Confirmatory Factor Analysis

Exploratory Analysis

The preferred method of analysis for this dataset is Confirmatory Factor Analysis. The goal is to determine the factors that affect the employbility of newly graduated students making use of observed variables such as GPA, Study Years and Major. the success of the k - Factor model will rest on the choice of latent or unobservable variables that are correlated in some way with the observable variables. Let’s have a look into the dataset

library("readxl")

student_data <- read_excel("/home/asma/Desktop/Customers/Waleed_SAUDI/R/Data_new.xlsx")
## New names:
## * `` -> ...67
head(student_data)
## # A tibble: 6 x 67
##   Gender   Age Nationality Majors `Study program` `year of enroll…
##    <dbl> <dbl>       <dbl> <chr>            <dbl>            <dbl>
## 1      2    25           1 Gener…               1             2013
## 2      2    23           1 Gener…               1             2015
## 3      2    24           1 Gener…               1             2015
## 4      2    23           1 Gener…               1             2016
## 5      2    25           1 Gener…               1             2016
## 6      2    24           1 Gener…               1             2015
## # … with 61 more variables: `graduation year` <dbl>, `study years` <dbl>,
## #   `graduated before` <dbl>, GPA <chr>, Num_courses <chr>,
## #   sector_work_class <dbl>, `sector work` <chr>, `sector name` <chr>,
## #   YearJop <dbl>, `current job related to your specialty` <chr>, salary <chr>,
## #   `Career Day` <chr>, `Career Day help you land job` <chr>, PA1 <dbl>,
## #   PA2 <dbl>, PA3 <dbl>, PA4 <dbl>, PA5 <dbl>, PA6 <dbl>, PA7 <dbl>,
## #   PA8 <dbl>, PA9 <dbl>, PA10 <dbl>, PA11 <dbl>, PA12 <dbl>, PA13 <dbl>,
## #   PA14 <dbl>, SA1 <dbl>, SA2 <dbl>, SA3 <dbl>, SA4 <dbl>, SA5 <dbl>,
## #   SA6 <dbl>, SA7 <dbl>, SA8 <dbl>, SA9 <dbl>, SA10 <dbl>, SA11 <dbl>,
## #   SA12 <dbl>, SA13 <dbl>, IS1 <dbl>, IS2 <dbl>, IS3 <dbl>, IS4 <dbl>,
## #   IS5 <dbl>, IS6 <dbl>, IS7 <dbl>, IS8 <dbl>, IS9 <dbl>, IS10 <dbl>,
## #   IS11 <dbl>, IS12 <dbl>, IS13 <dbl>, IS14 <dbl>, GA1 <dbl>, GA2 <dbl>,
## #   GA3 <dbl>, GA4 <dbl>, `start studying again KAU` <chr>, `recommend
## #   KAU` <chr>, ...67 <lgl>

Let’s see the summary of the Data

summary(student_data)
##      Gender       Age         Nationality       Majors          Study program  
##  Min.   :2   Min.   : 0.00   Min.   :1.000   Length:336         Min.   :1.000  
##  1st Qu.:2   1st Qu.:23.00   1st Qu.:1.000   Class :character   1st Qu.:1.000  
##  Median :2   Median :24.00   Median :1.000   Mode  :character   Median :1.000  
##  Mean   :2   Mean   :24.01   Mean   :1.057                      Mean   :1.016  
##  3rd Qu.:2   3rd Qu.:25.00   3rd Qu.:1.000                      3rd Qu.:1.000  
##  Max.   :2   Max.   :34.00   Max.   :2.000                      Max.   :2.000  
##  NA's   :1   NA's   :1       NA's   :1                          NA's   :16     
##  year of enrollment graduation year  study years     graduated before
##  Min.   :2008       Min.   :2013    Min.   : 3.000   Min.   :1.000   
##  1st Qu.:2014       1st Qu.:2019    1st Qu.: 4.000   1st Qu.:1.000   
##  Median :2016       Median :2019    Median : 4.000   Median :2.000   
##  Mean   :2015       Mean   :2019    Mean   : 4.391   Mean   :2.231   
##  3rd Qu.:2016       3rd Qu.:2020    3rd Qu.: 5.000   3rd Qu.:3.000   
##  Max.   :2018       Max.   :2021    Max.   :10.000   Max.   :4.000   
##  NA's   :16         NA's   :16      NA's   :16       NA's   :16      
##      GPA            Num_courses        sector_work_class sector work       
##  Length:336         Length:336         Min.   :0.0000    Length:336        
##  Class :character   Class :character   1st Qu.:0.0000    Class :character  
##  Mode  :character   Mode  :character   Median :0.0000    Mode  :character  
##                                        Mean   :0.1688                      
##                                        3rd Qu.:0.0000                      
##                                        Max.   :1.0000                      
##                                        NA's   :16                          
##  sector name           YearJop     current job related to your specialty
##  Length:336         Min.   :2014   Length:336                           
##  Class :character   1st Qu.:2018   Class :character                     
##  Mode  :character   Median :2019   Mode  :character                     
##                     Mean   :2019                                        
##                     3rd Qu.:2020                                        
##                     Max.   :2020                                        
##                     NA's   :293                                         
##     salary           Career Day        Career Day help you land job
##  Length:336         Length:336         Length:336                  
##  Class :character   Class :character   Class :character            
##  Mode  :character   Mode  :character   Mode  :character            
##                                                                    
##                                                                    
##                                                                    
##                                                                    
##       PA1             PA2             PA3            PA4             PA5       
##  Min.   :1.000   Min.   :1.000   Min.   :1.00   Min.   :1.000   Min.   :1.000  
##  1st Qu.:3.000   1st Qu.:3.000   1st Qu.:3.75   1st Qu.:3.750   1st Qu.:3.000  
##  Median :4.000   Median :4.000   Median :4.00   Median :4.000   Median :4.000  
##  Mean   :3.938   Mean   :4.006   Mean   :4.05   Mean   :4.013   Mean   :3.812  
##  3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.00   3rd Qu.:5.000   3rd Qu.:5.000  
##  Max.   :6.000   Max.   :6.000   Max.   :6.00   Max.   :6.000   Max.   :6.000  
##  NA's   :16      NA's   :16      NA's   :16     NA's   :16      NA's   :16     
##       PA6             PA7             PA8            PA9             PA10      
##  Min.   :1.000   Min.   :1.000   Min.   :1.00   Min.   :1.000   Min.   :1.000  
##  1st Qu.:4.000   1st Qu.:3.000   1st Qu.:3.00   1st Qu.:3.000   1st Qu.:3.000  
##  Median :4.000   Median :4.000   Median :4.00   Median :4.000   Median :4.000  
##  Mean   :4.019   Mean   :3.916   Mean   :3.95   Mean   :3.816   Mean   :3.678  
##  3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.00   3rd Qu.:5.000   3rd Qu.:5.000  
##  Max.   :6.000   Max.   :6.000   Max.   :6.00   Max.   :6.000   Max.   :6.000  
##  NA's   :16      NA's   :16      NA's   :16     NA's   :16      NA's   :16     
##       PA11            PA12            PA13            PA14      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:3.000   1st Qu.:3.000   1st Qu.:3.000   1st Qu.:2.000  
##  Median :4.000   Median :4.000   Median :4.000   Median :3.000  
##  Mean   :3.803   Mean   :3.625   Mean   :3.834   Mean   :3.222  
##  3rd Qu.:5.000   3rd Qu.:4.000   3rd Qu.:5.000   3rd Qu.:4.000  
##  Max.   :6.000   Max.   :6.000   Max.   :6.000   Max.   :6.000  
##  NA's   :16      NA's   :16      NA's   :16      NA's   :16     
##       SA1             SA2             SA3             SA4       
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:3.000   1st Qu.:3.000   1st Qu.:3.000   1st Qu.:3.000  
##  Median :4.000   Median :4.000   Median :4.000   Median :4.000  
##  Mean   :3.966   Mean   :3.906   Mean   :3.816   Mean   :3.837  
##  3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.000  
##  Max.   :6.000   Max.   :5.000   Max.   :5.000   Max.   :6.000  
##  NA's   :16      NA's   :16      NA's   :16      NA's   :16     
##       SA5             SA6             SA7             SA8       
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:3.000   1st Qu.:3.000   1st Qu.:3.000   1st Qu.:3.000  
##  Median :4.000   Median :4.000   Median :4.000   Median :4.000  
##  Mean   :3.784   Mean   :3.944   Mean   :3.853   Mean   :3.578  
##  3rd Qu.:4.000   3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:4.000  
##  Max.   :5.000   Max.   :6.000   Max.   :6.000   Max.   :6.000  
##  NA's   :16      NA's   :16      NA's   :16      NA's   :16     
##       SA9             SA10            SA11            SA12      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:3.000   1st Qu.:3.000   1st Qu.:3.000   1st Qu.:3.000  
##  Median :4.000   Median :4.000   Median :4.000   Median :4.000  
##  Mean   :3.631   Mean   :3.712   Mean   :3.766   Mean   :3.734  
##  3rd Qu.:4.000   3rd Qu.:4.000   3rd Qu.:4.000   3rd Qu.:5.000  
##  Max.   :6.000   Max.   :6.000   Max.   :6.000   Max.   :6.000  
##  NA's   :16      NA's   :16      NA's   :16      NA's   :16     
##       SA13            IS1             IS2             IS3       
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:3.000   1st Qu.:3.000   1st Qu.:3.000   1st Qu.:3.000  
##  Median :4.000   Median :4.000   Median :4.000   Median :4.000  
##  Mean   :3.612   Mean   :3.491   Mean   :3.734   Mean   :3.597  
##  3rd Qu.:4.000   3rd Qu.:4.000   3rd Qu.:4.000   3rd Qu.:4.000  
##  Max.   :6.000   Max.   :6.000   Max.   :6.000   Max.   :6.000  
##  NA's   :16      NA's   :16      NA's   :16      NA's   :16     
##       IS4             IS5             IS6             IS7            IS8       
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.00   Min.   :1.000  
##  1st Qu.:3.000   1st Qu.:3.000   1st Qu.:3.000   1st Qu.:3.00   1st Qu.:2.000  
##  Median :4.000   Median :4.000   Median :4.000   Median :4.00   Median :4.000  
##  Mean   :3.669   Mean   :3.869   Mean   :3.941   Mean   :3.75   Mean   :3.469  
##  3rd Qu.:4.000   3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:4.00   3rd Qu.:4.000  
##  Max.   :6.000   Max.   :6.000   Max.   :6.000   Max.   :6.00   Max.   :6.000  
##  NA's   :16      NA's   :16      NA's   :16      NA's   :16     NA's   :16     
##       IS9             IS10            IS11            IS12      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:4.000   1st Qu.:3.000   1st Qu.:3.000   1st Qu.:2.000  
##  Median :4.000   Median :4.000   Median :4.000   Median :3.000  
##  Mean   :4.237   Mean   :3.775   Mean   :3.734   Mean   :2.925  
##  3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:4.000   3rd Qu.:4.000  
##  Max.   :6.000   Max.   :6.000   Max.   :6.000   Max.   :6.000  
##  NA's   :16      NA's   :16      NA's   :16      NA's   :16     
##       IS13            IS14            GA1             GA2          GA3       
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1    Min.   :1.000  
##  1st Qu.:3.000   1st Qu.:3.000   1st Qu.:3.000   1st Qu.:3    1st Qu.:3.000  
##  Median :4.000   Median :4.000   Median :4.000   Median :4    Median :4.000  
##  Mean   :3.741   Mean   :3.969   Mean   :3.913   Mean   :4    Mean   :4.013  
##  3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5    3rd Qu.:5.000  
##  Max.   :6.000   Max.   :6.000   Max.   :5.000   Max.   :5    Max.   :5.000  
##  NA's   :16      NA's   :16      NA's   :16      NA's   :16   NA's   :16     
##       GA4        start studying again KAU recommend KAU       ...67        
##  Min.   :1.000   Length:336               Length:336         Mode:logical  
##  1st Qu.:3.000   Class :character         Class :character   NA's:336      
##  Median :4.000   Mode  :character         Mode  :character                 
##  Mean   :3.769                                                             
##  3rd Qu.:5.000                                                             
##  Max.   :5.000                                                             
##  NA's   :16

CFA

Known values, parameters, and degrees of freedom

The concept of degrees of freedom is essential in CFA. To begin, first count the number of known values in your observed population variance-covariance matrix , given by the formula where is the number of items in your survey.

library(foreign) 
library(lavaan)
## This is lavaan 0.6-7
## lavaan is BETA software! Please report any bugs.
#cov(student_data[,20:40])

Identification of a all item one factor CFA

Identification for the one factor CFA with all items is necessary due to the fact that we have total parameters from the model-implied covariance matrix but only six known values from the observed population covariance matrix to work with. The total parameters include three factor loadings, three residual variances and one factor variance. The extra parameter comes from the fact that we do not observe the factor but are estimating its variance. In order to identify a factor in a CFA model with three or more items, there are two options known respectively as the marker method and the variance standardization method.

m1a  <- ' f  =~ PA1 + PA2 + PA3 + PA4 + PA5 + PA6 + PA7 + PA8 + PA9 + PA10 + PA11 + PA12 + PA13 + PA14 + SA1 + SA2 + SA3 + SA4 + SA5 + SA6 + SA7 + SA8 + SA9 + SA10 + SA11 + SA12 + SA13 +IS1 + IS2 + IS3 + IS4 '
onefacall_itemsa <- cfa(m1a, data=student_data) 
summary(onefacall_itemsa) 
## lavaan 0.6-7 ended normally after 33 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                         62
##                                                       
##                                                   Used       Total
##   Number of observations                           320         336
##                                                                   
## Model Test User Model:
##                                                       
##   Test statistic                              2450.550
##   Degrees of freedom                               434
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   f =~                                                
##     PA1               1.000                           
##     PA2               1.033    0.096   10.748    0.000
##     PA3               0.961    0.095   10.096    0.000
##     PA4               0.956    0.096    9.958    0.000
##     PA5               1.131    0.108   10.441    0.000
##     PA6               1.000    0.102    9.791    0.000
##     PA7               0.998    0.100    9.966    0.000
##     PA8               1.176    0.116   10.157    0.000
##     PA9               1.127    0.104   10.856    0.000
##     PA10              1.210    0.115   10.476    0.000
##     PA11              1.074    0.106   10.109    0.000
##     PA12              1.203    0.117   10.256    0.000
##     PA13              1.056    0.111    9.491    0.000
##     PA14              1.018    0.139    7.352    0.000
##     SA1               1.192    0.102   11.694    0.000
##     SA2               1.180    0.101   11.652    0.000
##     SA3               1.219    0.104   11.712    0.000
##     SA4               1.036    0.096   10.779    0.000
##     SA5               1.070    0.099   10.860    0.000
##     SA6               0.969    0.094   10.265    0.000
##     SA7               1.030    0.093   11.039    0.000
##     SA8               1.148    0.106   10.817    0.000
##     SA9               1.031    0.099   10.412    0.000
##     SA10              0.949    0.097    9.791    0.000
##     SA11              1.041    0.101   10.316    0.000
##     SA12              1.172    0.108   10.874    0.000
##     SA13              1.199    0.104   11.503    0.000
##     IS1               0.935    0.114    8.181    0.000
##     IS2               0.754    0.099    7.613    0.000
##     IS3               0.710    0.108    6.561    0.000
##     IS4               0.873    0.109    8.011    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .PA1               0.565    0.046   12.250    0.000
##    .PA2               0.505    0.042   12.173    0.000
##    .PA3               0.566    0.046   12.281    0.000
##    .PA4               0.590    0.048   12.300    0.000
##    .PA5               0.686    0.056   12.228    0.000
##    .PA6               0.688    0.056   12.321    0.000
##    .PA7               0.642    0.052   12.299    0.000
##    .PA8               0.828    0.067   12.272    0.000
##    .PA9               0.576    0.047   12.151    0.000
##    .PA10              0.774    0.063   12.223    0.000
##    .PA11              0.704    0.057   12.279    0.000
##    .PA12              0.834    0.068   12.258    0.000
##    .PA13              0.856    0.069   12.356    0.000
##    .PA14              1.721    0.138   12.513    0.000
##    .SA1               0.443    0.037   11.926    0.000
##    .SA2               0.443    0.037   11.940    0.000
##    .SA3               0.460    0.039   11.919    0.000
##    .SA4               0.502    0.041   12.167    0.000
##    .SA5               0.518    0.043   12.151    0.000
##    .SA6               0.540    0.044   12.256    0.000
##    .SA7               0.445    0.037   12.112    0.000
##    .SA8               0.607    0.050   12.159    0.000
##    .SA9               0.577    0.047   12.233    0.000
##    .SA10              0.619    0.050   12.321    0.000
##    .SA11              0.610    0.050   12.248    0.000
##    .SA12              0.618    0.051   12.148    0.000
##    .SA13              0.491    0.041   11.988    0.000
##    .IS1               1.075    0.086   12.466    0.000
##    .IS2               0.859    0.069   12.500    0.000
##    .IS3               1.124    0.090   12.548    0.000
##    .IS4               0.997    0.080   12.477    0.000
##     f                 0.393    0.062    6.316    0.000

fit statistics

summary(onefacall_itemsa, fit.measures=TRUE, standardized=TRUE)
## lavaan 0.6-7 ended normally after 33 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                         62
##                                                       
##                                                   Used       Total
##   Number of observations                           320         336
##                                                                   
## Model Test User Model:
##                                                       
##   Test statistic                              2450.550
##   Degrees of freedom                               434
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              6645.397
##   Degrees of freedom                               465
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.674
##   Tucker-Lewis Index (TLI)                       0.650
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -12490.472
##   Loglikelihood unrestricted model (H1)     -11265.197
##                                                       
##   Akaike (AIC)                               25104.945
##   Bayesian (BIC)                             25338.581
##   Sample-size adjusted Bayesian (BIC)        25141.928
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.120
##   90 Percent confidence interval - lower         0.116
##   90 Percent confidence interval - upper         0.125
##   P-value RMSEA <= 0.05                          0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.097
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   f =~                                                                  
##     PA1               1.000                               0.627    0.641
##     PA2               1.033    0.096   10.748    0.000    0.648    0.674
##     PA3               0.961    0.095   10.096    0.000    0.603    0.625
##     PA4               0.956    0.096    9.958    0.000    0.600    0.615
##     PA5               1.131    0.108   10.441    0.000    0.710    0.651
##     PA6               1.000    0.102    9.791    0.000    0.627    0.603
##     PA7               0.998    0.100    9.966    0.000    0.626    0.616
##     PA8               1.176    0.116   10.157    0.000    0.738    0.630
##     PA9               1.127    0.104   10.856    0.000    0.707    0.682
##     PA10              1.210    0.115   10.476    0.000    0.759    0.653
##     PA11              1.074    0.106   10.109    0.000    0.674    0.626
##     PA12              1.203    0.117   10.256    0.000    0.754    0.637
##     PA13              1.056    0.111    9.491    0.000    0.662    0.582
##     PA14              1.018    0.139    7.352    0.000    0.639    0.438
##     SA1               1.192    0.102   11.694    0.000    0.748    0.747
##     SA2               1.180    0.101   11.652    0.000    0.740    0.743
##     SA3               1.219    0.104   11.712    0.000    0.765    0.748
##     SA4               1.036    0.096   10.779    0.000    0.649    0.676
##     SA5               1.070    0.099   10.860    0.000    0.671    0.682
##     SA6               0.969    0.094   10.265    0.000    0.608    0.638
##     SA7               1.030    0.093   11.039    0.000    0.646    0.696
##     SA8               1.148    0.106   10.817    0.000    0.720    0.679
##     SA9               1.031    0.099   10.412    0.000    0.647    0.648
##     SA10              0.949    0.097    9.791    0.000    0.595    0.603
##     SA11              1.041    0.101   10.316    0.000    0.653    0.641
##     SA12              1.172    0.108   10.874    0.000    0.735    0.683
##     SA13              1.199    0.104   11.503    0.000    0.752    0.732
##     IS1               0.935    0.114    8.181    0.000    0.586    0.492
##     IS2               0.754    0.099    7.613    0.000    0.473    0.455
##     IS3               0.710    0.108    6.561    0.000    0.445    0.387
##     IS4               0.873    0.109    8.011    0.000    0.547    0.481
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .PA1               0.565    0.046   12.250    0.000    0.565    0.590
##    .PA2               0.505    0.042   12.173    0.000    0.505    0.546
##    .PA3               0.566    0.046   12.281    0.000    0.566    0.609
##    .PA4               0.590    0.048   12.300    0.000    0.590    0.621
##    .PA5               0.686    0.056   12.228    0.000    0.686    0.577
##    .PA6               0.688    0.056   12.321    0.000    0.688    0.636
##    .PA7               0.642    0.052   12.299    0.000    0.642    0.621
##    .PA8               0.828    0.067   12.272    0.000    0.828    0.604
##    .PA9               0.576    0.047   12.151    0.000    0.576    0.535
##    .PA10              0.774    0.063   12.223    0.000    0.774    0.573
##    .PA11              0.704    0.057   12.279    0.000    0.704    0.608
##    .PA12              0.834    0.068   12.258    0.000    0.834    0.594
##    .PA13              0.856    0.069   12.356    0.000    0.856    0.661
##    .PA14              1.721    0.138   12.513    0.000    1.721    0.808
##    .SA1               0.443    0.037   11.926    0.000    0.443    0.442
##    .SA2               0.443    0.037   11.940    0.000    0.443    0.447
##    .SA3               0.460    0.039   11.919    0.000    0.460    0.440
##    .SA4               0.502    0.041   12.167    0.000    0.502    0.543
##    .SA5               0.518    0.043   12.151    0.000    0.518    0.535
##    .SA6               0.540    0.044   12.256    0.000    0.540    0.594
##    .SA7               0.445    0.037   12.112    0.000    0.445    0.516
##    .SA8               0.607    0.050   12.159    0.000    0.607    0.539
##    .SA9               0.577    0.047   12.233    0.000    0.577    0.580
##    .SA10              0.619    0.050   12.321    0.000    0.619    0.636
##    .SA11              0.610    0.050   12.248    0.000    0.610    0.589
##    .SA12              0.618    0.051   12.148    0.000    0.618    0.534
##    .SA13              0.491    0.041   11.988    0.000    0.491    0.465
##    .IS1               1.075    0.086   12.466    0.000    1.075    0.758
##    .IS2               0.859    0.069   12.500    0.000    0.859    0.793
##    .IS3               1.124    0.090   12.548    0.000    1.124    0.850
##    .IS4               0.997    0.080   12.477    0.000    0.997    0.769
##     f                 0.393    0.062    6.316    0.000    1.000    1.000

Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.