This dataset shows the employment rate of college graduates who have their Bachelor’s Degree and higher from ages 25 and over from January 1, 1992 to October 1, 2020.

library(fpp2)
## Warning: package 'fpp2' was built under R version 4.0.3
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo
## -- Attaching packages ---------- fpp2 2.4 --
## v ggplot2   3.3.0     v fma       2.4  
## v forecast  8.12      v expsmooth 2.3
## Warning: package 'forecast' was built under R version 4.0.2
## Warning: package 'fma' was built under R version 4.0.3
## Warning: package 'expsmooth' was built under R version 4.0.3
## 
library(knitr)
library(readxl)
employment<- read_excel("C:/Users/burtkb/Downloads/LNS12027662.xls", skip = 1)
e.ts = ts(employment[,2], start=c(1992,1), end=c(2020,10), frequency = 12)
sum(is.na(e.ts))
## [1] 0

There are 0 missing values.

e.ts2 = stl(e.ts, s.window="periodic")
dets = seasadj(e.ts2)
plot(dets)

ggseasonplot(dets)

There is an increasing trend, and there seems to be a bit of seasonality as it increases slightly over the summer and ends with a larger bump in October. This is the time when recent graduates are seeking employment.

#model1
fit1 = HoltWinters(dets)
f1 = forecast(fit1, 12)
print(summary(f1))
## 
## Forecast method: HoltWinters
## 
## Model Information:
## Holt-Winters exponential smoothing with trend and additive seasonal component.
## 
## Call:
## HoltWinters(x = dets)
## 
## Smoothing parameters:
##  alpha: 0.05610917
##  beta : 0.6063179
##  gamma: 0
## 
## Coefficients:
##            [,1]
## a   56876.27548
## b    -943.31238
## s1    116.23702
## s2    115.13016
## s3     78.28245
## s4     26.94597
## s5    -29.52696
## s6   -117.13159
## s7   -203.04659
## s8   -161.78528
## s9   -123.83144
## s10  -194.91967
## s11  -255.78522
## s12   749.43116
## 
## Error measures:
##                     ME     RMSE      MAE        MPE      MAPE      MASE
## Training set -88.85823 1769.131 346.7189 -0.3282525 0.9129443 0.2881122
##                    ACF1
## Training set 0.01499644
## 
## Forecasts:
##          Point Forecast    Lo 80    Hi 80    Lo 95    Hi 95
## Nov 2020       56049.20 53781.43 58316.97 52580.95 59517.45
## Dec 2020       55104.78 52827.82 57381.74 51622.47 58587.09
## Jan 2021       54124.62 51830.32 56418.92 50615.79 57633.45
## Feb 2021       53129.97 50807.80 55452.14 49578.52 56681.42
## Mar 2021       52130.19 49767.47 54492.90 48516.72 55743.65
## Apr 2021       51099.27 48681.50 53517.04 47401.62 54796.92
## May 2021       50070.04 47581.30 52558.79 46263.83 53876.25
## Jun 2021       49167.99 46591.34 51744.64 45227.34 53108.64
## Jul 2021       48262.63 45580.60 50944.67 44160.81 52364.45
## Aug 2021       47248.23 44443.18 50053.29 42958.27 51538.19
## Sep 2021       46244.05 43298.54 49189.57 41739.28 50748.83
## Oct 2021       46305.96 43202.99 49408.93 41560.38 51051.54
##          Point Forecast    Lo 80    Hi 80    Lo 95    Hi 95
## Nov 2020       56049.20 53781.43 58316.97 52580.95 59517.45
## Dec 2020       55104.78 52827.82 57381.74 51622.47 58587.09
## Jan 2021       54124.62 51830.32 56418.92 50615.79 57633.45
## Feb 2021       53129.97 50807.80 55452.14 49578.52 56681.42
## Mar 2021       52130.19 49767.47 54492.90 48516.72 55743.65
## Apr 2021       51099.27 48681.50 53517.04 47401.62 54796.92
## May 2021       50070.04 47581.30 52558.79 46263.83 53876.25
## Jun 2021       49167.99 46591.34 51744.64 45227.34 53108.64
## Jul 2021       48262.63 45580.60 50944.67 44160.81 52364.45
## Aug 2021       47248.23 44443.18 50053.29 42958.27 51538.19
## Sep 2021       46244.05 43298.54 49189.57 41739.28 50748.83
## Oct 2021       46305.96 43202.99 49408.93 41560.38 51051.54
#model2
fit2 = ets(dets)
f2 = forecast(fit2, 12)
print(summary(f2))
## 
## Forecast method: ETS(M,A,N)
## 
## Model Information:
## ETS(M,A,N) 
## 
## Call:
##  ets(y = dets) 
## 
##   Smoothing parameters:
##     alpha = 0.3372 
##     beta  = 1e-04 
## 
##   Initial states:
##     l = 26868.7998 
##     b = 71.989 
## 
##   sigma:  0.03
## 
##      AIC     AICc      BIC 
## 6945.923 6946.099 6965.155 
## 
## Error measures:
##                     ME     RMSE      MAE       MPE      MAPE      MASE
## Training set -31.39286 1713.725 293.4481 -0.202378 0.8203071 0.2438459
##                     ACF1
## Training set 0.004504733
## 
## Forecasts:
##          Point Forecast    Lo 80    Hi 80    Lo 95    Hi 95
## Nov 2020       48406.67 46546.95 50266.38 45562.48 51250.86
## Dec 2020       48477.57 46512.25 50442.89 45471.87 51483.27
## Jan 2021       48548.47 46482.59 50614.36 45388.98 51707.97
## Feb 2021       48619.38 46457.27 50781.48 45312.72 51926.04
## Mar 2021       48690.28 46435.73 50944.83 45242.24 52138.32
## Apr 2021       48761.18 46417.52 51104.84 45176.87 52345.50
## May 2021       48832.08 46402.29 51261.88 45116.03 52548.14
## Jun 2021       48902.99 46389.71 51416.27 45059.26 52746.71
## Jul 2021       48973.89 46379.54 51568.24 45006.17 52941.61
## Aug 2021       49044.79 46371.55 51718.04 44956.42 53133.17
## Sep 2021       49115.70 46365.56 51865.83 44909.72 53321.67
## Oct 2021       49186.60 46361.40 52011.80 44865.83 53507.37
##          Point Forecast    Lo 80    Hi 80    Lo 95    Hi 95
## Nov 2020       48406.67 46546.95 50266.38 45562.48 51250.86
## Dec 2020       48477.57 46512.25 50442.89 45471.87 51483.27
## Jan 2021       48548.47 46482.59 50614.36 45388.98 51707.97
## Feb 2021       48619.38 46457.27 50781.48 45312.72 51926.04
## Mar 2021       48690.28 46435.73 50944.83 45242.24 52138.32
## Apr 2021       48761.18 46417.52 51104.84 45176.87 52345.50
## May 2021       48832.08 46402.29 51261.88 45116.03 52548.14
## Jun 2021       48902.99 46389.71 51416.27 45059.26 52746.71
## Jul 2021       48973.89 46379.54 51568.24 45006.17 52941.61
## Aug 2021       49044.79 46371.55 51718.04 44956.42 53133.17
## Sep 2021       49115.70 46365.56 51865.83 44909.72 53321.67
## Oct 2021       49186.60 46361.40 52011.80 44865.83 53507.37
#model comparison
par(mfrow=c(1,2))
plot(forecast(f1))
plot(forecast(f2))

accuracy(f1) #MAPE = ~0.913 = 99.087% accuracy
##                     ME     RMSE      MAE        MPE      MAPE      MASE
## Training set -88.85823 1769.131 346.7189 -0.3282525 0.9129443 0.2881122
##                    ACF1
## Training set 0.01499644
accuracy(f2) #MAPE = ~0.820 = 99.180% accuracy
##                     ME     RMSE      MAE       MPE      MAPE      MASE
## Training set -31.39286 1713.725 293.4481 -0.202378 0.8203071 0.2438459
##                     ACF1
## Training set 0.004504733

Based on the information above, we can see that model 2 (f2) is a slightly better model than the first (f1).