  $ Total Payout: num  880 1000 350 1050 1736 ...
##  $ Received by : chr  "WJ" "WJ" "WJ" "WJ" ...
##Exercising different ways R returns** 
names(newwholesale_df) #showing the title of each column
## [1] "Farmer Name"  "Item"         "Weight"       "Price per Kg" "Total Payout"
## [6] "Received by"
head(newwholesale_df) #showing first 6 rows of the data frame
##   Farmer Name         Item Weight Price per Kg Total Payout Received by
## 1        Luna         Fowl     11           80          880          WJ
## 2       Kleen         Crab      4          250         1000          WJ
## 3   Ningguang Sweet Flower      7           50          350          WJ
## 4      Keqing       Radish     35           30         1050          WJ
## 5     Sucrose         Mint    217            8         1736          WJ
## 6     Barbara   Smoked Ham      6          180         1080          WJ
tail(newwholesale_df) #showing last 6 rows of the data frame
##    Farmer Name       Item Weight Price per Kg Total Payout Received by
## 9         Lisa   Valberry     29            5          145          WJ
## 10     Bennett Glaze Lily     18           20          360          WJ
## 11        Jean     Potato     38           12          456          WJ
## 12       Venti   Mushroom     55           13          715          WJ
## 13       Amber      Apple     20            5          100          WJ
## 14     ZhongLi    Cabbage     37           25          925          WJ
summary(newwholesale_df) #summaries each column
##  Farmer Name            Item               Weight        Price per Kg   
##  Length:14          Length:14          Min.   :  4.00   Min.   :  5.00  
##  Class :character   Class :character   1st Qu.: 10.25   1st Qu.: 12.25  
##  Mode  :character   Mode  :character   Median : 20.00   Median : 22.50  
##                                        Mean   : 36.21   Mean   : 70.93  
##                                        3rd Qu.: 36.50   3rd Qu.: 72.50  
##                                        Max.   :217.00   Max.   :300.00  
##   Total Payout    Received by       
##  Min.   : 100.0   Length:14         
##  1st Qu.: 352.5   Class :character  
##  Median : 797.5   Mode  :character  
##  Mean   :1067.6                     
##  3rd Qu.:1037.5                     
##  Max.   :6000.0
newwholesale_df[4:5,] #accessing two sets of data (row no.4 & 5) using matrix
##   Farmer Name   Item Weight Price per Kg Total Payout Received by
## 4      Keqing Radish     35           30         1050          WJ
## 5     Sucrose   Mint    217            8         1736          WJ
newwholesale_df[,2] #accessing data of column no.2 using matrix
##  [1] "Fowl"         "Crab"         "Sweet Flower" "Radish"       "Mint"        
##  [6] "Smoked Ham"   "Shrimp Meat"  "Cream"        "Valberry"     "Glaze Lily"  
## [11] "Potato"       "Mushroom"     "Apple"        "Cabbage"
newwholesale_df[7,4] #accesing single data from the data frame (the unit price of shrimp meat)
## [1] 300
##additional 
##check which farmer's payout is more than 1000
big_payout=newwholesale_df$`Total Payout`>=1000
amount=which(big_payout)
amount
## [1] 2 4 5 6 7
##sum the total no.of farmers
sum(big_payout)  
## [1] 5
## or just show all the details about the farmers that has more than 1000 payout.
newwholesale_df[big_payout,]
##   Farmer Name        Item Weight Price per Kg Total Payout Received by
## 2       Kleen        Crab      4          250         1000          WJ
## 4      Keqing      Radish     35           30         1050          WJ
## 5     Sucrose        Mint    217            8         1736          WJ
## 6     Barbara  Smoked Ham      6          180         1080          WJ
## 7       Diluc Shrimp Meat     20          300         6000          WJ