Exploratory Data Analysis
Load libraries and data
#####################Read and Pre-Clean the Data#######################
require(Amelia)
## Loading required package: Amelia
## Loading required package: Rcpp
## ##
## ## Amelia II: Multiple Imputation
## ## (Version 1.7.6, built: 2019-11-24)
## ## Copyright (C) 2005-2020 James Honaker, Gary King and Matthew Blackwell
## ## Refer to http://gking.harvard.edu/amelia/ for more information
## ##
library(car)
## Loading required package: carData
library(corrplot)
## corrplot 0.84 loaded
library(ggcorrplot)
## Loading required package: ggplot2
library(heplots)
library(kableExtra)
library(MANOVA.RM)
## Warning: package 'MANOVA.RM' was built under R version 4.0.3
library(MASS)
library(MVN)
## Warning: package 'MVN' was built under R version 4.0.3
## Registered S3 method overwritten by 'GGally':
## method from
## +.gg ggplot2
## sROC 0.1-2 loaded
library(mvtnorm)
require(psych) #to describe
## Loading required package: psych
##
## Attaching package: 'psych'
## The following objects are masked from 'package:ggplot2':
##
## %+%, alpha
## The following object is masked from 'package:car':
##
## logit
require(ggplot2)
library(ggcorrplot)
library(qcc)
## Warning: package 'qcc' was built under R version 4.0.3
## Package 'qcc' version 2.7
## Type 'citation("qcc")' for citing this R package in publications.
require(reticulate) #to use Python in R as well
## Loading required package: reticulate
require(ResourceSelection)
## Loading required package: ResourceSelection
## ResourceSelection 0.3-5 2019-07-22
library(rstatix)
## Warning: package 'rstatix' was built under R version 4.0.3
##
## Attaching package: 'rstatix'
## The following object is masked from 'package:MASS':
##
## select
## The following object is masked from 'package:ggcorrplot':
##
## cor_pmat
## The following object is masked from 'package:stats':
##
## filter
library(tidyverse)
## -- Attaching packages ------------------------------------------------ tidyverse 1.3.0 --
## v tibble 3.0.3 v dplyr 1.0.2
## v tidyr 1.1.2 v stringr 1.4.0
## v readr 1.3.1 v forcats 0.5.0
## v purrr 0.3.4
## -- Conflicts --------------------------------------------------- tidyverse_conflicts() --
## x psych::%+%() masks ggplot2::%+%()
## x psych::alpha() masks ggplot2::alpha()
## x dplyr::filter() masks rstatix::filter(), stats::filter()
## x dplyr::group_rows() masks kableExtra::group_rows()
## x dplyr::lag() masks stats::lag()
## x dplyr::recode() masks car::recode()
## x dplyr::select() masks rstatix::select(), MASS::select()
## x purrr::some() masks car::some()
corfunction=function(d){
mycorr=cor(d[, 1:ncol(d)]); p.mat=ggcorrplot::cor_pmat(d[,1:ncol(d)])
myplot=ggcorrplot(mycorr, hc.order=TRUE,type="lower",colors=c("red", "white","green"),tl.cex = 6, tl.col = "black", lab=TRUE, lab_size=1, p.mat=p.mat, insig="pch", pch=4)
print(myplot)}
mydata=read.csv("C:/Users/lfult/Desktop/Education/MHA2020.csv", stringsAsFactors = TRUE)
colnames(mydata)
## [1] "Subject" "Term" "Gender" "Ethnicity"
## [5] "Age" "Yr" "DaysBetween" "GPA"
## [9] "T_GPA" "PrePost" "Vision" "Communication"
## [13] "Professionalism" "Negotiation" "Finance" "Management"
## [17] "Personnel" "Systems" "HR" "IM"
## [21] "Leadership" "Change" "Climate" "Governance"
## [25] "Accountability" "PD" "QI" "Quant"
## [29] "Relationships" "RM" "Strategy" "Community"
## [33] "Legal" "Patient" "Score" "Rank"
## [37] "Time"
#########################################################################
Check Missing
#########################################################################
missmap(mydata)

#########################################################################
Descriptives
Descriptive statistics for those with complete pre-posts, all terms.
Gender
mydatabackup=mydata #eliminate individual without pre-test
mydata=mydata[1:54,]
#########################################################################
as.data.frame(100*round(table(mydata$Gender)/length(mydata$Gender),4))%>%
kbl(col.names = c("Gender", "%"))%>%kable_classic(full_width=F)
#########################################################################
Ethnicity
#########################################################################
as.data.frame(100*round(table(mydata$Ethnicity)/length(mydata$Ethnicity),4))%>%
kbl(col.names = c("Ethnicity", "%"))%>%kable_classic(full_width=F)
|
Ethnicity
|
%
|
|
A
|
11.11
|
|
B
|
29.63
|
|
C
|
25.93
|
|
H
|
18.52
|
|
I
|
14.81
|
#########################################################################
Age
#########################################################################
par(mfrow=c(1,3))
boxplot(mydata$Age, horizontal=TRUE, main="Age", col="blue")
boxplot(mydata$Age~mydata$Gender, horizontal=TRUE, main="Age~Gender", col="red")
boxplot(mydata$Age~mydata$Ethnicity, horizontal=TRUE, main="Age~Ethnicity", col="orange")

kable(t(round(describe(mydata$Age),3)), col.names="Age")%>%kable_classic(full_width=F)
|
|
Age
|
|
vars
|
1.000
|
|
n
|
54.000
|
|
mean
|
26.074
|
|
sd
|
3.875
|
|
median
|
25.000
|
|
trimmed
|
25.318
|
|
mad
|
1.483
|
|
min
|
23.000
|
|
max
|
44.000
|
|
range
|
21.000
|
|
skew
|
3.658
|
|
kurtosis
|
14.049
|
|
se
|
0.527
|
#########################################################################
GPA
#########################################################################
par(mfrow=c(1,3))
boxplot(mydata$GPA, horizontal=TRUE, main="GPA", col="blue")
boxplot(mydata$GPA~mydata$Gender, horizontal=TRUE, main="GPA~Gender", col="red")
boxplot(mydata$GPA~mydata$Ethnicity, horizontal=TRUE, main="GPA~Ethnicity", col="orange")

kable(t(round(describe(mydata$GPA),3)), col.names="GPA")%>%kable_classic(full_width=F)
|
|
GPA
|
|
vars
|
1.000
|
|
n
|
54.000
|
|
mean
|
3.535
|
|
sd
|
0.231
|
|
median
|
3.500
|
|
trimmed
|
3.541
|
|
mad
|
0.208
|
|
min
|
3.070
|
|
max
|
3.930
|
|
range
|
0.860
|
|
skew
|
-0.097
|
|
kurtosis
|
-0.436
|
|
se
|
0.031
|
#########################################################################
Inter-Test Days
#########################################################################
par(mfrow=c(1,3))
boxplot(mydata$DaysBetween, horizontal=TRUE, main="Days Between Test", col="blue")
boxplot(mydata$DaysBetween~mydata$Gender, horizontal=TRUE, main="Days Between Tests~Gender", col="red")
boxplot(mydata$DaysBetween~mydata$Ethnicity, horizontal=TRUE, main="Days Between Tests~Ethnicity", col="orange")

kable(t(round(describe(mydata$DaysBetween),3)), col.names="Days Between Tests")%>%kable_classic(full_width=F)
|
|
Days Between Tests
|
|
vars
|
1.000
|
|
n
|
54.000
|
|
mean
|
525.297
|
|
sd
|
191.211
|
|
median
|
582.605
|
|
trimmed
|
526.657
|
|
mad
|
218.871
|
|
min
|
146.971
|
|
max
|
1017.856
|
|
range
|
870.885
|
|
skew
|
0.030
|
|
kurtosis
|
0.618
|
|
se
|
26.021
|
#########################################################################
Correlations
We look at hierarchically-clustered correlations to see which competency evaluations are related and in what directions. An “X” indicates no statistically significant correlation. Obviously “score” (the final score) and “rank” (the percentile rank) must be colinear. Interestingly, the student scores on the strategy area are highly correlated to their overall performance. This reinforces the use of strategy as a capstone course.
#########################################################################
mycorr=cor(mydata[, -c(1:4,6,10,28)])
corfunction(mycorr)

#########################################################################
Kernel Density Estimates
#########################################################################
mysub=subset(mydata, select=c(Age, GPA, Score)) #get a subset for plotting
colnames(mysub)=c("Age", "GPA", "Score") #set column names
kdepairs(mysub) #plot

as.data.frame(cor(mydata$Score[1:27], mydata$Score[28:54]))%>%kbl(col.names="Pre-Post Test Score Correlation")%>%kable_classic()
|
Pre-Post Test Score Correlation
|
|
0.3504154
|
#########################################################################
Pre-Test
We would expect poor performance on the pre-test scores, as there is no incentive.
#########################################################################
pre=round(describe(mydata[1:27,11:37]),3)
post=round(describe(mydata[28:54, 11:37]),3)
mydelta=mydata[28:54, 11:37]-mydata[1:27, 11:37]
delta=round(describe(mydelta),3)
mynames=c("Communicating Vision", "Communication Skills",
"Contributions to Community / Profession",
"Facilitation / Negotiation", "Financial Mgt", "General Mgt",
"HC Personnel","HC Systems & Org", "HR Mgt", "Information Mgt",
"Leadership Skills/Beh", "Change Mgt", "Org Climate & Culture",
"Org Dynamics & Governance",
"Personal / Prof. Accountability", "Professional Dev. / Lifelong Lrng",
"Quality Improvement", "Quant Res & Stats", "Relationship Mgt",
"Risk Mgt", "Strategic Mgt", "Community & Env.", "Legal Env. of HA",
"Patient Perspective",
"Total Score", "Percentile Rank", "Duration")
row.names(pre)=row.names(post)=row.names(delta)=mynames
pre%>%kbl(caption="Pre-Test")%>%kable_classic(full_width = F, html_font = "Cambria")
Pre-Test
|
|
vars
|
n
|
mean
|
sd
|
median
|
trimmed
|
mad
|
min
|
max
|
range
|
skew
|
kurtosis
|
se
|
|
Communicating Vision
|
1
|
27
|
65.556
|
18.046
|
60.00
|
65.217
|
14.826
|
30.00
|
100.00
|
70.00
|
0.159
|
-0.745
|
3.473
|
|
Communication Skills
|
2
|
27
|
70.741
|
15.915
|
70.00
|
70.870
|
14.826
|
40.00
|
100.00
|
60.00
|
-0.061
|
-0.611
|
3.063
|
|
Contributions to Community / Profession
|
3
|
27
|
61.852
|
16.879
|
60.00
|
62.609
|
14.826
|
20.00
|
90.00
|
70.00
|
-0.465
|
-0.552
|
3.248
|
|
Facilitation / Negotiation
|
4
|
27
|
55.556
|
18.046
|
60.00
|
55.652
|
14.826
|
20.00
|
90.00
|
70.00
|
-0.143
|
-1.043
|
3.473
|
|
Financial Mgt
|
5
|
27
|
51.852
|
18.818
|
50.00
|
52.174
|
14.826
|
10.00
|
90.00
|
80.00
|
-0.124
|
-0.464
|
3.622
|
|
General Mgt
|
6
|
27
|
64.444
|
18.046
|
70.00
|
65.217
|
14.826
|
30.00
|
90.00
|
60.00
|
-0.424
|
-0.694
|
3.473
|
|
HC Personnel
|
7
|
27
|
64.815
|
16.495
|
70.00
|
65.652
|
14.826
|
30.00
|
100.00
|
70.00
|
-0.414
|
-0.169
|
3.174
|
|
HC Systems & Org
|
8
|
27
|
57.407
|
18.101
|
60.00
|
57.391
|
14.826
|
20.00
|
90.00
|
70.00
|
-0.077
|
-0.793
|
3.483
|
|
HR Mgt
|
9
|
27
|
60.741
|
13.566
|
60.00
|
60.435
|
14.826
|
40.00
|
90.00
|
50.00
|
0.139
|
-0.817
|
2.611
|
|
Information Mgt
|
10
|
27
|
56.667
|
19.215
|
60.00
|
57.391
|
14.826
|
20.00
|
90.00
|
70.00
|
-0.292
|
-0.957
|
3.698
|
|
Leadership Skills/Beh
|
11
|
27
|
62.593
|
12.276
|
60.00
|
62.174
|
14.826
|
40.00
|
90.00
|
50.00
|
0.361
|
-0.744
|
2.363
|
|
Change Mgt
|
12
|
27
|
60.741
|
18.590
|
60.00
|
60.435
|
14.826
|
30.00
|
100.00
|
70.00
|
0.208
|
-0.865
|
3.578
|
|
Org Climate & Culture
|
13
|
27
|
60.741
|
18.796
|
60.00
|
61.304
|
14.826
|
10.00
|
100.00
|
90.00
|
-0.270
|
0.547
|
3.617
|
|
Org Dynamics & Governance
|
14
|
27
|
54.815
|
19.488
|
60.00
|
53.913
|
14.826
|
20.00
|
100.00
|
80.00
|
0.387
|
-0.295
|
3.750
|
|
Personal / Prof. Accountability
|
15
|
27
|
63.333
|
16.172
|
70.00
|
63.913
|
14.826
|
30.00
|
90.00
|
60.00
|
-0.368
|
-1.065
|
3.112
|
|
Professional Dev. / Lifelong Lrng
|
16
|
27
|
64.815
|
18.053
|
70.00
|
65.652
|
14.826
|
30.00
|
90.00
|
60.00
|
-0.443
|
-0.994
|
3.474
|
|
Quality Improvement
|
17
|
27
|
51.111
|
15.275
|
50.00
|
50.870
|
14.826
|
30.00
|
80.00
|
50.00
|
0.195
|
-1.366
|
2.940
|
|
Quant Res & Stats
|
18
|
10
|
44.000
|
24.585
|
40.00
|
43.750
|
22.239
|
10.00
|
80.00
|
70.00
|
0.108
|
-1.320
|
7.775
|
|
Relationship Mgt
|
19
|
27
|
62.222
|
17.831
|
60.00
|
62.609
|
14.826
|
30.00
|
90.00
|
60.00
|
-0.127
|
-0.741
|
3.432
|
|
Risk Mgt
|
20
|
27
|
55.556
|
19.677
|
60.00
|
55.652
|
14.826
|
10.00
|
90.00
|
80.00
|
-0.211
|
-0.558
|
3.787
|
|
Strategic Mgt
|
21
|
27
|
55.926
|
17.598
|
60.00
|
56.087
|
14.826
|
20.00
|
90.00
|
70.00
|
-0.250
|
-0.945
|
3.387
|
|
Community & Env.
|
22
|
27
|
48.889
|
18.674
|
50.00
|
48.696
|
14.826
|
20.00
|
80.00
|
60.00
|
0.189
|
-0.981
|
3.594
|
|
Legal Env. of HA
|
23
|
27
|
51.852
|
17.105
|
50.00
|
51.739
|
14.826
|
10.00
|
90.00
|
80.00
|
-0.055
|
0.041
|
3.292
|
|
Patient Perspective
|
24
|
27
|
60.741
|
21.109
|
60.00
|
61.739
|
29.652
|
10.00
|
90.00
|
80.00
|
-0.353
|
-0.794
|
4.062
|
|
Total Score
|
25
|
27
|
58.996
|
9.817
|
56.52
|
58.888
|
8.436
|
39.58
|
78.69
|
39.11
|
0.224
|
-0.802
|
1.889
|
|
Percentile Rank
|
26
|
27
|
35.556
|
25.497
|
26.00
|
34.261
|
23.722
|
1.00
|
84.00
|
83.00
|
0.467
|
-1.200
|
4.907
|
|
Duration
|
27
|
27
|
120.597
|
71.116
|
103.27
|
109.442
|
29.949
|
58.13
|
422.35
|
364.22
|
2.804
|
9.177
|
13.686
|
Post-Test
We would hope that our work teaching the students resulted in better scores. These are the raw descriptives. We will look at pre-post later.
post%>%kbl(caption="Post-Test")%>%kable_classic(full_width = F, html_font = "Cambria")
Post-Test
|
|
vars
|
n
|
mean
|
sd
|
median
|
trimmed
|
mad
|
min
|
max
|
range
|
skew
|
kurtosis
|
se
|
|
Communicating Vision
|
1
|
27
|
86.667
|
12.089
|
90.00
|
87.826
|
14.826
|
60.00
|
100.00
|
40.00
|
-0.629
|
-0.515
|
2.327
|
|
Communication Skills
|
2
|
27
|
90.000
|
8.771
|
90.00
|
90.870
|
14.826
|
70.00
|
100.00
|
30.00
|
-0.659
|
-0.246
|
1.688
|
|
Contributions to Community / Profession
|
3
|
27
|
79.630
|
13.440
|
80.00
|
80.435
|
14.826
|
50.00
|
100.00
|
50.00
|
-0.851
|
0.160
|
2.586
|
|
Facilitation / Negotiation
|
4
|
27
|
81.481
|
13.215
|
80.00
|
82.174
|
14.826
|
50.00
|
100.00
|
50.00
|
-0.261
|
-0.649
|
2.543
|
|
Financial Mgt
|
5
|
27
|
73.333
|
15.689
|
70.00
|
73.478
|
14.826
|
40.00
|
100.00
|
60.00
|
-0.192
|
-0.783
|
3.019
|
|
General Mgt
|
6
|
27
|
76.296
|
14.182
|
80.00
|
76.522
|
14.826
|
50.00
|
100.00
|
50.00
|
0.097
|
-0.697
|
2.729
|
|
HC Personnel
|
7
|
27
|
82.593
|
9.443
|
80.00
|
82.609
|
0.000
|
60.00
|
100.00
|
40.00
|
0.022
|
-0.065
|
1.817
|
|
HC Systems & Org
|
8
|
27
|
81.852
|
11.107
|
80.00
|
82.174
|
14.826
|
50.00
|
100.00
|
50.00
|
-0.676
|
0.429
|
2.138
|
|
HR Mgt
|
9
|
27
|
76.667
|
12.089
|
80.00
|
76.957
|
14.826
|
50.00
|
100.00
|
50.00
|
-0.252
|
-0.723
|
2.327
|
|
Information Mgt
|
10
|
27
|
71.111
|
16.013
|
70.00
|
72.609
|
14.826
|
20.00
|
100.00
|
80.00
|
-1.094
|
2.047
|
3.082
|
|
Leadership Skills/Beh
|
11
|
27
|
85.185
|
10.514
|
90.00
|
85.652
|
14.826
|
60.00
|
100.00
|
40.00
|
-0.334
|
-0.533
|
2.023
|
|
Change Mgt
|
12
|
27
|
81.852
|
12.101
|
90.00
|
82.174
|
14.826
|
60.00
|
100.00
|
40.00
|
-0.216
|
-1.294
|
2.329
|
|
Org Climate & Culture
|
13
|
27
|
84.815
|
8.932
|
90.00
|
84.783
|
14.826
|
70.00
|
100.00
|
30.00
|
-0.103
|
-0.876
|
1.719
|
|
Org Dynamics & Governance
|
14
|
27
|
73.333
|
14.412
|
70.00
|
73.043
|
14.826
|
50.00
|
100.00
|
50.00
|
0.025
|
-0.785
|
2.774
|
|
Personal / Prof. Accountability
|
15
|
27
|
81.852
|
11.107
|
80.00
|
82.174
|
14.826
|
60.00
|
100.00
|
40.00
|
-0.189
|
-0.772
|
2.138
|
|
Professional Dev. / Lifelong Lrng
|
16
|
27
|
87.778
|
9.337
|
90.00
|
88.261
|
14.826
|
70.00
|
100.00
|
30.00
|
-0.118
|
-1.104
|
1.797
|
|
Quality Improvement
|
17
|
27
|
77.407
|
13.183
|
80.00
|
76.957
|
14.826
|
60.00
|
100.00
|
40.00
|
0.172
|
-1.189
|
2.537
|
|
Quant Res & Stats
|
18
|
27
|
46.296
|
16.904
|
40.00
|
46.087
|
14.826
|
10.00
|
80.00
|
70.00
|
0.153
|
-0.452
|
3.253
|
|
Relationship Mgt
|
19
|
27
|
87.407
|
12.276
|
90.00
|
88.696
|
14.826
|
60.00
|
100.00
|
40.00
|
-0.842
|
-0.367
|
2.363
|
|
Risk Mgt
|
20
|
27
|
83.333
|
9.199
|
80.00
|
83.478
|
14.826
|
60.00
|
100.00
|
40.00
|
-0.381
|
-0.069
|
1.770
|
|
Strategic Mgt
|
21
|
27
|
85.556
|
11.875
|
90.00
|
86.522
|
14.826
|
60.00
|
100.00
|
40.00
|
-0.591
|
-0.580
|
2.285
|
|
Community & Env.
|
22
|
27
|
73.333
|
15.442
|
80.00
|
73.913
|
14.826
|
50.00
|
90.00
|
40.00
|
-0.302
|
-1.493
|
2.972
|
|
Legal Env. of HA
|
23
|
27
|
85.926
|
8.884
|
90.00
|
86.087
|
14.826
|
70.00
|
100.00
|
30.00
|
-0.111
|
-0.835
|
1.710
|
|
Patient Perspective
|
24
|
27
|
86.667
|
10.742
|
90.00
|
87.391
|
14.826
|
60.00
|
100.00
|
40.00
|
-0.418
|
-0.496
|
2.067
|
|
Total Score
|
25
|
27
|
80.012
|
3.822
|
80.00
|
79.997
|
4.314
|
73.75
|
86.25
|
12.50
|
0.016
|
-1.126
|
0.735
|
|
Percentile Rank
|
26
|
27
|
85.778
|
7.170
|
87.00
|
86.130
|
5.930
|
72.00
|
95.00
|
23.00
|
-0.496
|
-1.002
|
1.380
|
|
Duration
|
27
|
27
|
149.314
|
36.822
|
148.52
|
147.539
|
44.537
|
92.57
|
229.13
|
136.56
|
0.449
|
-0.710
|
7.086
|
Difference Scores
delta%>%kbl(caption="Difference, Post Minus Pre")%>%kable_classic(full_width = F, html_font = "Cambria")
Difference, Post Minus Pre
|
|
vars
|
n
|
mean
|
sd
|
median
|
trimmed
|
mad
|
min
|
max
|
range
|
skew
|
kurtosis
|
se
|
|
Communicating Vision
|
1
|
27
|
21.111
|
17.614
|
20.00
|
20.870
|
14.826
|
-10.00
|
50.00
|
60.00
|
0.041
|
-1.198
|
3.390
|
|
Communication Skills
|
2
|
27
|
19.259
|
19.201
|
20.00
|
19.565
|
14.826
|
-30.00
|
60.00
|
90.00
|
-0.244
|
0.126
|
3.695
|
|
Contributions to Community / Profession
|
3
|
27
|
17.778
|
21.721
|
20.00
|
17.826
|
14.826
|
-30.00
|
60.00
|
90.00
|
-0.094
|
-0.676
|
4.180
|
|
Facilitation / Negotiation
|
4
|
27
|
25.926
|
23.576
|
30.00
|
26.522
|
29.652
|
-20.00
|
60.00
|
80.00
|
-0.120
|
-1.222
|
4.537
|
|
Financial Mgt
|
5
|
27
|
21.481
|
21.250
|
20.00
|
21.304
|
14.826
|
-20.00
|
70.00
|
90.00
|
0.277
|
-0.581
|
4.090
|
|
General Mgt
|
6
|
27
|
11.852
|
20.198
|
20.00
|
11.739
|
14.826
|
-20.00
|
50.00
|
70.00
|
-0.162
|
-1.069
|
3.887
|
|
HC Personnel
|
7
|
27
|
17.778
|
21.001
|
20.00
|
17.826
|
14.826
|
-40.00
|
70.00
|
110.00
|
-0.101
|
1.089
|
4.042
|
|
HC Systems & Org
|
8
|
27
|
24.444
|
19.480
|
20.00
|
24.783
|
14.826
|
-20.00
|
60.00
|
80.00
|
-0.040
|
-0.685
|
3.749
|
|
HR Mgt
|
9
|
27
|
15.926
|
20.617
|
20.00
|
16.957
|
14.826
|
-30.00
|
50.00
|
80.00
|
-0.508
|
-0.219
|
3.968
|
|
Information Mgt
|
10
|
27
|
14.444
|
26.214
|
20.00
|
15.217
|
29.652
|
-40.00
|
60.00
|
100.00
|
-0.260
|
-1.030
|
5.045
|
|
Leadership Skills/Beh
|
11
|
27
|
22.593
|
14.830
|
20.00
|
22.174
|
14.826
|
0.00
|
50.00
|
50.00
|
0.182
|
-1.108
|
2.854
|
|
Change Mgt
|
12
|
27
|
21.111
|
23.260
|
20.00
|
20.870
|
29.652
|
-20.00
|
60.00
|
80.00
|
0.012
|
-1.258
|
4.476
|
|
Org Climate & Culture
|
13
|
27
|
24.074
|
19.067
|
20.00
|
23.043
|
14.826
|
-10.00
|
80.00
|
90.00
|
0.682
|
0.834
|
3.669
|
|
Org Dynamics & Governance
|
14
|
27
|
18.519
|
21.786
|
20.00
|
18.261
|
29.652
|
-30.00
|
70.00
|
100.00
|
0.182
|
-0.169
|
4.193
|
|
Personal / Prof. Accountability
|
15
|
27
|
18.519
|
18.544
|
10.00
|
17.826
|
14.826
|
-10.00
|
60.00
|
70.00
|
0.522
|
-0.671
|
3.569
|
|
Professional Dev. / Lifelong Lrng
|
16
|
27
|
22.963
|
21.089
|
20.00
|
22.609
|
14.826
|
-10.00
|
60.00
|
70.00
|
0.049
|
-0.989
|
4.059
|
|
Quality Improvement
|
17
|
27
|
26.296
|
22.214
|
30.00
|
26.522
|
14.826
|
-10.00
|
60.00
|
70.00
|
-0.176
|
-1.161
|
4.275
|
|
Quant Res & Stats
|
18
|
10
|
3.000
|
30.930
|
10.00
|
5.000
|
29.652
|
-50.00
|
40.00
|
90.00
|
-0.476
|
-1.395
|
9.781
|
|
Relationship Mgt
|
19
|
27
|
25.185
|
22.079
|
20.00
|
24.783
|
14.826
|
-30.00
|
70.00
|
100.00
|
-0.024
|
0.089
|
4.249
|
|
Risk Mgt
|
20
|
27
|
27.778
|
20.631
|
30.00
|
26.957
|
29.652
|
-10.00
|
80.00
|
90.00
|
0.414
|
-0.280
|
3.970
|
|
Strategic Mgt
|
21
|
27
|
29.630
|
23.119
|
30.00
|
29.565
|
29.652
|
-10.00
|
70.00
|
80.00
|
0.043
|
-1.076
|
4.449
|
|
Community & Env.
|
22
|
27
|
24.444
|
19.871
|
30.00
|
23.913
|
29.652
|
-10.00
|
70.00
|
80.00
|
0.249
|
-0.464
|
3.824
|
|
Legal Env. of HA
|
23
|
27
|
34.074
|
18.242
|
30.00
|
34.348
|
14.826
|
-10.00
|
70.00
|
80.00
|
-0.223
|
-0.379
|
3.511
|
|
Patient Perspective
|
24
|
27
|
25.926
|
24.378
|
20.00
|
25.217
|
29.652
|
-10.00
|
80.00
|
90.00
|
0.168
|
-0.983
|
4.692
|
|
Total Score
|
25
|
27
|
21.016
|
9.202
|
23.48
|
21.204
|
9.370
|
0.06
|
38.01
|
37.95
|
-0.296
|
-0.520
|
1.771
|
|
Percentile Rank
|
26
|
27
|
50.222
|
23.769
|
59.00
|
51.174
|
25.204
|
1.00
|
88.00
|
87.00
|
-0.429
|
-1.074
|
4.574
|
|
Duration
|
27
|
27
|
28.718
|
62.180
|
35.60
|
33.697
|
33.166
|
-202.28
|
143.05
|
345.33
|
-1.649
|
4.837
|
11.966
|
#########################################################################
Fall 2020 Analysis
This analysis includes one individual without a pre-test, omitted from the differences scores
subdata=mydatabackup[mydatabackup$Term==1,]
subdata2=subdata[11:20, 11:37]-subdata[1:10, 11:37]
delta2=describe(subdata2)
delta2=delta2[order(-delta2$mean),]
delta2%>%kbl(caption="Difference, Post Minus Pre, Fall 2020 Only")%>%kable_classic(full_width = F, html_font = "Cambria")
Difference, Post Minus Pre, Fall 2020 Only
|
|
vars
|
n
|
mean
|
sd
|
median
|
trimmed
|
mad
|
min
|
max
|
range
|
skew
|
kurtosis
|
se
|
|
Rank
|
26
|
10
|
48.100000
|
22.168296
|
53.000
|
48.875000
|
26.686800
|
12.00
|
78.00
|
66.00
|
-0.2341777
|
-1.5300788
|
7.010231
|
|
Legal
|
23
|
10
|
35.000000
|
13.540064
|
30.000
|
35.000000
|
7.413000
|
10.00
|
60.00
|
50.00
|
0.1208535
|
-0.5119835
|
4.281744
|
|
Systems
|
8
|
10
|
34.000000
|
15.776213
|
35.000
|
35.000000
|
22.239000
|
10.00
|
50.00
|
40.00
|
-0.1405824
|
-1.8526722
|
4.988876
|
|
Strategy
|
21
|
10
|
34.000000
|
27.968236
|
40.000
|
35.000000
|
37.065000
|
-10.00
|
70.00
|
80.00
|
-0.1788149
|
-1.5376801
|
8.844333
|
|
Patient
|
24
|
10
|
31.000000
|
23.781412
|
40.000
|
31.250000
|
29.652000
|
0.00
|
60.00
|
60.00
|
-0.1507839
|
-1.8117764
|
7.520343
|
|
QI
|
17
|
10
|
30.000000
|
22.110832
|
25.000
|
30.000000
|
29.652000
|
0.00
|
60.00
|
60.00
|
0.0555055
|
-1.5607438
|
6.992059
|
|
RM
|
20
|
10
|
29.000000
|
25.144030
|
25.000
|
27.500000
|
22.239000
|
-10.00
|
80.00
|
90.00
|
0.4408486
|
-0.6041902
|
7.951240
|
|
Personnel
|
7
|
10
|
27.000000
|
15.670212
|
25.000
|
27.500000
|
22.239000
|
0.00
|
50.00
|
50.00
|
-0.1777589
|
-1.3618401
|
4.955356
|
|
Professionalism
|
3
|
10
|
24.000000
|
24.129281
|
25.000
|
23.750000
|
22.239000
|
-10.00
|
60.00
|
70.00
|
-0.0820010
|
-1.5194761
|
7.630349
|
|
HR
|
9
|
10
|
22.000000
|
12.292726
|
25.000
|
22.500000
|
7.413000
|
0.00
|
40.00
|
40.00
|
-0.3359232
|
-1.2608824
|
3.887301
|
|
Relationships
|
19
|
10
|
22.000000
|
26.583203
|
20.000
|
22.500000
|
22.239000
|
-30.00
|
70.00
|
100.00
|
-0.1609755
|
-0.3789142
|
8.406347
|
|
Negotiation
|
4
|
10
|
21.000000
|
24.698178
|
20.000
|
21.250000
|
29.652000
|
-20.00
|
60.00
|
80.00
|
-0.0629236
|
-1.3996318
|
7.810250
|
|
Score
|
25
|
10
|
20.389000
|
8.013059
|
19.655
|
19.547500
|
7.420413
|
10.84
|
36.67
|
25.83
|
0.5696762
|
-0.8543715
|
2.533952
|
|
Time
|
27
|
10
|
19.691000
|
83.480354
|
37.710
|
36.461250
|
27.479991
|
-202.28
|
107.50
|
309.78
|
-1.7273851
|
2.1411966
|
26.398806
|
|
Leadership
|
11
|
10
|
18.000000
|
11.352924
|
20.000
|
17.500000
|
14.826000
|
0.00
|
40.00
|
40.00
|
0.3444350
|
-0.7587753
|
3.590110
|
|
Climate
|
13
|
10
|
18.000000
|
13.984118
|
20.000
|
18.750000
|
0.000000
|
-10.00
|
40.00
|
50.00
|
-0.5616761
|
-0.4511777
|
4.422166
|
|
PD
|
16
|
10
|
18.000000
|
18.737959
|
20.000
|
16.250000
|
14.826000
|
-10.00
|
60.00
|
70.00
|
0.7149908
|
0.1313684
|
5.925463
|
|
Vision
|
1
|
10
|
17.000000
|
14.944341
|
15.000
|
16.250000
|
22.239000
|
0.00
|
40.00
|
40.00
|
0.1006721
|
-1.7550167
|
4.725816
|
|
Finance
|
5
|
10
|
17.000000
|
24.060110
|
15.000
|
17.500000
|
29.652000
|
-20.00
|
50.00
|
70.00
|
0.0585865
|
-1.4644642
|
7.608475
|
|
Community
|
22
|
10
|
17.000000
|
18.885621
|
15.000
|
16.250000
|
22.239000
|
-10.00
|
50.00
|
60.00
|
0.0320671
|
-1.1591467
|
5.972158
|
|
Change
|
12
|
10
|
16.000000
|
24.585452
|
10.000
|
13.750000
|
22.239000
|
-10.00
|
60.00
|
70.00
|
0.5378001
|
-1.2937273
|
7.774603
|
|
Communication
|
2
|
10
|
15.000000
|
19.578900
|
20.000
|
17.500000
|
14.826000
|
-30.00
|
40.00
|
70.00
|
-0.9593291
|
0.1619093
|
6.191392
|
|
Accountability
|
15
|
10
|
14.000000
|
13.498971
|
15.000
|
13.750000
|
7.413000
|
-10.00
|
40.00
|
50.00
|
0.0682979
|
-0.4909756
|
4.268750
|
|
Governance
|
14
|
10
|
13.000000
|
15.670212
|
15.000
|
12.500000
|
22.239000
|
-10.00
|
40.00
|
50.00
|
0.1777589
|
-1.3618401
|
4.955356
|
|
Management
|
6
|
10
|
11.000000
|
16.633300
|
15.000
|
12.500000
|
14.826000
|
-20.00
|
30.00
|
50.00
|
-0.5319565
|
-1.1540528
|
5.259911
|
|
IM
|
10
|
10
|
5.000000
|
22.236107
|
0.000
|
5.000000
|
29.652000
|
-30.00
|
40.00
|
70.00
|
0.0272863
|
-1.3899192
|
7.031674
|
|
Quant
|
18
|
9
|
1.111111
|
32.188680
|
0.000
|
1.111111
|
44.478000
|
-50.00
|
40.00
|
90.00
|
-0.3286319
|
-1.5833813
|
10.729560
|
Results by Time / Area
This is the “money” table, as it provides the mean pre-test scores by area (PreXbar), the mean post-test scores by area (PostXbar), and the mean differences scores by area (DeltaXbar). We would expect that our curriculum would result in improved performance (DeltaXbar >0). Medians and standard deviations are shown as well. This is for ALL test scores.
a=pre[1:24,3]; b=post[1:24,3]; g=delta[1:24,3]
m1=pre[1:24,5 ]; m2=post[1:24,5]; m3=delta[1:24,5]
s1=pre[1:24,4 ]; s2=post[1:24,4]; s3=delta[1:24,4]
mydf=data.frame(PreXbar=a, PostXbar=b, DeltaXbar=g,
PreMed=m1, PostMed=m2, DeltaMed=m3,
PreSD=s1, PostSD=s2, DeltaSD=s3)
row.names(mydf)=mynames[1:24]
mydf[order(-mydf$DeltaXbar),]%>%kbl(caption="Difference, Post Minus Pre, All Terms")%>%kable_classic(full_width=F, html_font="Calibri")
Difference, Post Minus Pre, All Terms
|
|
PreXbar
|
PostXbar
|
DeltaXbar
|
PreMed
|
PostMed
|
DeltaMed
|
PreSD
|
PostSD
|
DeltaSD
|
|
Legal Env. of HA
|
51.852
|
85.926
|
34.074
|
50
|
90
|
30
|
17.105
|
8.884
|
18.242
|
|
Strategic Mgt
|
55.926
|
85.556
|
29.630
|
60
|
90
|
30
|
17.598
|
11.875
|
23.119
|
|
Risk Mgt
|
55.556
|
83.333
|
27.778
|
60
|
80
|
30
|
19.677
|
9.199
|
20.631
|
|
Quality Improvement
|
51.111
|
77.407
|
26.296
|
50
|
80
|
30
|
15.275
|
13.183
|
22.214
|
|
Facilitation / Negotiation
|
55.556
|
81.481
|
25.926
|
60
|
80
|
30
|
18.046
|
13.215
|
23.576
|
|
Patient Perspective
|
60.741
|
86.667
|
25.926
|
60
|
90
|
20
|
21.109
|
10.742
|
24.378
|
|
Relationship Mgt
|
62.222
|
87.407
|
25.185
|
60
|
90
|
20
|
17.831
|
12.276
|
22.079
|
|
HC Systems & Org
|
57.407
|
81.852
|
24.444
|
60
|
80
|
20
|
18.101
|
11.107
|
19.480
|
|
Community & Env.
|
48.889
|
73.333
|
24.444
|
50
|
80
|
30
|
18.674
|
15.442
|
19.871
|
|
Org Climate & Culture
|
60.741
|
84.815
|
24.074
|
60
|
90
|
20
|
18.796
|
8.932
|
19.067
|
|
Professional Dev. / Lifelong Lrng
|
64.815
|
87.778
|
22.963
|
70
|
90
|
20
|
18.053
|
9.337
|
21.089
|
|
Leadership Skills/Beh
|
62.593
|
85.185
|
22.593
|
60
|
90
|
20
|
12.276
|
10.514
|
14.830
|
|
Financial Mgt
|
51.852
|
73.333
|
21.481
|
50
|
70
|
20
|
18.818
|
15.689
|
21.250
|
|
Communicating Vision
|
65.556
|
86.667
|
21.111
|
60
|
90
|
20
|
18.046
|
12.089
|
17.614
|
|
Change Mgt
|
60.741
|
81.852
|
21.111
|
60
|
90
|
20
|
18.590
|
12.101
|
23.260
|
|
Communication Skills
|
70.741
|
90.000
|
19.259
|
70
|
90
|
20
|
15.915
|
8.771
|
19.201
|
|
Org Dynamics & Governance
|
54.815
|
73.333
|
18.519
|
60
|
70
|
20
|
19.488
|
14.412
|
21.786
|
|
Personal / Prof. Accountability
|
63.333
|
81.852
|
18.519
|
70
|
80
|
10
|
16.172
|
11.107
|
18.544
|
|
Contributions to Community / Profession
|
61.852
|
79.630
|
17.778
|
60
|
80
|
20
|
16.879
|
13.440
|
21.721
|
|
HC Personnel
|
64.815
|
82.593
|
17.778
|
70
|
80
|
20
|
16.495
|
9.443
|
21.001
|
|
HR Mgt
|
60.741
|
76.667
|
15.926
|
60
|
80
|
20
|
13.566
|
12.089
|
20.617
|
|
Information Mgt
|
56.667
|
71.111
|
14.444
|
60
|
70
|
20
|
19.215
|
16.013
|
26.214
|
|
General Mgt
|
64.444
|
76.296
|
11.852
|
70
|
80
|
20
|
18.046
|
14.182
|
20.198
|
|
Quant Res & Stats
|
44.000
|
46.296
|
3.000
|
40
|
40
|
10
|
24.585
|
16.904
|
30.930
|
Ethnicity / Race
#########################################################################
levels(mydata$Ethnicity)=c("Asian", "African American", "Caucasian", "Any Hispanic", "International") #Assign new names to factor levels
ethtable=as.data.frame(table(mydata$Ethnicity[28:55],mydata$Gender[28:55])/length(mydata$Ethnicity[28:55])) #get a cross-tabs table for race and gender
colnames(ethtable)=c("Race","Gender", "Percentage")#set the colum names for the table
mylab=paste0(round(ethtable$Percentage,2)*100,"%, ", ethtable$Percentage*84, " students") #Get the labels for the graph
ggplot(data=ethtable, aes(x=Race,y=Percentage, fill=Gender))+
geom_bar(stat="identity")+
geom_text(aes( label = mylab, vjust = 1))

#########################################################################
Age~Race & Gender
Analyze age as a function of race and gender
#########################################################################
describe(mydata$Age[28:55]) #get the descriptive statistics
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 27 26.07 3.91 25 25.35 1.48 23 44 21 3.56 13.41 0.75
ggplot(data=mydata[28:55,], aes(x=Age,color=Gender))+
geom_histogram(fill="white", binwidth=1)+
ylab("Frequency") #plot Age ~Gender
## Warning: Removed 1 rows containing non-finite values (stat_bin).

ggplot(data=mydata[28:55,], aes(x=Age,color=Ethnicity))+
geom_histogram(fill="white", binwidth=1)+
ylab("Frequency") #plot Age~ Race
## Warning: Removed 1 rows containing non-finite values (stat_bin).

#########################################################################
GPA
#########################################################################
describe(mydata$GPA[28:55]) #Get descriptives
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 27 3.54 0.23 3.5 3.54 0.21 3.07 3.93 0.86 -0.09 -0.53 0.04
ggplot(mydata[28:55, ], aes(x = Ethnicity, y = GPA, fill=Ethnicity))+
geom_boxplot(aes(color=Gender))+
coord_flip() #plot based on ethnicity and gender
## Warning: Removed 1 rows containing non-finite values (stat_boxplot).

#########################################################################
GPA~Race+Gender
Evaluating GPA as a function of race and gender
#########################################################################
newdata1=aggregate(mydata$GPA[28:55], b=list(mydata$Ethnicity[28:55],mydata$Gender[28:55]), FUN=mean) #aggregate the data based on race and gender, get the means by those groups
newdata2=aggregate(mydata$GPA[28:55],b=list(mydata$Ethnicity[28:55],mydata$Gender[28:55]),function(x){qnorm(.975)*sd(x)/sqrt(length(x))}) #get the CI adjustment
newdata=cbind(newdata1,newdata2$x) #bind the data together by columns
colnames(newdata)=c("Race", "Gender", "GPA", "SD") #name the columns
newdata$RaceGender=as.factor(paste0(newdata$Race,", ",newdata$Gender)) #make a new variable that has both race and gender
ggplot( #plot
newdata,
aes(x = GPA, y = RaceGender, xmin = GPA-SD, xmax = GPA+SD)
) +
geom_point(aes(color = Gender)) +
geom_errorbarh(aes(color = Gender), height=.2)+
theme_light()+
xlab("95% Confidence Interval for GPA")

#########################################################################
Days between Tests
Analyze the time between pretests and posttests
#########################################################################
describe(mydata$DaysBetween[28:54]) #describe the days between
## vars n mean sd median trimmed mad min max range skew
## X1 1 27 525.3 193.04 582.6 524.51 218.87 146.97 1017.86 870.89 0.03
## kurtosis se
## X1 0.48 37.15
ggplot(data=mydata[28:54,], aes(x=DaysBetween,color=Gender))+ #plot it
geom_histogram(fill="white", binwidth=30)+
ylab("Frequency")

#########################################################################
Simple Inferentials
Paired t-tests
#########################################################################
myf=function(x){
myt=t.test(x)
newp=round(p.adjust(myt$p.value),3)
a=c(round(myt$estimate,3),round(myt$conf.int[1],3),
round(myt$conf.int[2],3),round(myt$statistic,3), round(myt$parameter,3),
round(newp,3))
return(a)
}
a=matrix(rep(NA, 6*26), 26)
for (i in 1:26){a[i,1:6]=myf(mydelta[i])}
a=as.data.frame(a)
for (i in 1:6){a[,i]=as.numeric(a[,i])}
rownames(a)=mynames[1:26]
colnames(a)=c("Estimate","Lower 95% CI", "Upper 95% CI", "t-Value", "df", "Holm-Adjusted p")
a%>%kbl()%>%kable_classic()
|
|
Estimate
|
Lower 95% CI
|
Upper 95% CI
|
t-Value
|
df
|
Holm-Adjusted p
|
|
Communicating Vision
|
21.111
|
14.143
|
28.079
|
6.228
|
26
|
0.000
|
|
Communication Skills
|
19.259
|
11.664
|
26.855
|
5.212
|
26
|
0.000
|
|
Contributions to Community / Profession
|
17.778
|
9.185
|
26.370
|
4.253
|
26
|
0.000
|
|
Facilitation / Negotiation
|
25.926
|
16.599
|
35.252
|
5.714
|
26
|
0.000
|
|
Financial Mgt
|
21.481
|
13.075
|
29.888
|
5.253
|
26
|
0.000
|
|
General Mgt
|
11.852
|
3.862
|
19.842
|
3.049
|
26
|
0.005
|
|
HC Personnel
|
17.778
|
9.470
|
26.085
|
4.399
|
26
|
0.000
|
|
HC Systems & Org
|
24.444
|
16.738
|
32.151
|
6.520
|
26
|
0.000
|
|
HR Mgt
|
15.926
|
7.770
|
24.082
|
4.014
|
26
|
0.000
|
|
Information Mgt
|
14.444
|
4.074
|
24.814
|
2.863
|
26
|
0.008
|
|
Leadership Skills/Beh
|
22.593
|
16.726
|
28.459
|
7.916
|
26
|
0.000
|
|
Change Mgt
|
21.111
|
11.910
|
30.312
|
4.716
|
26
|
0.000
|
|
Org Climate & Culture
|
24.074
|
16.532
|
31.617
|
6.561
|
26
|
0.000
|
|
Org Dynamics & Governance
|
18.519
|
9.900
|
27.137
|
4.417
|
26
|
0.000
|
|
Personal / Prof. Accountability
|
18.519
|
11.183
|
25.854
|
5.189
|
26
|
0.000
|
|
Professional Dev. / Lifelong Lrng
|
22.963
|
14.621
|
31.305
|
5.658
|
26
|
0.000
|
|
Quality Improvement
|
26.296
|
17.509
|
35.084
|
6.151
|
26
|
0.000
|
|
Quant Res & Stats
|
3.000
|
-19.126
|
25.126
|
0.307
|
9
|
0.766
|
|
Relationship Mgt
|
25.185
|
16.451
|
33.919
|
5.927
|
26
|
0.000
|
|
Risk Mgt
|
27.778
|
19.616
|
35.939
|
6.996
|
26
|
0.000
|
|
Strategic Mgt
|
29.630
|
20.484
|
38.775
|
6.660
|
26
|
0.000
|
|
Community & Env.
|
24.444
|
16.584
|
32.305
|
6.392
|
26
|
0.000
|
|
Legal Env. of HA
|
34.074
|
26.858
|
41.290
|
9.706
|
26
|
0.000
|
|
Patient Perspective
|
25.926
|
16.282
|
35.570
|
5.526
|
26
|
0.000
|
|
Total Score
|
21.016
|
17.376
|
24.657
|
11.867
|
26
|
0.000
|
|
Percentile Rank
|
50.222
|
40.820
|
59.625
|
10.979
|
26
|
0.000
|
#########################################################################
Unpaired t-tests
#########################################################################
myf=function(x,y){
myt=t.test(x, y)
newp=round(p.adjust(myt$p.value),3)
a=c(round(myt$estimate[1],3),round(myt$estimate[2],3),
round(myt$conf.int[1],3),
round(myt$conf.int[2],3),round(myt$statistic,3),
round(myt$parameter,3),round(newp,3))
return(a)
}
a=matrix(rep(NA, 7*26), 26)
for (i in 1:26){a[i,1:7]=myf(mydata[1:27,i+10], mydata[28:54,i+10])}
a=as.data.frame(a)
for (i in 1:6){a[,i]=as.numeric(a[,i])}
rownames(a)=mynames[1:26]
colnames(a)=c("Mean Pre","Mean Post","Lower 95% CI", "Upper 95% CI", "t-Value", "df", "Holm-Adjusted p")
a%>%kbl()%>%kable_classic()
|
|
Mean Pre
|
Mean Post
|
Lower 95% CI
|
Upper 95% CI
|
t-Value
|
df
|
Holm-Adjusted p
|
|
Communicating Vision
|
65.556
|
86.667
|
-29.528
|
-12.694
|
-5.050
|
45.426
|
0.000
|
|
Communication Skills
|
70.741
|
90.000
|
-26.325
|
-12.194
|
-5.507
|
40.459
|
0.000
|
|
Contributions to Community / Profession
|
61.852
|
79.630
|
-26.120
|
-9.436
|
-4.281
|
49.516
|
0.000
|
|
Facilitation / Negotiation
|
55.556
|
81.481
|
-34.582
|
-17.269
|
-6.023
|
47.658
|
0.000
|
|
Financial Mgt
|
51.852
|
73.333
|
-30.950
|
-12.013
|
-4.556
|
50.370
|
0.000
|
|
General Mgt
|
64.444
|
76.296
|
-20.727
|
-2.977
|
-2.683
|
49.249
|
0.010
|
|
HC Personnel
|
64.815
|
82.593
|
-25.163
|
-10.393
|
-4.860
|
41.390
|
0.000
|
|
HC Systems & Org
|
57.407
|
81.852
|
-32.686
|
-16.203
|
-5.981
|
43.148
|
0.000
|
|
HR Mgt
|
60.741
|
76.667
|
-22.946
|
-8.906
|
-4.554
|
51.324
|
0.000
|
|
Information Mgt
|
56.667
|
71.111
|
-24.111
|
-4.778
|
-3.001
|
50.362
|
0.004
|
|
Leadership Skills/Beh
|
62.593
|
85.185
|
-28.838
|
-16.347
|
-7.263
|
50.799
|
0.000
|
|
Change Mgt
|
60.741
|
81.852
|
-29.711
|
-12.512
|
-4.945
|
44.680
|
0.000
|
|
Org Climate & Culture
|
60.741
|
84.815
|
-32.187
|
-15.961
|
-6.011
|
37.172
|
0.000
|
|
Org Dynamics & Governance
|
54.815
|
73.333
|
-27.898
|
-9.139
|
-3.970
|
47.891
|
0.000
|
|
Personal / Prof. Accountability
|
63.333
|
81.852
|
-26.118
|
-10.919
|
-4.905
|
46.064
|
0.000
|
|
Professional Dev. / Lifelong Lrng
|
64.815
|
87.778
|
-30.875
|
-15.051
|
-5.871
|
38.980
|
0.000
|
|
Quality Improvement
|
51.111
|
77.407
|
-34.092
|
-18.500
|
-6.772
|
50.911
|
0.000
|
|
Quant Res & Stats
|
44.000
|
46.296
|
-20.610
|
16.017
|
-0.272
|
12.297
|
0.790
|
|
Relationship Mgt
|
62.222
|
87.407
|
-33.571
|
-16.800
|
-6.045
|
46.127
|
0.000
|
|
Risk Mgt
|
55.556
|
83.333
|
-36.249
|
-19.307
|
-6.645
|
36.846
|
0.000
|
|
Strategic Mgt
|
55.926
|
85.556
|
-37.856
|
-21.404
|
-7.252
|
45.613
|
0.000
|
|
Community & Env.
|
48.889
|
73.333
|
-33.810
|
-15.079
|
-5.242
|
50.229
|
0.000
|
|
Legal Env. of HA
|
51.852
|
85.926
|
-41.577
|
-26.572
|
-9.186
|
39.074
|
0.000
|
|
Patient Perspective
|
60.741
|
86.667
|
-35.149
|
-16.703
|
-5.688
|
38.619
|
0.000
|
|
Total Score
|
58.996
|
80.012
|
-25.138
|
-16.895
|
-10.366
|
33.703
|
0.000
|
|
Percentile Rank
|
35.556
|
85.778
|
-60.631
|
-39.814
|
-9.853
|
30.087
|
0.000
|
#########################################################################