Is there a statistically significant difference between the mean feeling towards feminism in females and males?
gender
This variable will be separated into two groups: “Female” and “Male”.
ft_fem_2017
Respondents rated their feeling towards feminism using a 0-100 scale; 100 indicates absolute positive feeling, 50 indicates neutral feeling, and 0 implies absolutely negative feeling.
library(readr)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(ggplot2)
Voter_Dataset<- read_csv("Abbreviated Voter Dataset Labeled.csv")
##
## ── Column specification ─────────────────────────────────────────────────────────
## cols(
## .default = col_character(),
## NumChildren = col_double(),
## Immigr_Economy_GiveTake = col_double(),
## ft_fem_2017 = col_double(),
## ft_immig_2017 = col_double(),
## ft_police_2017 = col_double(),
## ft_dem_2017 = col_double(),
## ft_rep_2017 = col_double(),
## ft_evang_2017 = col_double(),
## ft_muslim_2017 = col_double(),
## ft_jew_2017 = col_double(),
## ft_christ_2017 = col_double(),
## ft_gays_2017 = col_double(),
## ft_unions_2017 = col_double(),
## ft_altright_2017 = col_double(),
## ft_black_2017 = col_double(),
## ft_white_2017 = col_double(),
## ft_hisp_2017 = col_double()
## )
## ℹ Use `spec()` for the full column specifications.
head(Voter_Dataset)
## # A tibble: 6 x 53
## gender race education familyincome children region urbancity Vote2012
## <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
## 1 Female White 4-year Prefer not … No West Suburb Barack …
## 2 Female White Some Col… $60K-$69,999 No West Rural Ar… Mitt Ro…
## 3 Male White High Sch… $50K-$59,999 No Midwe… City Mitt Ro…
## 4 Male White Some Col… $70K-$79,999 No South City Barack …
## 5 Male White 4-year $40K-$49,999 No South Suburb Mitt Ro…
## 6 Female White 2-year $30K-$39,999 No West Suburb Barack …
## # … with 45 more variables: Vote2016 <chr>, TrumpSanders <chr>,
## # PartyRegistration <chr>, PartyIdentification <chr>,
## # PartyIdentification2 <chr>, PartyIdentification3 <chr>,
## # NewsPublicAffairs <chr>, DemPrimary <chr>, RepPrimary <chr>,
## # ImmigrantContributions <chr>, ImmigrantNaturalization <chr>,
## # ImmigrationShouldBe <chr>, Abortion <chr>, GayMarriage <chr>,
## # DeathPenalty <chr>, DeathPenaltyFreq <chr>, TaxWealthy <chr>,
## # Healthcare <chr>, GlobWarmExist <chr>, GlobWarmingSerious <chr>,
## # AffirmativeAction <chr>, Religion <chr>, ReligiousImportance <chr>,
## # ChurchAttendance <chr>, PrayerFrequency <chr>, NumChildren <dbl>,
## # areatype <chr>, GunOwnership <chr>, EconomyBetterWorse <chr>,
## # Immigr_Economy_GiveTake <dbl>, ft_fem_2017 <dbl>, ft_immig_2017 <dbl>,
## # ft_police_2017 <dbl>, ft_dem_2017 <dbl>, ft_rep_2017 <dbl>,
## # ft_evang_2017 <dbl>, ft_muslim_2017 <dbl>, ft_jew_2017 <dbl>,
## # ft_christ_2017 <dbl>, ft_gays_2017 <dbl>, ft_unions_2017 <dbl>,
## # ft_altright_2017 <dbl>, ft_black_2017 <dbl>, ft_white_2017 <dbl>,
## # ft_hisp_2017 <dbl>
gen_fem<-Voter_Dataset%>%
select(gender,ft_fem_2017)%>%
filter(!is.na(ft_fem_2017))
gen_fem%>%
summarise(avg_ft_fem=mean(ft_fem_2017))
## # A tibble: 1 x 1
## avg_ft_fem
## <dbl>
## 1 52.1
If a person’s gender does not make a difference in their feeling toward feminism, it is expected that the group-wise averages for both “Females” and “Males” are near 52.1.
gen_fem%>%
group_by(gender)%>%
summarise(avg_ft_fem=mean(ft_fem_2017))
## `summarise()` ungrouping output (override with `.groups` argument)
## # A tibble: 2 x 2
## gender avg_ft_fem
## <chr> <dbl>
## 1 Female 58.3
## 2 Male 45.3
gen_fem%>%
group_by(gender)%>%
summarise(avg_ft_fem=mean(ft_fem_2017))%>%
ggplot()+geom_col(aes(x=gender,y=avg_ft_fem,fill=gender))
## `summarise()` ungrouping output (override with `.groups` argument)
As shown by the actual observations table and the chart above, the group-wise mean feeling towards feminism for females and males are almost the same distance from 52.1, in opposite directions. Therefore, the conclusion that there is no difference in the mean between groups cannot be made.
gen_fem%>%
ggplot()+ geom_histogram(aes(x=ft_fem_2017,fill=gender))+facet_wrap(~gender)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
The sampling distributions of the females and males in this study differ in their skew. The sampling distribution of female respondents is right skewed when it comes to their feeling towards feminism. However, that of male respondents is skewed more to the left.
F_gen_fem<-gen_fem%>%
filter(gender=="Female")
mean(F_gen_fem$ft_fem_2017)
## [1] 58.34626
replicate(10000,
sample(F_gen_fem$ft_fem_2017,40)%>%
mean(na.rm=TRUE))%>%
data.frame()%>%
rename("mean"=1)%>%
ggplot()+geom_histogram(aes(x=mean),fill="salmon")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
M_gen_fem<-gen_fem%>%
filter(gender=="Male")
mean(M_gen_fem$ft_fem_2017)
## [1] 45.34614
replicate(10000,
sample(M_gen_fem$ft_fem_2017,40)%>%
mean(na.rm=TRUE))%>%
data.frame()%>%
rename("mean"=1)%>%
ggplot()+geom_histogram(aes(x=mean),fill="turquoise3")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
options(scipen = 999)
t.test(ft_fem_2017~gender,data=gen_fem)
##
## Welch Two Sample t-test
##
## data: ft_fem_2017 by gender
## t = 13.787, df = 4682.9, p-value < 0.00000000000000022
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 11.15155 14.84871
## sample estimates:
## mean in group Female mean in group Male
## 58.34626 45.34614
The t-test produced a p-value of less than 0.05. Therefore, there is a statistically significant difference between the mean feeling towards feminism of females and males.