library(coda)
## Warning: package 'coda' was built under R version 4.0.3
library(MASS)
## Warning: package 'MASS' was built under R version 4.0.3
library(mcsm)
## Warning: package 'mcsm' was built under R version 4.0.3
demo(Chapter.1)
## 
## 
##  demo(Chapter.1)
##  ---- ~~~~~~~~~
## 
## > # Chapter 1 R commands
## > 
## > # Section 1.3.2
## > 
## > x=matrix(1:4,ncol=3)
## Warning in matrix(1:4, ncol = 3): la longitud de los datos [4] no es un
## submúltiplo o múltiplo del número de columnas [3] en la matriz
## 
## > print(x[x>5])
## integer(0)
## 
## > print(x[1.])
## [1] 1
## 
## > S=readline(prompt="Type  <Return>   to continue : ")
## Type  <Return>   to continue : 
## 
## > # Section 1.3.3
## > 
## > x = list(a = 1:10, beta = exp(-3:3),
## + logic = c(TRUE,FALSE,FALSE,TRUE))
## 
## > print(lapply(x,mean))
## $a
## [1] 5.5
## 
## $beta
## [1] 4.535125
## 
## $logic
## [1] 0.5
## 
## 
## > print(sapply(x,mean))
##        a     beta    logic 
## 5.500000 4.535125 0.500000 
## 
## > S=readline(prompt="Type  <Return>   to continue : ")
## Type  <Return>   to continue : 
## 
## > # Section 1.4
## > 
## > x=rnorm(20)
## 
## > y=3*x+5+rnorm(20,sd=0.3)
## 
## > reslm=lm(y~x)
## 
## > print(summary(reslm))
## 
## Call:
## lm(formula = y ~ x)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.36944 -0.12842 -0.00643  0.14187  0.42563 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  5.02797    0.05656   88.90   <2e-16 ***
## x            3.00450    0.05426   55.37   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.2447 on 18 degrees of freedom
## Multiple R-squared:  0.9942, Adjusted R-squared:  0.9938 
## F-statistic:  3066 on 1 and 18 DF,  p-value: < 2.2e-16
## 
## 
## > S=readline(prompt="Type  <Return>   to continue : ")
## Type  <Return>   to continue : 
## 
## > # Section 1.5
## > 
## > b=matrix(1:9,ncol=3)
## 
## > print(var(b))
##      [,1] [,2] [,3]
## [1,]    1    1    1
## [2,]    1    1    1
## [3,]    1    1    1
## 
## > print(sd(b)^2)
## [1] 7.5
## 
## > x=rnorm(25) #produces a N(0,1) sample of size 25
## 
## > out=t.test(x)
## 
## > print(names(out))
##  [1] "statistic"   "parameter"   "p.value"     "conf.int"    "estimate"   
##  [6] "null.value"  "stderr"      "alternative" "method"      "data.name"  
## 
## > S=readline(prompt="Type  <Return>   to continue : ")
## Type  <Return>   to continue : 
## 
## > attach(faithful) #resident dataset
## 
## > print(cor.test(faithful[,1],faithful[,2]))
## 
##  Pearson's product-moment correlation
## 
## data:  faithful[, 1] and faithful[, 2]
## t = 34.089, df = 270, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.8756964 0.9210652
## sample estimates:
##       cor 
## 0.9008112 
## 
## 
## > print(ks.test(jitter(faithful[,1]),pnorm))
## 
##  One-sample Kolmogorov-Smirnov test
## 
## data:  jitter(faithful[, 1])
## D = 0.94858, p-value < 2.2e-16
## alternative hypothesis: two-sided
## 
## 
## > print(shapiro.test(faithful[,2]))
## 
##  Shapiro-Wilk normality test
## 
## data:  faithful[, 2]
## W = 0.92215, p-value = 1.015e-10
## 
## 
## > print(wilcox.test(faithful[,1]))
## 
##  Wilcoxon signed rank test with continuity correction
## 
## data:  faithful[, 1]
## V = 37128, p-value < 2.2e-16
## alternative hypothesis: true location is not equal to 0
## 
## 
## > #S=readline(prompt="Type  <Return>   to continue : ")
## > 
## > x=seq(-3,3,le=5) # equidispersed regressor
## 
## > y=2+4*x+rnorm(5) # simulated variable
## 
## > print(lm(y~x))
## 
## Call:
## lm(formula = y ~ x)
## 
## Coefficients:
## (Intercept)            x  
##       2.748        4.156  
## 
## 
## > print(summary(lm(y~x)))
## 
## Call:
## lm(formula = y ~ x)
## 
## Residuals:
##       1       2       3       4       5 
## -0.7342  0.4557  1.0177 -0.4659 -0.2734 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   2.7476     0.3719   7.389 0.005126 ** 
## x             4.1562     0.1753  23.710 0.000164 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8315 on 3 degrees of freedom
## Multiple R-squared:  0.9947, Adjusted R-squared:  0.9929 
## F-statistic: 562.2 on 1 and 3 DF,  p-value: 0.0001644
## 
## 
## > out=lm(y~x)
## 
## > print(sqrt(sum(out$res^2)/out$df))
## [1] 0.8314914
## 
## > #S=readline(prompt="Type  <Return>   to continue : ")
## > 
## > print(summary(lm(weight ~ feed, data = chickwts)))
## 
## Call:
## lm(formula = weight ~ feed, data = chickwts)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -123.909  -34.413    1.571   38.170  103.091 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    323.583     15.834  20.436  < 2e-16 ***
## feedhorsebean -163.383     23.485  -6.957 2.07e-09 ***
## feedlinseed   -104.833     22.393  -4.682 1.49e-05 ***
## feedmeatmeal   -46.674     22.896  -2.039 0.045567 *  
## feedsoybean    -77.155     21.578  -3.576 0.000665 ***
## feedsunflower    5.333     22.393   0.238 0.812495    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 54.85 on 65 degrees of freedom
## Multiple R-squared:  0.5417, Adjusted R-squared:  0.5064 
## F-statistic: 15.36 on 5 and 65 DF,  p-value: 5.936e-10
## 
## 
## > print(anova(lm(weight ~ feed, data = chickwts)))
## Analysis of Variance Table
## 
## Response: weight
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## feed       5 231129   46226  15.365 5.936e-10 ***
## Residuals 65 195556    3009                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## > S=readline(prompt="Type  <Return>   to continue : ")
## Type  <Return>   to continue : 
## 
## > library(MASS)
## 
## > print(glm(formula = type ~ bmi + age, family = "binomial", data = Pima.tr))
## 
## Call:  glm(formula = type ~ bmi + age, family = "binomial", data = Pima.tr)
## 
## Coefficients:
## (Intercept)          bmi          age  
##    -6.49870      0.10519      0.07104  
## 
## Degrees of Freedom: 199 Total (i.e. Null);  197 Residual
## Null Deviance:       256.4 
## Residual Deviance: 215.9     AIC: 221.9
## 
## > print(arima(diff(EuStockMarkets[,1]),order=c(0,0,5)))
## 
## Call:
## arima(x = diff(EuStockMarkets[, 1]), order = c(0, 0, 5))
## 
## Coefficients:
##          ma1      ma2      ma3      ma4      ma5  intercept
##       0.0054  -0.0130  -0.0110  -0.0041  -0.0486     2.0692
## s.e.  0.0234   0.0233   0.0221   0.0236   0.0235     0.6990
## 
## sigma^2 estimated as 1053:  log likelihood = -9106.23,  aic = 18226.45
## 
## > print(acf(ldeaths, plot=F))
## 
## Autocorrelations of series 'ldeaths', by lag
## 
## 0.0000 0.0833 0.1667 0.2500 0.3333 0.4167 0.5000 0.5833 0.6667 0.7500 0.8333 
##  1.000  0.755  0.397  0.019 -0.356 -0.609 -0.681 -0.608 -0.378 -0.013  0.383 
## 0.9167 1.0000 1.0833 1.1667 1.2500 1.3333 1.4167 1.5000 
##  0.650  0.723  0.638  0.372  0.009 -0.294 -0.497 -0.586 
## 
## > print(acf(ldeaths))

## 
## Autocorrelations of series 'ldeaths', by lag
## 
## 0.0000 0.0833 0.1667 0.2500 0.3333 0.4167 0.5000 0.5833 0.6667 0.7500 0.8333 
##  1.000  0.755  0.397  0.019 -0.356 -0.609 -0.681 -0.608 -0.378 -0.013  0.383 
## 0.9167 1.0000 1.0833 1.1667 1.2500 1.3333 1.4167 1.5000 
##  0.650  0.723  0.638  0.372  0.009 -0.294 -0.497 -0.586 
## 
## > print(acf(ldeaths,type="partial"))

## 
## Partial autocorrelations of series 'ldeaths', by lag
## 
## 0.0833 0.1667 0.2500 0.3333 0.4167 0.5000 0.5833 0.6667 0.7500 0.8333 0.9167 
##  0.755 -0.403 -0.269 -0.372 -0.192 -0.116 -0.153  0.005  0.202  0.295  0.121 
## 1.0000 1.0833 1.1667 1.2500 1.3333 1.4167 1.5000 
##  0.022  0.138 -0.027 -0.061  0.094  0.134  0.051 
## 
## > S=readline(prompt="Type  <Return>   to continue : ")
## Type  <Return>   to continue : 
## 
## > # Section 1.6
## > 
## > plot(faithful)
## 
## > jpeg(file="faith.jpg")
## 
## > par(mfrow=c(1,2),mar=c(4,2,2,1))
## 
## > hist(faithful[,1],nclass=21,col="grey",main="",xlab=names(faithful)[1])
## 
## > hist(faithful[,2],nclass=21,col="wheat",main="",xlab=names(faithful)[2])

## 
## > dev.off()
## png 
##   2 
## 
## > S=readline(prompt="Type  <Return>   to continue : ")
## Type  <Return>   to continue : 
## 
## > plot(as.vector(time(mdeaths)),as.vector(mdeaths),cex=.6,pch=19,xlab="",ylab="Monthly deaths from bronchitis in the UK")

## 
## > lines(spline(mdeaths),lwd=2,col="chocolate",lty=3)
## 
## > ar=arima(mdeaths,order=c(1,0,0))$coef
## 
## > lines(as.vector(time(mdeaths))[-1], ar[2]+ar[1]*(mdeaths[-length(mdeaths)]-ar[2]),col="grey",lwd=2,lty=2)
## 
## > title("Splines versus AR(1) predictive")
## 
## > ar=arima(mdeaths,order=c(1,0,0),seasonal=list(order=c(1,0,0),period=12))$coef
## 
## > lines(as.vector(time(mdeaths))[-(1:13)],ar[3]+ar[1]*(mdeaths[-c(1:12,72)]-ar[3])+ar[2]*(mdeaths[-(60:72)]-ar[3]),
## + lwd=2,col="steelblue",lty=2)
## 
## > title("\n\nand SAR(1,12) predictive")
## 
## > legend(1974,2800,legend=c("spline","AR(1)","SAR(1,12)"),col=c("chocolate","grey","steelblue"),
## + lty=c(3,2,2),lwd=rep(2,3),cex=.5)
## 
## > S=readline(prompt="Type  <Return>   to continue : ")
## Type  <Return>   to continue : 
## 
## > # Section 1.7
## > 
## > sqrnt=function(y) {
## + 
## +   x=y/2
## +   while (abs(x*x-y) > 1e-10) x=(x+y/x)/2
## +   x
## +   }
## 
## > sqrnt(9)
## [1] 3
## 
## > sqrnt(2)
## [1] 1.414214