Los siguientes datos corresponden a un diseño de experimentos de evaluación de rendimiento de diversos genotipos de papa en varios ambientes (zonas con climas diversos).
require(ggplot2)
require(plotly)
require(agricolae)
data("genxenv")
head(genxenv,3)
## ENV GEN YLD
## 1 1 1 17.62333
## 2 1 2 26.98333
## 3 1 3 23.55000
#y=YLD (yield=rendimiento -toneladas por hectarea)
#x1=GEN (Genotype - variedad)
#x2=ENV (Enviroment - Ambiente)
genxenv$ENV=as.factor(genxenv$ENV)
genxenv$GEN=as.factor(genxenv$GEN)
ggplot(genxenv,aes(x=YLD))+geom_histogram()+theme_bw()
ggplot(genxenv,aes(x=YLD,fill=ENV))+geom_histogram()+theme_bw()
ggplot(genxenv,aes(y=YLD,x=ENV,fill=ENV))+geom_boxplot()+theme_bw()
Se observa que la variable rendimiento presenta gran variabilidad de acuerdo al histograma y muestra un comportamiento de subgrupos. Cuando realizamos la comparación por ambientes se logra observar que parte de esas diferencias de los grupos se debe a los ambientes. Por ejemplo el 1 y 2 presentan bajos rendimientos y el 3 y 4 son mas altos.
mod1=lm(YLD~ENV,data=genxenv)
anova(mod1)
## Analysis of Variance Table
##
## Response: YLD
## Df Sum Sq Mean Sq F value Pr(>F)
## ENV 4 242922 60731 695.09 < 2.2e-16 ***
## Residuals 245 21406 87
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(mod1)
##
## Call:
## lm(formula = YLD ~ ENV, data = genxenv)
##
## Residuals:
## Min 1Q Median 3Q Max
## -37.359 -4.555 0.040 4.232 32.125
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 24.047 1.322 18.191 < 2e-16 ***
## ENV2 -7.505 1.869 -4.015 7.91e-05 ***
## ENV3 54.383 1.869 29.090 < 2e-16 ***
## ENV4 70.295 1.869 37.602 < 2e-16 ***
## ENV5 8.813 1.869 4.714 4.07e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 9.347 on 245 degrees of freedom
## Multiple R-squared: 0.919, Adjusted R-squared: 0.9177
## F-statistic: 695.1 on 4 and 245 DF, p-value: < 2.2e-16
La tabla anova nos muestra que existen diferencias significativas entre los ambientes, con resumen podemos observar que algunos se destacan mas que otros como el 3 y 4. Sin embargo para contrastar todas combinaciones y obtener los mejores ambientes debemos usar una prueba postanova.
post1=LSD.test(mod1,"ENV")
post1
## $statistics
## MSerror Df Mean CV t.value LSD
## 87.37046 245 49.24373 18.98153 1.969694 3.682231
##
## $parameters
## test p.ajusted name.t ntr alpha
## Fisher-LSD none ENV 5 0.05
##
## $means
## YLD std r LCL UCL Min Max Q25 Q50
## 1 24.04653 7.340494 50 21.44280 26.65026 12.65667 42.47000 18.55583 22.80167
## 2 16.54113 3.192049 50 13.93740 19.14486 9.90000 26.13000 14.19250 17.13833
## 3 78.42927 9.398327 50 75.82554 81.03300 58.09000 100.79667 72.75083 78.33500
## 4 94.34200 16.242465 50 91.73827 96.94573 56.98333 126.46667 84.28500 97.17167
## 5 32.85973 4.542469 50 30.25600 35.46346 23.39667 48.00667 29.26250 32.81000
## Q75
## 1 27.44333
## 2 18.63750
## 3 84.74917
## 4 101.56500
## 5 35.84833
##
## $comparison
## NULL
##
## $groups
## YLD groups
## 4 94.34200 a
## 3 78.42927 b
## 5 32.85973 c
## 1 24.04653 d
## 2 16.54113 e
##
## attr(,"class")
## [1] "group"
bar.group(post1$groups,ylim=c(0,120))
Se observa en el postanova que los ambientes 4 y 3 son los de mayor rendimiento mientras que el 2 es el menos favorable para la productividad de la papa.
mod2=lm(YLD~ENV+GEN,data=genxenv)
anova(mod2)
## Analysis of Variance Table
##
## Response: YLD
## Df Sum Sq Mean Sq F value Pr(>F)
## ENV 4 242922 60731 876.7745 < 2.2e-16 ***
## GEN 49 7830 160 2.3069 2.833e-05 ***
## Residuals 196 13576 69
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
post2=LSD.test(mod2,"GEN")
post2
## $statistics
## MSerror Df Mean CV t.value LSD
## 69.26587 196 49.24373 16.90085 1.972141 10.38072
##
## $parameters
## test p.ajusted name.t ntr alpha
## Fisher-LSD none GEN 50 0.05
##
## $means
## YLD std r LCL UCL Min Max Q25 Q50
## 1 44.73733 32.55482 5 37.39705 52.07761 17.216667 82.85333 17.62333 28.94000
## 10 49.12000 40.48756 5 41.77972 56.46028 13.493333 99.30333 20.24333 26.00667
## 11 51.56800 30.84790 5 44.22772 58.90828 19.290000 93.99667 35.60667 35.86333
## 12 52.51733 35.94814 5 45.17705 59.85761 15.406667 105.09667 34.25667 35.34000
## 13 57.65067 43.27937 5 50.31039 64.99095 17.623333 115.90333 26.97333 36.69000
## 14 64.09733 45.74939 5 56.75705 71.43761 21.623333 125.92333 31.50667 42.47000
## 15 52.62067 38.08023 5 45.28039 59.96095 18.986667 103.66333 27.31333 30.18667
## 16 48.59400 37.48420 5 41.25372 55.93428 12.826667 100.56667 17.38333 39.46667
## 17 43.45400 30.58004 5 36.11372 50.79428 15.513333 83.68333 20.12000 29.79333
## 18 49.40933 29.50659 5 42.06905 56.74961 17.916667 83.28000 23.02667 48.00667
## 19 52.11800 38.79318 5 44.77772 59.45828 18.546667 98.24000 19.70000 34.51000
## 2 41.30933 26.25397 5 33.96905 48.64961 13.530000 73.83667 26.98333 27.71000
## 20 36.84867 25.66660 5 29.50839 44.18895 9.933333 67.17333 12.65667 37.49667
## 21 53.49600 41.25961 5 46.15572 60.83628 17.206667 108.85333 22.73333 32.76000
## 22 46.17067 34.89814 5 38.83039 53.51095 15.666667 98.92667 21.58333 30.74667
## 23 47.99933 30.50167 5 40.65905 55.33961 15.970000 81.68000 29.39333 33.33333
## 24 51.72800 35.76393 5 44.38772 59.06828 18.560000 93.37667 27.44333 31.64000
## 25 44.28533 31.68427 5 36.94505 51.62561 12.070000 81.48667 18.89000 35.24667
## 26 44.66800 36.89362 5 37.32772 52.00828 10.216667 86.38000 17.13000 26.93333
## 27 55.91267 38.47252 5 48.57239 63.25295 18.783333 108.54667 31.05000 37.03667
## 28 55.01400 45.72438 5 47.67372 62.35428 14.310000 119.46667 17.81000 38.53333
## 29 51.27000 43.61796 5 43.92972 58.61028 14.200000 108.40667 17.81667 28.27667
## 3 39.73800 23.44033 5 32.39772 47.07828 17.733333 71.78000 23.55000 28.56667
## 30 53.61667 48.21166 5 46.27639 60.95695 13.886667 126.46667 19.86667 28.70667
## 31 44.21600 33.28330 5 36.87572 51.55628 9.900000 87.70000 22.46333 30.38000
## 32 50.18867 30.00424 5 42.84839 57.52895 17.096667 93.79333 35.67333 38.30000
## 33 50.08400 35.97018 5 42.74372 57.42428 18.366667 97.54333 25.59667 29.16667
## 34 53.06600 44.81368 5 45.72572 60.40628 14.190000 117.64000 22.22333 29.30000
## 35 47.95667 31.64728 5 40.61639 55.29695 15.706667 84.62000 27.44333 32.86000
## 36 44.87800 35.30855 5 37.53772 52.21828 13.946667 90.73333 13.98667 32.30000
## 37 56.21200 32.37567 5 48.87172 63.55228 22.750000 98.92333 36.38000 41.51000
## 38 53.11600 38.60790 5 45.77572 60.45628 19.313333 101.00000 22.87000 33.98333
## 39 49.98400 36.97341 5 42.64372 57.32428 13.893333 100.31667 23.20333 35.80333
## 4 49.17867 32.27384 5 41.83839 56.51895 20.080000 88.26667 24.50333 33.33667
## 40 51.01133 35.81602 5 43.67105 58.35161 18.786667 100.99667 27.10000 31.68667
## 41 43.11400 30.96953 5 35.77372 50.45428 14.600000 84.17333 14.78333 36.68333
## 42 50.19867 36.14306 5 42.85839 57.53895 18.583333 98.85667 20.02000 36.01667
## 43 52.61333 40.78926 5 45.27305 59.95361 15.990000 101.75333 17.40000 37.49000
## 44 46.83600 34.78686 5 39.49572 54.17628 13.086667 86.79667 15.41667 39.44333
## 45 50.23933 35.09432 5 42.89905 57.57961 17.180000 99.40000 22.03333 39.74000
## 46 38.99600 27.77105 5 31.65572 46.33628 14.446667 77.47667 15.71667 29.25000
## 47 49.96933 36.64249 5 42.62905 57.30961 17.483333 104.58333 28.35667 28.91000
## 48 50.18533 32.24445 5 42.84505 57.52561 22.240000 94.51667 26.13000 33.96333
## 49 43.69333 26.76515 5 36.35305 51.03361 18.663333 80.75333 21.84333 35.56667
## 5 35.21400 25.26154 5 27.87372 42.55428 13.690000 65.74000 14.10667 23.39667
## 50 46.10933 32.40048 5 38.76905 53.44961 17.013333 85.18000 24.25667 26.77000
## 6 54.46800 38.67896 5 47.12772 61.80828 16.620000 100.51333 31.12333 32.27667
## 7 51.20667 32.50882 5 43.86639 58.54695 17.986667 96.80000 34.08333 34.34000
## 8 50.75667 33.79318 5 43.41639 58.09695 18.923333 91.75000 29.48667 30.84667
## 9 60.75200 49.47199 5 53.41172 68.09228 14.436667 126.08000 27.37667 35.07000
## Q75
## 1 77.05333
## 10 86.55333
## 11 73.08333
## 12 72.48667
## 13 91.06333
## 14 98.96333
## 15 82.95333
## 16 72.72667
## 17 68.16000
## 18 74.81667
## 19 89.59333
## 2 64.48667
## 20 56.98333
## 21 85.92667
## 22 63.93000
## 23 79.62000
## 24 87.62000
## 25 73.73333
## 26 82.68000
## 27 84.14667
## 28 84.95000
## 29 87.65000
## 3 57.06000
## 30 79.15667
## 31 70.63667
## 32 66.08000
## 33 79.74667
## 34 81.97667
## 35 79.15333
## 36 73.42333
## 37 81.49667
## 38 88.41333
## 39 76.70333
## 4 79.70667
## 40 76.48667
## 41 65.33000
## 42 77.51667
## 43 90.43333
## 44 79.43667
## 45 72.84333
## 46 58.09000
## 47 70.51333
## 48 74.07667
## 49 61.64000
## 5 59.13667
## 50 77.32667
## 6 91.80667
## 7 72.82333
## 8 82.77667
## 9 100.79667
##
## $comparison
## NULL
##
## $groups
## YLD groups
## 14 64.09733 a
## 9 60.75200 ab
## 13 57.65067 abc
## 37 56.21200 abcd
## 27 55.91267 abcd
## 28 55.01400 abcde
## 6 54.46800 abcdef
## 30 53.61667 bcdefg
## 21 53.49600 bcdefg
## 38 53.11600 bcdefgh
## 34 53.06600 bcdefgh
## 15 52.62067 bcdefgh
## 43 52.61333 bcdefgh
## 12 52.51733 bcdefgh
## 19 52.11800 bcdefgh
## 24 51.72800 bcdefgh
## 11 51.56800 bcdefghi
## 29 51.27000 bcdefghi
## 7 51.20667 bcdefghi
## 40 51.01133 bcdefghi
## 8 50.75667 bcdefghi
## 45 50.23933 cdefghi
## 42 50.19867 cdefghi
## 32 50.18867 cdefghi
## 48 50.18533 cdefghi
## 33 50.08400 cdefghij
## 39 49.98400 cdefghij
## 47 49.96933 cdefghij
## 18 49.40933 cdefghij
## 4 49.17867 cdefghijk
## 10 49.12000 cdefghijk
## 16 48.59400 cdefghijk
## 23 47.99933 cdefghijk
## 35 47.95667 cdefghijk
## 44 46.83600 defghijkl
## 22 46.17067 defghijkl
## 50 46.10933 defghijkl
## 36 44.87800 efghijklm
## 1 44.73733 efghijklm
## 26 44.66800 efghijklm
## 25 44.28533 fghijklm
## 31 44.21600 fghijklm
## 49 43.69333 ghijklm
## 17 43.45400 ghijklm
## 41 43.11400 hijklm
## 2 41.30933 ijklm
## 3 39.73800 jklm
## 46 38.99600 klm
## 20 36.84867 lm
## 5 35.21400 m
##
## attr(,"class")
## [1] "group"
bar.group(post2$groups,xlim=c(0,90),horiz = T,las=2)
Se observa diferencias significativas entre los genotipos, destacando el 14 como el de mejor desempeño y el 5 el de menor desempeño. Sin embargo algunos adicionnales como el 13 y 9 presentaron desempeños similares al 14.