library(kableExtra)
library(tidyverse)
library(ggplot2)
library(dplyr)
library(TSstudio)
library(RColorBrewer)
library(GGally)
library(grid)
library(gridExtra)
library(mlbench)
library(psych)
library(cowplot)
library(corrplot)
library(caret)
library(geoR)
library(reshape)
library(naniar)
library(mice)
library(DMwR)
library(AppliedPredictiveModeling)
library(pls)
library(glmnet)
library(elasticnet)
library(earth)
library(kernlab)
Friedman (1991) introduced several benchmark data sets create by simulation. One of these simulations used the following nonlinear equation to create data:
\(y=10\sin { (\pi { x }_{ 1 }{ x }_{ 2 }) } +20{ ({ x }_{ 3 }-0.5) }^{ 2 }+10{ x }_{ 4 }+5{ x }_{ 5 }+N(0,{ \sigma }^{ 2 })\)
where the x values are random variables uniformly distributed between [0, 1] (there are also 5 other non-informative variables also created in the simulation). The package mlbench contains a function called mlbench.friedman1 that simulates these data:
set.seed(200)
trainingData <- mlbench.friedman1(200, sd = 1)
## We convert the 'x' data from a matrix to a data frame. One reason is that this will give the columns names.
trainingData$x <- data.frame(trainingData$x)
## Look at the data using
featurePlot(trainingData$x, trainingData$y)
## or other methods.This creates a list with a vector 'y' and a matrix
## of predictors 'x'. Also simulate a large test set to
## estimate the true error rate with good precision:
testData <- mlbench.friedman1(5000, sd = 1)
testData$x <- data.frame(testData$x)
Tune several models on these data. For example:
knnModel <- train(x = trainingData$x,
y = trainingData$y,
method = "knn",
preProc = c("center", "scale"),
tuneLength = 10)
knnModel
## k-Nearest Neighbors
##
## 200 samples
## 10 predictor
##
## Pre-processing: centered (10), scaled (10)
## Resampling: Bootstrapped (25 reps)
## Summary of sample sizes: 200, 200, 200, 200, 200, 200, ...
## Resampling results across tuning parameters:
##
## k RMSE Rsquared MAE
## 5 3.466085 0.5121775 2.816838
## 7 3.349428 0.5452823 2.727410
## 9 3.264276 0.5785990 2.660026
## 11 3.214216 0.6024244 2.603767
## 13 3.196510 0.6176570 2.591935
## 15 3.184173 0.6305506 2.577482
## 17 3.183130 0.6425367 2.567787
## 19 3.198752 0.6483184 2.592683
## 21 3.188993 0.6611428 2.588787
## 23 3.200458 0.6638353 2.604529
##
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was k = 17.
knnPred <- predict(knnModel, newdata = testData$x)
## The function 'postResample' can be used to get the test set
## perforamnce values
postResample(pred = knnPred, obs = testData$y)
## RMSE Rsquared MAE
## 3.2040595 0.6819919 2.5683461
Which models appear to give the best performance? Does MARS select the informative predictors (those named X1–X5)?
MARS_grid <- expand.grid(.degree = 1:2, .nprune = 2:15)
MARS_model <- train(x = trainingData$x,
y = trainingData$y,
method = "earth",
tuneGrid = MARS_grid,
preProcess = c("center", "scale"),
tuneLength = 10)
MARS_model
## Multivariate Adaptive Regression Spline
##
## 200 samples
## 10 predictor
##
## Pre-processing: centered (10), scaled (10)
## Resampling: Bootstrapped (25 reps)
## Summary of sample sizes: 200, 200, 200, 200, 200, 200, ...
## Resampling results across tuning parameters:
##
## degree nprune RMSE Rsquared MAE
## 1 2 4.383438 0.2405683 3.597961
## 1 3 3.645469 0.4745962 2.930453
## 1 4 2.727602 0.7035031 2.184240
## 1 5 2.449243 0.7611230 1.939231
## 1 6 2.331605 0.7835496 1.833420
## 1 7 1.976830 0.8421599 1.562591
## 1 8 1.870959 0.8585503 1.464551
## 1 9 1.804342 0.8683110 1.410395
## 1 10 1.787676 0.8711960 1.386944
## 1 11 1.790700 0.8707740 1.393076
## 1 12 1.821005 0.8670619 1.419893
## 1 13 1.858688 0.8617344 1.445459
## 1 14 1.862343 0.8623072 1.446050
## 1 15 1.871033 0.8607099 1.457618
## 2 2 4.383438 0.2405683 3.597961
## 2 3 3.644919 0.4742570 2.929647
## 2 4 2.730222 0.7028372 2.183075
## 2 5 2.481291 0.7545789 1.965749
## 2 6 2.338369 0.7827873 1.825542
## 2 7 2.030065 0.8328250 1.602024
## 2 8 1.890997 0.8551326 1.477422
## 2 9 1.742626 0.8757904 1.371910
## 2 10 1.608221 0.8943432 1.255416
## 2 11 1.474325 0.9111463 1.157848
## 2 12 1.437483 0.9157967 1.120977
## 2 13 1.439395 0.9164721 1.128309
## 2 14 1.428565 0.9184503 1.118634
## 2 15 1.434093 0.9182413 1.121622
##
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were nprune = 14 and degree = 2.
The optimal MARS model minimized the RMSE when the nprune = 14 and the degree = 2.
MARS_predictions <- predict(MARS_model, newdata = testData$x)
postResample(pred = MARS_predictions, obs = testData$y)
## RMSE Rsquared MAE
## 1.2779993 0.9338365 1.0147070
The RMSE of the MARS model is a lot lower than the KNN model.
SVM_model <- train(x = trainingData$x,
y = trainingData$y,
method = "svmRadial",
preProcess = c("center", "scale"),
tuneLength = 10,
trControl = trainControl(method = "cv"))
SVM_model
## Support Vector Machines with Radial Basis Function Kernel
##
## 200 samples
## 10 predictor
##
## Pre-processing: centered (10), scaled (10)
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 180, 180, 180, 180, 180, 180, ...
## Resampling results across tuning parameters:
##
## C RMSE Rsquared MAE
## 0.25 2.548095 0.7967225 2.001583
## 0.50 2.290826 0.8118225 1.779407
## 1.00 2.095918 0.8337552 1.634192
## 2.00 1.989469 0.8462100 1.539721
## 4.00 1.901332 0.8565135 1.510431
## 8.00 1.879815 0.8588126 1.514502
## 16.00 1.878866 0.8591568 1.518094
## 32.00 1.878866 0.8591568 1.518094
## 64.00 1.878866 0.8591568 1.518094
## 128.00 1.878866 0.8591568 1.518094
##
## Tuning parameter 'sigma' was held constant at a value of 0.06670077
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were sigma = 0.06670077 and C = 16.
The optimal SVM mdoel has a σ of 0.07 and an C of 16.
SVM_predictions <- predict(SVM_model, newdata = testData$x)
postResample(pred = SVM_predictions, obs = testData$y)
## RMSE Rsquared MAE
## 2.0829707 0.8242096 1.5826017
nnet_grid <- expand.grid(.decay = c(0, 0.01, .1), .size = c(1:10), .bag = FALSE)
nnet_maxnwts <- 5 * (ncol(trainingData$x) + 1) + 5 + 1
nnet_model <- train(x = trainingData$x,
y = trainingData$y,
method = "avNNet",
preProcess = c("center", "scale"),
tuneGrid = nnet_grid,
trControl = trainControl(method = "cv"),
linout = TRUE,
trace = FALSE,
MaxNWts = nnet_maxnwts,
maxit = 500)
nnet_model
## Model Averaged Neural Network
##
## 200 samples
## 10 predictor
##
## Pre-processing: centered (10), scaled (10)
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 180, 180, 180, 180, 180, 180, ...
## Resampling results across tuning parameters:
##
## decay size RMSE Rsquared MAE
## 0.00 1 2.459523 0.7691775 1.920417
## 0.00 2 2.517390 0.7556275 1.973484
## 0.00 3 2.170133 0.8136101 1.698007
## 0.00 4 2.206065 0.8194369 1.649463
## 0.00 5 2.319063 0.7986176 1.783178
## 0.00 6 NaN NaN NaN
## 0.00 7 NaN NaN NaN
## 0.00 8 NaN NaN NaN
## 0.00 9 NaN NaN NaN
## 0.00 10 NaN NaN NaN
## 0.01 1 2.443513 0.7700880 1.902169
## 0.01 2 2.498223 0.7610107 1.965276
## 0.01 3 2.243864 0.8018360 1.802783
## 0.01 4 2.060693 0.8303930 1.626430
## 0.01 5 2.158157 0.8242275 1.716552
## 0.01 6 NaN NaN NaN
## 0.01 7 NaN NaN NaN
## 0.01 8 NaN NaN NaN
## 0.01 9 NaN NaN NaN
## 0.01 10 NaN NaN NaN
## 0.10 1 2.450808 0.7677685 1.905063
## 0.10 2 2.566992 0.7445497 2.007383
## 0.10 3 2.203412 0.8081681 1.717865
## 0.10 4 2.001697 0.8435571 1.594042
## 0.10 5 2.019386 0.8412724 1.606449
## 0.10 6 NaN NaN NaN
## 0.10 7 NaN NaN NaN
## 0.10 8 NaN NaN NaN
## 0.10 9 NaN NaN NaN
## 0.10 10 NaN NaN NaN
##
## Tuning parameter 'bag' was held constant at a value of FALSE
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were size = 4, decay = 0.1 and bag = FALSE.
The best neural network has a size = 3 and a decay of 0.
nnet_predictions <- predict(nnet_model, newdata = testData$x)
postResample(pred = nnet_predictions, obs = testData$y)
## RMSE Rsquared MAE
## 2.0532719 0.8346367 1.5444560
## loess r-squared variable importance
##
## Overall
## X4 100.0000
## X1 95.5047
## X2 89.6186
## X5 45.2170
## X3 29.9330
## X9 6.3299
## X10 5.5182
## X8 3.2527
## X6 0.8884
## X7 0.0000
The top 5 variables include the intended list of X1-X5 variables.
results <- data.frame(t(postResample(pred = knnPred, obs = testData$y))) %>%
mutate("Model" = "KNN")
results <- data.frame(t(postResample(pred = MARS_predictions, obs = testData$y))) %>%
mutate("Model"= "MARS") %>%
bind_rows(results)
results <- data.frame(t(postResample(pred = SVM_predictions, obs = testData$y))) %>%
mutate("Model"= "SVM") %>%
bind_rows(results)
results <- data.frame(t(postResample(pred = nnet_predictions, obs = testData$y))) %>%
mutate("Model"= "Neural Network") %>%
bind_rows(results)
results %>%
select(Model, RMSE, Rsquared, MAE) %>%
arrange(RMSE) %>%
kable() %>%
kable_styling()
## Warning: namespace 'highr' is not available and has been replaced
## by .GlobalEnv when processing object '<unknown>'
Model | RMSE | Rsquared | MAE |
---|---|---|---|
MARS | 1.277999 | 0.9338365 | 1.014707 |
Neural Network | 2.053272 | 0.8346367 | 1.544456 |
SVM | 2.082971 | 0.8242096 | 1.582602 |
KNN | 3.204060 | 0.6819919 | 2.568346 |
The MARS model preformed the best and identified the right variables as the important ones. The \({ R }^{ 2 }\) on it is extremely high. This model’s performance with test data is pretty impressive.
Exercise 6.3 describes data for a chemical manufacturing process. Use the same data imputation, data splitting, and pre-processing steps as before and train several nonlinear regression models.
data(ChemicalManufacturingProcess)
ChemicalManufacturingProcess %>% kable() %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive")) %>%
scroll_box(width="100%",height="300px")
Yield | BiologicalMaterial01 | BiologicalMaterial02 | BiologicalMaterial03 | BiologicalMaterial04 | BiologicalMaterial05 | BiologicalMaterial06 | BiologicalMaterial07 | BiologicalMaterial08 | BiologicalMaterial09 | BiologicalMaterial10 | BiologicalMaterial11 | BiologicalMaterial12 | ManufacturingProcess01 | ManufacturingProcess02 | ManufacturingProcess03 | ManufacturingProcess04 | ManufacturingProcess05 | ManufacturingProcess06 | ManufacturingProcess07 | ManufacturingProcess08 | ManufacturingProcess09 | ManufacturingProcess10 | ManufacturingProcess11 | ManufacturingProcess12 | ManufacturingProcess13 | ManufacturingProcess14 | ManufacturingProcess15 | ManufacturingProcess16 | ManufacturingProcess17 | ManufacturingProcess18 | ManufacturingProcess19 | ManufacturingProcess20 | ManufacturingProcess21 | ManufacturingProcess22 | ManufacturingProcess23 | ManufacturingProcess24 | ManufacturingProcess25 | ManufacturingProcess26 | ManufacturingProcess27 | ManufacturingProcess28 | ManufacturingProcess29 | ManufacturingProcess30 | ManufacturingProcess31 | ManufacturingProcess32 | ManufacturingProcess33 | ManufacturingProcess34 | ManufacturingProcess35 | ManufacturingProcess36 | ManufacturingProcess37 | ManufacturingProcess38 | ManufacturingProcess39 | ManufacturingProcess40 | ManufacturingProcess41 | ManufacturingProcess42 | ManufacturingProcess43 | ManufacturingProcess44 | ManufacturingProcess45 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
38.00 | 6.25 | 49.58 | 56.97 | 12.74 | 19.51 | 43.73 | 100.00 | 16.66 | 11.44 | 3.46 | 138.09 | 18.83 | NA | NA | NA | NA | NA | NA | NA | NA | 43.00 | NA | NA | NA | 35.5 | 4898 | 6108 | 4682 | 35.5 | 4865 | 6049 | 4665 | 0.0 | NA | NA | NA | 4873 | 6074 | 4685 | 10.7 | 21.0 | 9.9 | 69.1 | 156 | 66 | 2.4 | 486 | 0.019 | 0.5 | 3 | 7.2 | NA | NA | 11.6 | 3.0 | 1.8 | 2.4 |
42.44 | 8.01 | 60.97 | 67.48 | 14.65 | 19.36 | 53.14 | 100.00 | 19.04 | 12.55 | 3.46 | 153.67 | 21.05 | 0.0 | 0.0 | NA | 917 | 1032.2 | 210.0 | 177 | 178 | 46.57 | NA | NA | 0 | 34.0 | 4869 | 6095 | 4617 | 34.0 | 4867 | 6097 | 4621 | 0.0 | 3 | 0 | 3 | 4869 | 6107 | 4630 | 11.2 | 21.4 | 9.9 | 68.7 | 169 | 66 | 2.6 | 508 | 0.019 | 2.0 | 2 | 7.2 | 0.1 | 0.15 | 11.1 | 0.9 | 1.9 | 2.2 |
42.03 | 8.01 | 60.97 | 67.48 | 14.65 | 19.36 | 53.14 | 100.00 | 19.04 | 12.55 | 3.46 | 153.67 | 21.05 | 0.0 | 0.0 | NA | 912 | 1003.6 | 207.1 | 178 | 178 | 45.07 | NA | NA | 0 | 34.8 | 4878 | 6087 | 4617 | 34.8 | 4877 | 6078 | 4621 | 0.0 | 4 | 1 | 4 | 4897 | 6116 | 4637 | 11.1 | 21.3 | 9.4 | 69.3 | 173 | 66 | 2.6 | 509 | 0.018 | 0.7 | 2 | 7.2 | 0.0 | 0.00 | 12.0 | 1.0 | 1.8 | 2.3 |
41.42 | 8.01 | 60.97 | 67.48 | 14.65 | 19.36 | 53.14 | 100.00 | 19.04 | 12.55 | 3.46 | 153.67 | 21.05 | 0.0 | 0.0 | NA | 911 | 1014.6 | 213.3 | 177 | 177 | 44.92 | NA | NA | 0 | 34.8 | 4897 | 6102 | 4635 | 34.8 | 4872 | 6073 | 4611 | 0.0 | 5 | 2 | 5 | 4892 | 6111 | 4630 | 11.1 | 21.3 | 9.4 | 69.3 | 171 | 68 | 2.5 | 496 | 0.018 | 1.2 | 2 | 7.2 | 0.0 | 0.00 | 10.6 | 1.1 | 1.8 | 2.1 |
42.49 | 7.47 | 63.33 | 72.25 | 14.02 | 17.91 | 54.66 | 100.00 | 18.22 | 12.80 | 3.05 | 147.61 | 21.05 | 10.7 | 0.0 | NA | 918 | 1027.5 | 205.7 | 178 | 178 | 44.96 | NA | NA | 0 | 34.6 | 4992 | 6233 | 4733 | 33.9 | 4886 | 6102 | 4659 | -0.7 | 8 | 4 | 18 | 4930 | 6151 | 4684 | 11.3 | 21.6 | 9.0 | 69.4 | 171 | 70 | 2.5 | 468 | 0.017 | 0.2 | 2 | 7.3 | 0.0 | 0.00 | 11.0 | 1.1 | 1.7 | 2.1 |
43.57 | 6.12 | 58.36 | 65.31 | 15.17 | 21.79 | 51.23 | 100.00 | 18.30 | 12.13 | 3.78 | 151.88 | 20.76 | 12.0 | 0.0 | NA | 924 | 1016.8 | 208.9 | 178 | 178 | 45.32 | NA | NA | 0 | 34.0 | 4985 | 6222 | 4786 | 33.4 | 4862 | 6115 | 4696 | -0.6 | 9 | 1 | 1 | 4871 | 6128 | 4687 | 11.4 | 21.7 | 10.1 | 68.2 | 173 | 70 | 2.5 | 490 | 0.018 | 0.4 | 2 | 7.2 | 0.0 | 0.00 | 11.5 | 2.2 | 1.8 | 2.0 |
43.12 | 7.48 | 64.47 | 72.41 | 13.82 | 17.71 | 54.45 | 100.00 | 18.72 | 12.95 | 3.04 | 147.11 | 20.75 | 11.5 | 0.0 | 1.56 | 933 | 988.9 | 210.0 | 177 | 178 | 49.36 | 11.6 | 11.5 | 0 | 32.4 | 4745 | 5999 | 4486 | 33.8 | 4758 | 6013 | 4522 | 1.4 | 1 | 1 | 1 | 4795 | 6057 | 4572 | 11.2 | 21.2 | 11.2 | 67.6 | 159 | 65 | 2.5 | 475 | 0.019 | 0.8 | 2 | 7.3 | 0.0 | 0.00 | 11.7 | 0.7 | 2.0 | 2.2 |
43.06 | 6.94 | 63.60 | 72.06 | 15.70 | 19.42 | 54.72 | 100.00 | 18.85 | 13.13 | 3.85 | 154.20 | 21.45 | 12.0 | 0.0 | 1.55 | 929 | 1010.9 | 211.7 | 178 | 178 | 48.68 | 10.2 | 11.3 | 0 | 33.6 | 4854 | 6105 | 4626 | 33.6 | 4766 | 6022 | 4552 | 0.0 | 2 | 2 | 2 | 4806 | 6059 | 4586 | 11.1 | 21.2 | 10.9 | 67.9 | 161 | 65 | 2.5 | 478 | 0.019 | 1.0 | 2 | 7.3 | 0.0 | 0.00 | 11.4 | 0.8 | 2.0 | 2.2 |
41.49 | 6.94 | 63.60 | 72.06 | 15.70 | 19.42 | 54.72 | 100.00 | 18.85 | 13.13 | 3.85 | 154.20 | 21.45 | 12.0 | 0.0 | 1.56 | 928 | 1003.5 | 208.7 | 177 | 177 | 47.20 | 9.7 | 11.1 | 0 | 33.9 | 4893 | 6144 | 4658 | 33.9 | 4769 | 6033 | 4556 | 0.0 | 3 | 3 | 3 | 4842 | 6103 | 4609 | 11.3 | 21.5 | 10.5 | 68.0 | 160 | 65 | 2.5 | 491 | 0.019 | 1.2 | 3 | 7.4 | 0.0 | 0.00 | 11.4 | 0.9 | 1.9 | 2.1 |
42.45 | 6.94 | 63.60 | 72.06 | 15.70 | 19.42 | 54.72 | 100.00 | 18.85 | 13.13 | 3.85 | 154.20 | 21.45 | 12.0 | 0.0 | 1.55 | 938 | 1003.8 | 209.8 | 177 | 177 | 47.11 | 10.1 | 10.2 | 0 | 34.3 | 4846 | 6077 | 4614 | 35.3 | 4840 | 6091 | 4614 | 1.0 | 4 | 1 | 4 | 4893 | 6135 | 4650 | 11.4 | 21.7 | 9.8 | 68.5 | 164 | 66 | 2.5 | 488 | 0.019 | 1.8 | 3 | 7.1 | 0.0 | 0.00 | 11.3 | 0.8 | 1.9 | 2.4 |
42.04 | 7.17 | 61.23 | 70.01 | 13.36 | 18.67 | 52.83 | 100.00 | 17.88 | 12.62 | 2.90 | 143.28 | 20.21 | 10.3 | 0.0 | 1.55 | 932 | 983.1 | 209.4 | 177 | 177 | 46.24 | 9.0 | 9.5 | 0 | 35.8 | 4944 | 6156 | 4690 | 35.8 | 4900 | 6126 | 4665 | 0.0 | 6 | 3 | 6 | 4925 | 6161 | 4687 | 11.5 | 21.9 | 9.4 | 68.7 | 166 | 67 | 2.5 | 493 | 0.019 | 1.5 | 2 | 7.0 | 0.0 | 0.00 | 11.0 | 1.0 | 1.9 | 1.8 |
42.68 | 7.17 | 61.23 | 70.01 | 13.36 | 18.67 | 52.83 | 100.00 | 17.88 | 12.62 | 2.90 | 143.28 | 20.21 | 10.3 | 0.0 | 1.55 | 930 | 992.0 | 209.4 | 178 | 178 | 46.10 | 8.8 | 9.7 | 0 | 35.6 | 4959 | 6178 | 4708 | 35.2 | 4878 | 6134 | 4673 | -0.4 | 7 | 4 | 7 | 4924 | 6161 | 4692 | 11.5 | 22.0 | 9.4 | 68.6 | 169 | 67 | 2.5 | 498 | 0.018 | 0.3 | 3 | 7.0 | 0.0 | 0.00 | 11.2 | 0.8 | 2.0 | 1.8 |
43.44 | 7.17 | 61.23 | 70.01 | 13.36 | 18.67 | 52.83 | 100.00 | 17.88 | 12.62 | 2.90 | 143.28 | 20.21 | 10.3 | 0.0 | 1.55 | 934 | 1004.1 | 207.8 | 177 | 177 | 47.53 | 9.3 | 10.4 | 0 | 35.1 | 4917 | 6158 | 4704 | 35.1 | 4835 | 6090 | 4651 | 0.0 | 8 | 1 | 8 | 4888 | 6129 | 4653 | 11.4 | 21.7 | 9.9 | 68.4 | 166 | 68 | 2.4 | 490 | 0.018 | 1.1 | 3 | 7.1 | 0.0 | 0.00 | 11.1 | 0.8 | 1.9 | 2.4 |
40.28 | 7.63 | 60.51 | 69.24 | 17.59 | 20.67 | 52.83 | 100.00 | 18.74 | 13.21 | 4.94 | 158.42 | 21.77 | 11.1 | 0.0 | 1.59 | 934 | 1036.8 | 209.1 | 178 | 178 | 45.28 | 9.6 | 9.8 | 0 | 34.9 | 4882 | 6108 | 4655 | 35.8 | 4858 | 6070 | 4628 | 0.9 | 10 | 2 | 2 | 4911 | 6124 | 4684 | 11.1 | 21.5 | 9.4 | 69.1 | 161 | 66 | 2.4 | 490 | 0.019 | 0.6 | 3 | 7.4 | 0.0 | 0.00 | 11.7 | 0.6 | 1.7 | 1.9 |
41.50 | 6.23 | 62.93 | 69.74 | 11.80 | 20.54 | 54.57 | 100.00 | 18.89 | 12.82 | 2.30 | 152.83 | 22.18 | 11.3 | 0.0 | NA | 930 | 1120.7 | 207.8 | 177 | 177 | 46.44 | 9.4 | 10.2 | 0 | 35.3 | 4918 | 6156 | 4690 | 35.3 | 4849 | 6093 | 4646 | 0.0 | 11 | 3 | 15 | 4874 | 6125 | 4659 | 11.3 | 21.6 | 9.9 | 68.5 | 160 | 64 | 2.5 | 490 | 0.019 | 1.6 | 3 | 7.2 | 0.0 | 0.00 | 11.6 | 0.8 | 1.9 | 2.0 |
41.21 | 7.13 | 60.30 | 68.18 | 13.80 | 20.72 | 52.49 | 100.00 | 18.68 | 12.75 | 3.25 | 152.82 | 21.35 | 11.1 | 0.0 | NA | 928 | 1073.6 | 207.1 | 177 | 177 | 45.40 | 9.6 | 10.2 | 0 | 35.4 | 4805 | 6124 | 4666 | 35.5 | 4842 | 6091 | 4641 | 0.1 | 12 | 4 | 16 | 4848 | 6095 | 4630 | 11.1 | 21.2 | 10.3 | 68.5 | 166 | 66 | 2.5 | 493 | 0.019 | 1.2 | 3 | 7.3 | 0.1 | 0.20 | 11.6 | 1.0 | 1.9 | 2.5 |
40.89 | 7.85 | 58.22 | 66.95 | 15.38 | 20.86 | 50.84 | 100.00 | 18.51 | 12.70 | 4.01 | 152.82 | 20.70 | 11.1 | 0.0 | NA | 928 | 1027.5 | 205.9 | 177 | 177 | 45.54 | 9.0 | 10.0 | 0 | 35.8 | 4942 | 6177 | 4725 | 35.8 | 4858 | 6100 | 4656 | 0.0 | 1 | 1 | 1 | 4860 | 6100 | 4659 | 11.1 | 21.3 | 10.0 | 68.7 | 167 | 68 | 2.5 | 495 | 0.019 | 1.3 | 3 | 7.4 | 0.0 | 0.00 | 11.5 | 1.1 | 1.9 | 2.3 |
40.14 | 7.64 | 59.44 | 67.22 | 15.67 | 21.50 | 52.02 | 100.00 | 18.72 | 12.86 | 4.16 | 156.51 | 21.47 | 12.4 | 0.0 | NA | 930 | 1021.4 | 208.4 | 177 | 177 | 45.73 | 9.5 | 10.6 | 0 | 35.5 | 4899 | 6123 | 4692 | 35.5 | 4811 | 6041 | 4636 | 0.0 | 2 | 1 | 2 | 4815 | 6055 | 4631 | 10.8 | 20.9 | 10.6 | 69.0 | 157 | 64 | 2.5 | 497 | 0.020 | 1.1 | 3 | 7.4 | 0.0 | 0.00 | 11.7 | 1.7 | 1.8 | 2.2 |
39.30 | 7.51 | 59.74 | 67.28 | 15.72 | 21.80 | 52.30 | 100.00 | 18.81 | 12.98 | 4.24 | 158.36 | 21.82 | 12.7 | 0.0 | NA | 929 | 1092.2 | 207.5 | 178 | 178 | 44.46 | 8.9 | 9.8 | 0 | 35.5 | 4957 | 6181 | 4751 | 35.5 | 4887 | 6124 | 4710 | 0.0 | 3 | 2 | 3 | 4876 | 6109 | 4696 | 11.1 | 21.4 | 9.8 | 68.8 | 156 | 64 | 2.4 | 514 | 0.021 | 0.7 | 3 | 7.3 | 0.0 | 0.00 | 11.6 | 1.8 | 1.7 | 2.3 |
39.53 | 7.51 | 59.74 | 67.28 | 15.72 | 21.80 | 52.30 | 100.00 | 18.81 | 12.98 | 4.24 | 158.36 | 21.82 | 12.7 | 0.0 | NA | 929 | 1175.3 | 204.1 | 177 | 177 | 45.02 | 8.9 | 9.9 | 0 | 35.6 | 4961 | 6180 | 4775 | 35.6 | 4869 | 6094 | 4690 | 0.0 | 4 | 3 | 4 | 4850 | 6094 | 4665 | 11.0 | 21.2 | 10.1 | 68.7 | 155 | 62 | 2.5 | 490 | 0.020 | 1.2 | 2 | 7.3 | 0.0 | 0.00 | 11.4 | 1.5 | 1.5 | 2.0 |
40.22 | 7.51 | 59.74 | 67.28 | 15.72 | 21.80 | 52.30 | 100.00 | 18.81 | 12.98 | 4.24 | 158.36 | 21.82 | 12.7 | 0.0 | 1.56 | 925 | 1102.8 | 206.6 | 178 | 178 | 45.22 | 9.0 | 10.0 | 0 | 35.2 | 4949 | 6161 | 4766 | 35.2 | 4871 | 6108 | 4705 | 0.0 | 5 | 4 | 5 | 4879 | 6117 | 4696 | 11.1 | 21.5 | 9.9 | 68.7 | 157 | 63 | 2.5 | 495 | 0.020 | 0.9 | 3 | 7.3 | 0.1 | 0.20 | 11.4 | 2.0 | 1.6 | 2.0 |
41.18 | 7.08 | 61.83 | 70.69 | 13.43 | 17.72 | 53.27 | 100.00 | 19.14 | 13.38 | 3.02 | 153.10 | 21.90 | 10.9 | 0.0 | NA | 936 | 1024.4 | 218.7 | 178 | 178 | 47.04 | NA | NA | 0 | 33.2 | 4791 | 6026 | 4482 | 35.7 | 0 | 6111 | 0 | 2.5 | 6 | 2 | 16 | 4918 | 6152 | 4618 | 11.4 | 21.1 | 8.8 | 70.1 | 162 | 68 | 2.4 | 479 | 0.018 | 0.9 | 2 | 7.4 | 0.0 | 0.00 | 11.9 | 0.8 | 1.9 | 2.1 |
40.70 | 6.58 | 58.38 | 67.17 | 12.22 | 18.46 | 51.45 | 100.00 | 18.22 | 12.83 | 2.69 | 148.49 | 21.23 | 11.1 | 0.0 | NA | 937 | 997.7 | 209.6 | 177 | 177 | 46.43 | NA | NA | 0 | 32.9 | NA | 6002 | 0 | 36.5 | 4902 | 6120 | 4621 | 3.6 | 7 | 3 | 17 | 4906 | 6134 | 4626 | 11.2 | 21.0 | 8.9 | 70.1 | 160 | 66 | 2.4 | 492 | 0.019 | 1.5 | 3 | 7.4 | 0.0 | 0.00 | 11.6 | 0.8 | 1.9 | 2.4 |
41.89 | 6.27 | 56.23 | 64.98 | 11.47 | 18.93 | 50.31 | 100.00 | 17.64 | 12.48 | 2.49 | 145.61 | 20.81 | 11.3 | 0.0 | NA | 940 | 1031.3 | 215.1 | 177 | 177 | 47.09 | NA | NA | 0 | 33.6 | 4864 | 6085 | 4615 | 35.1 | 4847 | 6072 | 4607 | 1.5 | 1 | 1 | 1 | 4875 | 6095 | 4606 | 11.2 | 20.9 | 9.5 | 69.7 | 161 | 65 | 2.5 | 468 | 0.018 | 1.3 | 2 | 7.2 | 0.0 | 0.00 | 11.4 | 1.1 | 2.0 | 1.8 |
43.38 | 8.17 | 63.66 | 73.44 | 18.37 | 23.76 | 56.64 | 100.00 | 17.94 | 12.18 | 4.15 | 151.54 | 20.27 | 9.0 | 0.0 | 1.54 | 934 | 1007.3 | 209.4 | 178 | 178 | 47.28 | 11.1 | 9.0 | 0 | 33.3 | 4750 | 5994 | 4517 | 36.3 | 4887 | 6146 | 4653 | 3.0 | 5 | 5 | 12 | 4907 | 6150 | 4631 | 11.5 | 21.3 | 9.2 | 69.5 | 167 | 66 | 2.5 | 505 | 0.019 | 1.0 | 2 | 7.2 | 0.0 | 0.00 | 11.5 | 0.7 | 1.7 | 2.4 |
36.83 | 6.60 | 55.74 | 66.25 | 11.83 | 22.52 | 48.95 | 100.00 | 16.67 | 12.11 | 2.75 | 140.84 | 19.07 | 11.6 | 0.0 | 1.52 | 930 | 950.7 | 203.6 | 178 | 178 | 38.89 | 9.2 | 7.6 | 0 | 37.3 | 4840 | 5988 | 4577 | 40.0 | 4971 | 6114 | 4657 | 2.7 | 1 | 1 | 6 | 4990 | 6160 | 4693 | 11.0 | 21.0 | 7.5 | 71.5 | 161 | 65 | 2.5 | 500 | 0.019 | 0.9 | 3 | 6.9 | 0.0 | 0.00 | 11.8 | 0.8 | 1.7 | 2.2 |
35.25 | 6.90 | 54.26 | 60.99 | 12.22 | 20.16 | 47.23 | 100.00 | 16.57 | 11.73 | 3.06 | 139.52 | 18.62 | 9.2 | 0.0 | 1.53 | 926 | 955.8 | 203.0 | 177 | 178 | 39.02 | 8.4 | 7.5 | 0 | 38.0 | 4894 | 6022 | 4590 | 40.0 | 4971 | 6107 | 4675 | 2.0 | 2 | 2 | 7 | 4966 | 6112 | 4660 | 10.7 | 20.6 | 7.6 | 71.9 | 159 | 65 | 2.4 | 492 | 0.019 | 0.9 | 3 | 7.1 | 0.0 | 0.00 | 11.7 | 0.7 | 1.7 | 2.0 |
36.12 | 6.86 | 55.66 | 63.43 | 12.53 | 20.39 | 48.94 | 100.00 | 16.71 | 11.94 | 3.07 | 142.45 | 19.12 | 9.2 | 0.0 | 1.54 | 922 | 975.8 | 203.6 | 178 | 178 | 40.46 | 7.8 | 7.5 | 0 | 38.1 | 4942 | 6081 | 4645 | 39.3 | 4967 | 6117 | 4664 | 1.2 | 3 | 3 | 8 | 4961 | 6112 | 4649 | 10.7 | 20.5 | 7.6 | 71.8 | 157 | 64 | 2.5 | 522 | 0.021 | 0.9 | 3 | 7.4 | 0.0 | 0.00 | 11.6 | 1.3 | 1.7 | 2.2 |
38.52 | 6.67 | 63.44 | 76.94 | 14.28 | 21.67 | 58.42 | 100.00 | 17.47 | 13.12 | 3.10 | 158.66 | 21.88 | 9.2 | 0.0 | 1.52 | 924 | 986.9 | 206.4 | 177 | 177 | 42.67 | 7.5 | 7.7 | 0 | 38.6 | 5055 | 6213 | 4714 | 37.7 | 4960 | 6123 | 4639 | -0.9 | 4 | 4 | 9 | 4966 | 6137 | 4641 | 10.8 | 20.7 | 7.6 | 71.7 | 158 | 63 | 2.5 | 499 | 0.020 | 1.9 | 3 | 7.3 | 0.1 | 0.20 | 11.7 | 0.8 | 1.7 | 2.2 |
38.35 | 6.53 | 61.68 | 77.15 | 11.81 | 21.12 | 59.38 | 100.00 | 17.31 | 12.83 | 2.14 | 154.56 | 22.18 | 10.4 | 0.0 | 1.52 | 921 | 1001.1 | 205.5 | 178 | 178 | 44.95 | 9.4 | 9.0 | 0 | 35.3 | 4831 | 6017 | 4556 | 35.3 | 4866 | 6028 | 4573 | 0.0 | 6 | 4 | 4 | 4863 | 6039 | 4564 | 10.6 | 20.1 | 9.0 | 70.9 | 157 | 64 | 2.5 | 504 | 0.020 | 0.7 | 3 | 6.8 | 0.0 | 0.00 | 11.6 | 0.5 | 1.9 | 2.2 |
39.98 | 6.89 | 61.54 | 76.07 | 12.41 | 21.14 | 57.89 | 100.00 | 17.42 | 12.79 | 2.35 | 153.00 | 21.58 | 10.3 | 0.0 | 1.54 | 928 | 1006.7 | 206.2 | 177 | 177 | 46.27 | 9.0 | 9.1 | 0 | 35.4 | 4872 | 6050 | 4585 | 35.0 | 4857 | 6036 | 4579 | -0.4 | 7 | 1 | 5 | 4872 | 6060 | 4583 | 10.7 | 20.4 | 9.1 | 70.6 | 160 | 63 | 2.5 | 486 | 0.019 | 1.6 | 2 | 7.1 | 0.0 | 0.00 | 11.7 | 0.6 | 2.0 | 2.4 |
41.87 | 7.13 | 61.39 | 74.10 | 13.27 | 20.96 | 55.95 | 100.00 | 17.58 | 12.63 | 2.61 | 151.00 | 20.80 | 11.2 | 0.0 | 1.53 | 926 | 1024.0 | 208.2 | 178 | 178 | 47.08 | 10.7 | 9.5 | 0 | 33.5 | 4756 | 5972 | 4515 | 34.0 | 4854 | 6069 | 4600 | 0.5 | 8 | 2 | 6 | 4842 | 6057 | 4574 | 10.9 | 20.4 | 9.7 | 69.9 | 163 | 66 | 2.5 | 486 | 0.019 | 0.7 | 2 | 7.1 | 0.0 | 0.00 | 11.6 | 0.6 | 2.0 | 2.1 |
43.62 | 6.84 | 61.46 | 73.91 | 13.18 | 20.77 | 56.39 | 100.00 | 17.56 | 12.55 | 2.53 | 151.48 | 20.99 | 11.6 | 0.0 | 1.52 | 923 | 1041.2 | 207.3 | 177 | 177 | 48.77 | 10.1 | 10.5 | 0 | 33.4 | 4815 | 6033 | 4569 | 33.4 | 4773 | 5991 | 4521 | 0.0 | 9 | 3 | 7 | 4820 | 6042 | 4563 | 10.9 | 20.4 | 10.0 | 69.6 | 161 | 64 | 2.5 | 476 | 0.018 | 1.6 | 2 | 7.2 | 0.1 | 0.10 | 11.6 | 0.7 | 1.9 | 2.4 |
38.60 | 5.17 | 61.17 | 76.39 | 12.51 | 20.32 | 58.17 | 100.00 | 17.79 | 13.05 | 2.50 | 157.45 | 22.21 | 10.6 | 0.0 | 1.52 | 928 | 999.5 | 209.4 | 178 | 178 | 45.78 | 9.8 | 9.7 | 0 | 34.5 | 4811 | 5992 | 4578 | 34.5 | 4823 | 6010 | 4579 | 0.0 | 5 | 5 | 12 | 4829 | 6020 | 4590 | 10.6 | 20.1 | 9.7 | 70.3 | 156 | 61 | 2.5 | 496 | 0.020 | 1.1 | 2 | 7.5 | 0.1 | 0.10 | 11.6 | 0.5 | 1.8 | 2.3 |
39.65 | 7.01 | 61.30 | 72.71 | 13.23 | 24.85 | 54.89 | 100.00 | 17.38 | 12.47 | 2.76 | 149.46 | 20.42 | 11.6 | 0.0 | 1.53 | 925 | 1010.3 | 209.1 | 177 | 177 | 44.77 | 9.4 | 9.3 | 0 | 34.6 | 4852 | 6047 | 4852 | 34.4 | 4861 | 6073 | 4759 | -0.2 | 3 | 3 | 16 | 4854 | 6061 | 4654 | 10.7 | 20.4 | 9.5 | 70.1 | 155 | 61 | 2.5 | 507 | 0.020 | 1.7 | 3 | 7.3 | 0.0 | 0.00 | 11.7 | 0.6 | 1.9 | 2.6 |
40.87 | 6.30 | 57.04 | 70.03 | 11.70 | 18.04 | 50.50 | 100.00 | 17.27 | 12.79 | 2.41 | 145.62 | 20.18 | 12.5 | 0.0 | 1.53 | 930 | 1002.4 | 207.5 | 177 | 177 | 46.65 | 9.7 | 10.0 | 4549 | 33.9 | 4844 | 6057 | 4562 | 33.1 | 4821 | 6033 | 4547 | -0.8 | 1 | 1 | 13 | 4818 | 6041 | 4537 | 10.9 | 20.4 | 10.1 | 69.5 | 153 | 63 | 2.4 | 481 | 0.020 | 1.0 | 2 | 7.4 | 0.1 | 0.20 | 11.0 | 0.9 | 2.0 | 2.1 |
42.46 | 5.32 | 59.14 | 71.05 | 13.02 | 21.17 | 52.58 | 100.00 | 16.94 | 12.32 | 2.46 | 144.80 | 20.03 | 11.9 | 19.7 | 1.53 | 926 | 1019.6 | 206.4 | 178 | 178 | 46.17 | 9.4 | 10.2 | 4549 | 33.4 | 4854 | 6051 | 4595 | 32.2 | 4794 | 5992 | 4552 | -1.2 | 3 | 2 | 2 | 4798 | 5982 | 4534 | 10.4 | 19.8 | 10.1 | 70.1 | 166 | 65 | 2.6 | 495 | 0.019 | 0.9 | 3 | 7.1 | 0.0 | 0.00 | 11.2 | 1.1 | 1.9 | 2.4 |
42.66 | 5.32 | 59.14 | 71.05 | 13.02 | 21.17 | 52.58 | 100.00 | 16.94 | 12.32 | 2.46 | 144.80 | 20.03 | 11.9 | 19.9 | 1.52 | 924 | 1008.6 | 208.7 | 177 | 177 | 46.38 | 9.7 | 10.0 | 4549 | 33.1 | 4825 | 6028 | 4571 | 32.6 | 4798 | 5986 | 4552 | -0.5 | 4 | 3 | 3 | 4820 | 6006 | 4552 | 10.5 | 20.0 | 9.8 | 70.2 | 166 | 65 | 2.5 | 484 | 0.018 | 1.7 | 2 | 7.1 | 0.0 | 0.00 | 11.1 | 1.2 | 1.8 | 2.4 |
42.23 | 5.32 | 59.14 | 71.05 | 13.02 | 21.17 | 52.58 | 100.00 | 16.94 | 12.32 | 2.46 | 144.80 | 20.03 | 11.9 | 19.3 | 1.54 | 926 | 1014.3 | 208.7 | 178 | 178 | 45.92 | 9.5 | 10.0 | 4549 | 33.0 | 4838 | 6029 | 4593 | 32.6 | 4800 | 5991 | 4562 | -0.4 | 5 | 4 | 4 | 4820 | 6013 | 4554 | 10.6 | 20.1 | 9.8 | 70.1 | 166 | 68 | 2.4 | 506 | 0.019 | 0.0 | 2 | 7.1 | 0.1 | 0.20 | 11.0 | 1.5 | 1.8 | 2.4 |
41.43 | 5.71 | 57.68 | 69.37 | 12.26 | 21.32 | 50.79 | 100.00 | 17.01 | 12.44 | 2.46 | 143.94 | 19.78 | 11.0 | 19.5 | 1.52 | 924 | 1027.0 | 206.6 | 177 | 177 | 46.77 | 10.2 | 9.8 | 4549 | 32.8 | 4806 | 6002 | 4591 | 32.8 | 4831 | 6027 | 4603 | 0.0 | 7 | 2 | 6 | 4847 | 6053 | 4607 | 10.9 | 20.5 | 9.7 | 69.9 | 160 | 65 | 2.5 | 488 | 0.019 | 0.0 | 2 | 7.2 | 0.0 | 0.00 | 11.4 | 1.0 | 1.9 | 2.3 |
41.47 | 6.60 | 58.80 | 71.17 | 12.40 | 22.14 | 52.24 | 100.00 | 17.21 | 12.77 | 2.58 | 148.28 | 20.33 | 11.3 | 19.3 | 1.52 | 925 | 1015.0 | 205.9 | 178 | 178 | 46.69 | 9.8 | 10.0 | 4549 | 33.0 | 4828 | 6020 | 4587 | 32.6 | 4815 | 6005 | 4582 | -0.4 | 8 | 3 | 7 | 4837 | 6050 | 4598 | 10.9 | 20.4 | 9.8 | 59.8 | 159 | 64 | 2.5 | 493 | 0.019 | 0.0 | 2 | 7.2 | 0.0 | 0.00 | 10.9 | 1.0 | 1.9 | 2.2 |
42.07 | 6.76 | 55.42 | 69.80 | 11.25 | 18.15 | 49.89 | 100.00 | 17.61 | 13.40 | 2.57 | 151.50 | 20.88 | 10.8 | 22.5 | 1.48 | 936 | 954.7 | 211.2 | 177 | 177 | 45.95 | 11.1 | 10.5 | 4549 | 32.8 | 4713 | 5904 | 4467 | 32.8 | 4750 | 5927 | 4497 | 0.0 | 1 | 1 | 1 | 4784 | 5974 | 4543 | 10.3 | 19.6 | 10.1 | 70.3 | 157 | 61 | 2.6 | 509 | 0.020 | 1.1 | 3 | 7.4 | 0.0 | 0.00 | 11.4 | 0.7 | 1.8 | 2.4 |
44.35 | 6.76 | 55.42 | 69.80 | 11.25 | 18.15 | 49.89 | 100.00 | 17.61 | 13.40 | 2.57 | 151.50 | 20.88 | 10.8 | 20.5 | 1.53 | 923 | 954.0 | 210.0 | 178 | 177 | 46.66 | 8.1 | 8.9 | 4549 | 33.3 | 4934 | 6110 | 4635 | 32.5 | 4873 | 6058 | 4598 | -0.8 | 2 | 2 | 2 | 4900 | 6089 | 4617 | 10.8 | 20.5 | 8.6 | 70.8 | 163 | 64 | 2.5 | 498 | 0.019 | 0.9 | 3 | 7.3 | 0.1 | 0.10 | 11.4 | 0.7 | 2.0 | 2.4 |
44.16 | 6.76 | 55.42 | 69.80 | 11.25 | 18.15 | 49.89 | 100.00 | 17.61 | 13.40 | 2.57 | 151.50 | 20.88 | 10.8 | 21.5 | 1.55 | 930 | 969.3 | 208.7 | 177 | 178 | 47.33 | 9.3 | 9.3 | 4549 | 32.5 | 4836 | 6014 | 4564 | 32.3 | 4844 | 6032 | 4577 | -0.2 | 3 | 3 | 3 | 4869 | 6061 | 4603 | 10.7 | 20.3 | 9.0 | 70.7 | 160 | 63 | 2.5 | 501 | 0.020 | 1.0 | 3 | 7.1 | 0.0 | 0.00 | 11.0 | 0.7 | 1.8 | 2.4 |
43.33 | 6.77 | 58.76 | 72.74 | 12.12 | 20.65 | 53.17 | 100.00 | 17.59 | 13.31 | 2.61 | 154.06 | 21.31 | 11.4 | 20.5 | 1.56 | 928 | 980.3 | 208.2 | 178 | 178 | 46.78 | 9.0 | 8.8 | 4549 | 32.8 | 4869 | 6061 | 4583 | 32.3 | 4905 | 6117 | 4635 | -0.5 | 4 | 4 | 4 | 4885 | 6098 | 4611 | 11.0 | 20.6 | 8.9 | 70.4 | 162 | 64 | 2.5 | 490 | 0.019 | 0.3 | 2 | 7.1 | 0.0 | 0.00 | 10.5 | 0.9 | 1.8 | 2.1 |
42.61 | 6.95 | 60.31 | 73.97 | 12.42 | 19.05 | 52.31 | 100.00 | 17.64 | 13.28 | 2.75 | 151.21 | 20.75 | 12.2 | 20.5 | 1.50 | 926 | 986.4 | 208.7 | 177 | 177 | 46.48 | 8.5 | 9.2 | 4549 | 33.2 | 4914 | 6108 | 4594 | 32.4 | 4850 | 6025 | 4535 | -0.8 | 5 | 5 | 5 | 4854 | 6034 | 4547 | 10.6 | 20.0 | 9.1 | 70.9 | 165 | 65 | 2.5 | 490 | 0.019 | 1.2 | 3 | 7.0 | 0.0 | 0.00 | 10.7 | 0.7 | 1.8 | 2.3 |
42.96 | 6.95 | 60.31 | 73.97 | 12.42 | 19.05 | 52.31 | 100.00 | 17.64 | 13.28 | 2.75 | 151.21 | 20.75 | 12.2 | 20.5 | 1.50 | 925 | 977.8 | 227.4 | 178 | 178 | 46.03 | 9.4 | 9.1 | 4549 | 32.6 | 4833 | 6009 | 4521 | 32.6 | 4853 | 6027 | 4538 | 0.0 | 6 | 6 | 6 | 4864 | 6056 | 4556 | 10.7 | 20.2 | 9.0 | 70.7 | 168 | 65 | 2.6 | 492 | 0.018 | 0.7 | 3 | 7.4 | 0.0 | 0.00 | 11.1 | 1.1 | 1.8 | 2.1 |
43.84 | 6.95 | 60.31 | 73.97 | 12.42 | 19.05 | 52.31 | 100.00 | 17.64 | 13.28 | 2.75 | 151.21 | 20.75 | 12.2 | 20.0 | 1.56 | 927 | 1006.4 | 210.7 | 177 | 177 | 48.11 | 8.9 | 9.9 | 4549 | 32.6 | 4883 | 6146 | 4533 | 31.3 | 4812 | 6082 | 4484 | -1.3 | 7 | 1 | 7 | 4816 | 6086 | 4481 | 11.0 | 20.2 | 9.9 | 69.9 | 164 | 69 | 2.4 | 493 | 0.019 | 1.8 | 3 | 6.7 | 0.1 | 0.10 | 11.6 | 1.4 | 1.8 | 2.4 |
46.34 | 7.97 | 64.75 | 74.10 | 15.11 | 22.66 | 56.22 | 100.00 | 18.82 | 12.76 | 3.18 | 157.34 | 21.33 | 11.7 | 18.0 | 1.52 | 921 | 1002.4 | 209.8 | 177 | 178 | 47.45 | 9.5 | 9.6 | 4549 | 32.1 | 4855 | 6077 | 4563 | 31.5 | 4836 | 6055 | 4551 | -0.6 | 9 | 3 | 9 | 4850 | 6099 | 4548 | 11.2 | 20.7 | 9.6 | 69.7 | 167 | 68 | 2.4 | 490 | 0.018 | 0.6 | 3 | 7.3 | 0.0 | 0.00 | 11.6 | 1.3 | 1.8 | 2.1 |
39.74 | 6.94 | 57.02 | 69.51 | 13.45 | 18.44 | 50.16 | 100.00 | 17.55 | 12.83 | 3.09 | 149.60 | 20.25 | 10.4 | 19.0 | 1.52 | 923 | 971.2 | 207.8 | 178 | 178 | 44.65 | 8.9 | 9.1 | 4549 | 33.9 | 4852 | 6013 | 4518 | 33.6 | 4849 | 6015 | 4525 | -0.3 | 10 | 4 | 10 | 4866 | 6045 | 4531 | 10.6 | 20.0 | 8.8 | 71.2 | 170 | 68 | 2.5 | 490 | 0.018 | 0.8 | 3 | 7.3 | 0.0 | 0.00 | 11.6 | 0.9 | 1.8 | 2.0 |
41.12 | 6.94 | 57.02 | 69.51 | 13.45 | 18.44 | 50.16 | 100.00 | 17.55 | 12.83 | 3.09 | 149.60 | 20.25 | 10.4 | 18.0 | 1.53 | 918 | 977.6 | 204.8 | 177 | 177 | 46.47 | 8.9 | 9.4 | 4549 | 33.4 | 4869 | 6043 | 4547 | 32.8 | 4827 | 6014 | 4526 | -0.6 | 11 | 5 | 11 | 4846 | 6032 | 4521 | 10.6 | 20.0 | 9.2 | 70.8 | 169 | 67 | 2.5 | 504 | 0.019 | 1.3 | 3 | 7.1 | 0.0 | 0.00 | 11.4 | 2.5 | 1.8 | 2.1 |
40.14 | 6.94 | 57.02 | 69.51 | 13.45 | 18.44 | 50.16 | 100.00 | 17.55 | 12.83 | 3.09 | 149.60 | 20.25 | 10.4 | 19.5 | 1.54 | 926 | 989.2 | 206.4 | 178 | 178 | 47.33 | 8.7 | 11.0 | 4549 | 33.8 | 4874 | 6049 | 4551 | 33.1 | 4701 | 5890 | 4392 | -0.7 | 12 | 6 | 12 | 4721 | 5901 | 4416 | 10.0 | 18.9 | 10.8 | 70.2 | 162 | 65 | 2.5 | 496 | 0.019 | 0.4 | 3 | 7.1 | 0.1 | 0.20 | 11.4 | 1.0 | 1.8 | 2.2 |
42.69 | 7.56 | 61.62 | 72.17 | 14.46 | 21.02 | 53.78 | 100.00 | 18.33 | 12.82 | 3.18 | 154.71 | 20.95 | 11.1 | 19.5 | 1.54 | 929 | 989.6 | 205.5 | 177 | 177 | 46.34 | 9.0 | 9.5 | 4549 | 33.1 | 4867 | 6061 | 4567 | 32.5 | 4836 | 6033 | 4541 | -0.6 | 1 | 1 | 13 | 4861 | 6071 | 4550 | 10.9 | 20.5 | 9.3 | 70.3 | 165 | 66 | 2.5 | 495 | 0.019 | 1.9 | 3 | 7.4 | 0.0 | 0.00 | 11.4 | 1.1 | 2.0 | 2.3 |
40.15 | 6.87 | 57.33 | 71.52 | 13.22 | 15.62 | 50.85 | 100.00 | 17.74 | 13.16 | 2.91 | 148.45 | 20.44 | 9.7 | 19.5 | 1.54 | 923 | 1003.8 | 206.8 | 178 | 177 | 48.84 | 8.7 | 10.8 | 4549 | 33.6 | 4867 | 6039 | 4539 | 33.1 | 4718 | 5898 | 4404 | -0.5 | 2 | 2 | 14 | 4747 | 5929 | 4423 | 10.1 | 19.2 | 10.5 | 70.3 | 157 | 63 | 2.5 | 501 | 0.020 | 1.4 | 3 | 7.3 | 0.0 | 0.00 | 11.6 | 1.2 | 1.9 | 2.2 |
39.77 | 6.87 | 57.33 | 71.52 | 13.22 | 15.62 | 50.85 | 100.00 | 17.74 | 13.16 | 2.91 | 148.45 | 20.44 | 9.7 | 19.5 | 1.54 | 925 | 984.2 | 205.2 | 177 | 178 | 46.32 | 8.4 | 8.6 | 4549 | 33.7 | 4891 | 6059 | 4563 | 33.1 | 4880 | 6048 | 4555 | -0.6 | 3 | 3 | 15 | 4890 | 6069 | 4552 | 10.7 | 20.3 | 8.6 | 71.2 | 164 | 67 | 2.5 | 483 | 0.018 | 0.9 | 3 | 7.2 | 0.0 | 0.00 | 11.2 | 0.9 | 1.9 | 2.1 |
39.40 | 6.87 | 57.33 | 71.52 | 13.22 | 15.62 | 50.85 | 100.00 | 17.74 | 13.16 | 2.91 | 148.45 | 20.44 | 9.7 | 19.5 | 1.52 | 924 | 992.5 | 207.3 | 178 | 178 | 47.03 | 8.2 | 9.4 | 4549 | 33.9 | 4901 | 6055 | 4571 | 34.8 | 4816 | 5992 | 4493 | 0.9 | 4 | 4 | 16 | 4847 | 6021 | 4518 | 10.5 | 19.9 | 9.1 | 71.0 | 160 | 66 | 2.4 | 509 | 0.020 | 0.6 | 3 | 7.3 | 0.0 | 0.00 | 11.0 | 0.9 | 2.1 | 2.2 |
39.14 | 6.65 | 55.61 | 68.93 | 12.72 | 15.91 | 48.64 | 100.00 | 17.87 | 13.31 | 2.98 | 146.08 | 20.33 | 10.7 | 19.5 | 1.50 | 924 | 987.0 | 206.2 | 177 | 177 | 45.66 | 10.3 | 9.4 | 4549 | 33.8 | 4747 | 5918 | 4447 | 34.5 | 4829 | 6006 | 4531 | 0.7 | 5 | 5 | 17 | 4853 | 6033 | 4545 | 10.6 | 20.1 | 9.2 | 70.7 | 156 | 63 | 2.5 | 463 | 0.019 | 1.1 | 2 | 7.3 | 0.1 | 0.20 | 11.0 | 1.0 | 1.9 | 2.2 |
40.36 | 6.65 | 55.61 | 68.93 | 12.72 | 15.91 | 48.64 | 100.00 | 17.87 | 13.31 | 2.98 | 146.08 | 20.33 | 10.7 | 19.5 | 1.52 | 926 | 991.5 | 211.4 | 178 | 178 | 47.09 | 10.3 | 9.8 | 4549 | 33.5 | 4765 | 5946 | 4471 | 33.9 | 4808 | 5991 | 4509 | 0.4 | 6 | 6 | 18 | 4820 | 6016 | 4524 | 10.6 | 20.0 | 9.7 | 70.3 | 156 | 64 | 2.4 | 488 | 0.020 | 0.5 | 3 | 7.3 | 0.0 | 0.00 | 11.3 | 0.0 | 2.0 | 2.2 |
42.31 | 6.65 | 55.61 | 68.93 | 12.72 | 15.91 | 48.64 | 100.00 | 17.87 | 13.31 | 2.98 | 146.08 | 20.33 | 10.7 | 18.0 | 1.58 | 920 | 1003.2 | 207.8 | 177 | 177 | 49.04 | 11.1 | 10.2 | 4549 | 32.5 | 4724 | 5926 | 4441 | 33.5 | 4792 | 6002 | 4506 | 1.0 | 7 | 1 | 1 | 4811 | 6016 | 4519 | 10.7 | 20.1 | 10.0 | 69.9 | 157 | 63 | 2.5 | 512 | 0.020 | 1.4 | 3 | 7.1 | 0.0 | 0.00 | 11.8 | 11.0 | 1.9 | 2.3 |
40.49 | 6.72 | 57.24 | 71.27 | 12.25 | 16.58 | 50.88 | 100.00 | 18.18 | 13.60 | 2.75 | 151.23 | 21.30 | 9.3 | 20.0 | 1.57 | 928 | 983.2 | 208.0 | 177 | 178 | 46.30 | 9.4 | 9.1 | 4549 | 34.6 | 4813 | 5957 | 4491 | 35.2 | 4834 | 5983 | 4514 | 0.6 | 9 | 3 | 3 | 4863 | 6019 | 4541 | 10.4 | 19.9 | 8.8 | 71.3 | 160 | 63 | 2.5 | 499 | 0.019 | 0.8 | 3 | 7.0 | 0.0 | 0.00 | 11.5 | 0.7 | 1.8 | 2.3 |
40.57 | 6.57 | 55.93 | 69.48 | 11.95 | 18.00 | 50.50 | 100.00 | 17.92 | 13.23 | 2.63 | 151.67 | 21.29 | 8.7 | 19.0 | 1.60 | 921 | 980.8 | 206.2 | 178 | 178 | 46.37 | 9.6 | 9.1 | 4549 | 34.6 | 4803 | 5958 | 4506 | 35.0 | 4846 | 6009 | 4535 | 0.4 | 10 | 4 | 4 | 4867 | 6041 | 4554 | 10.6 | 20.1 | 8.9 | 71.0 | 161 | 64 | 2.5 | 513 | 0.020 | 0.7 | 3 | 7.1 | 0.1 | 0.10 | 11.6 | 0.9 | 1.8 | 2.2 |
38.20 | 6.16 | 54.67 | 66.95 | 11.15 | 17.25 | 48.12 | 100.83 | 17.97 | 13.12 | 2.48 | 149.03 | 20.88 | 9.1 | 20.0 | 1.51 | 925 | 982.3 | 205.9 | 177 | 177 | 46.32 | 10.4 | 9.0 | 4549 | 34.0 | 4756 | 5917 | 4484 | 35.3 | 4858 | 6039 | 4557 | 1.3 | 11 | 5 | 5 | 4877 | 6051 | 4587 | 10.7 | 20.3 | 8.9 | 70.8 | 153 | 61 | 2.5 | 484 | 0.020 | 1.3 | 2 | 7.1 | 0.0 | 0.00 | 11.7 | 0.8 | 1.8 | 2.1 |
38.70 | 6.16 | 54.67 | 66.95 | 11.15 | 17.25 | 48.12 | 100.83 | 17.97 | 13.12 | 2.48 | 149.03 | 20.88 | 9.1 | 19.5 | 1.51 | 923 | 983.4 | 206.2 | 178 | 178 | 46.02 | 10.2 | 8.7 | 4549 | 34.1 | 4772 | 5957 | 4494 | 35.4 | 4885 | 6065 | 4571 | 1.3 | 12 | 6 | 6 | 4889 | 6069 | 4590 | 10.8 | 20.4 | 8.8 | 70.8 | 156 | 62 | 2.5 | 502 | 0.020 | 0.5 | 3 | 7.1 | 0.0 | 0.00 | 11.6 | 0.8 | 1.8 | 2.0 |
38.94 | 6.16 | 54.67 | 66.95 | 11.15 | 17.25 | 48.12 | 100.83 | 17.97 | 13.12 | 2.48 | 149.03 | 20.88 | 9.1 | 19.5 | 1.49 | 928 | 1004.5 | 206.8 | 177 | 177 | 48.17 | 9.6 | 10.2 | 4549 | 33.9 | 4828 | 6010 | 4550 | 33.9 | 4763 | 5949 | 4510 | 0.0 | 1 | 1 | 7 | 4814 | 6010 | 4545 | 10.4 | 19.8 | 9.7 | 70.5 | 150 | 60 | 2.5 | 492 | 0.021 | 1.1 | 2 | 7.1 | 0.0 | 0.00 | 11.5 | 0.7 | 1.9 | 2.3 |
41.90 | 6.37 | 52.67 | 64.34 | 12.02 | 17.40 | 46.52 | 100.00 | 17.38 | 12.48 | 2.75 | 144.50 | 19.82 | 11.0 | 20.0 | 1.50 | 927 | 1016.1 | 210.3 | 178 | 177 | 47.44 | 11.2 | 9.9 | 4549 | 32.7 | 4716 | 5937 | 4476 | 34.1 | 4818 | 6043 | 4586 | 1.4 | 2 | 2 | 8 | 4835 | 6074 | 4592 | 10.9 | 20.4 | 9.7 | 69.8 | 162 | 63 | 2.6 | 492 | 0.019 | 1.0 | 2 | 7.0 | 0.0 | 0.00 | 11.6 | 0.9 | 2.0 | 2.3 |
42.03 | 6.37 | 52.67 | 64.34 | 12.02 | 17.40 | 46.52 | 100.00 | 17.38 | 12.48 | 2.75 | 144.50 | 19.82 | 11.0 | 19.5 | 1.51 | 922 | 999.7 | 213.3 | 177 | 178 | 47.30 | 10.9 | 10.1 | 4549 | 33.3 | 4742 | 5963 | 4505 | 33.9 | 4800 | 6038 | 4578 | 0.6 | 3 | 3 | 9 | 4841 | 6084 | 4593 | 11.0 | 20.5 | 9.7 | 69.8 | 163 | 63 | 2.6 | 498 | 0.019 | 1.0 | 3 | 6.9 | 0.0 | 0.00 | 11.7 | 1.4 | 1.9 | 1.8 |
41.96 | 6.37 | 52.67 | 64.34 | 12.02 | 17.40 | 46.52 | 100.00 | 17.38 | 12.48 | 2.75 | 144.50 | 19.82 | 11.0 | 19.5 | 1.50 | 923 | 1013.9 | 209.6 | 178 | 178 | 48.11 | 11.0 | 10.4 | 4549 | 32.9 | 4737 | 5967 | 4499 | 33.5 | 4785 | 6025 | 4558 | 0.6 | 4 | 4 | 10 | 4819 | 6065 | 4575 | 10.9 | 20.4 | 10.0 | 69.6 | 160 | 62 | 2.6 | 504 | 0.020 | 0.5 | 3 | 6.8 | 0.0 | 0.00 | 11.7 | 1.4 | 1.9 | 1.8 |
41.85 | 6.31 | 54.42 | 66.13 | 11.97 | 18.40 | 48.01 | 100.00 | 17.81 | 12.75 | 2.76 | 147.17 | 20.41 | 12.0 | 19.5 | 1.48 | 923 | 994.0 | 206.8 | 178 | 178 | 46.00 | 9.7 | 9.6 | 4549 | 34.2 | 4818 | 6019 | 4583 | 34.2 | 4830 | 6031 | 4603 | 0.0 | 6 | 6 | 12 | 4857 | 6065 | 4613 | 10.7 | 20.3 | 9.3 | 70.4 | 162 | 64 | 2.5 | 494 | 0.019 | 0.4 | 3 | 7.0 | 0.0 | 0.00 | 11.2 | 1.2 | 1.9 | 1.8 |
39.71 | 6.27 | 53.51 | 66.52 | 11.83 | 16.95 | 46.62 | 100.00 | 17.76 | 13.31 | 2.87 | 143.65 | 20.35 | 10.0 | 20.0 | 1.49 | 929 | 960.0 | 210.7 | 177 | 177 | 45.05 | 9.4 | 9.0 | 0 | 34.8 | 4824 | 5974 | 4534 | 35.4 | 4862 | 6021 | 4567 | 0.6 | 1 | 1 | 13 | 4877 | 6036 | 4569 | 10.4 | 20.0 | 8.7 | 71.3 | 156 | 62 | 2.5 | 500 | 0.020 | 1.1 | 3 | 7.3 | 0.0 | 0.00 | 11.9 | 1.2 | 1.8 | 2.5 |
39.38 | 6.27 | 53.51 | 66.52 | 11.83 | 16.95 | 46.62 | 100.00 | 17.76 | 13.31 | 2.87 | 143.65 | 20.35 | 10.2 | 19.0 | 1.48 | 921 | 961.3 | 205.0 | 178 | 177 | 43.83 | 8.9 | 8.4 | 0 | 35.5 | 4862 | 6023 | 4568 | 35.5 | 4905 | 6066 | 4597 | 0.0 | 2 | 2 | 14 | 4901 | 6063 | 4588 | 10.6 | 20.2 | 8.4 | 71.4 | 159 | 63 | 2.5 | 487 | 0.019 | 0.9 | 3 | 7.1 | 0.1 | 0.10 | 11.9 | 1.7 | 1.8 | 2.3 |
39.16 | 6.27 | 53.51 | 66.52 | 11.83 | 16.95 | 46.62 | 100.00 | 17.76 | 13.31 | 2.87 | 143.65 | 20.35 | 10.2 | 19.0 | 1.48 | 921 | 969.7 | 207.8 | 177 | 178 | 43.86 | 8.4 | 8.3 | 0 | 35.5 | 4897 | 6043 | 4584 | 35.5 | 4907 | 6064 | 4596 | 0.0 | 3 | 3 | 15 | 4916 | 6075 | 4595 | 10.6 | 20.3 | 8.2 | 70.5 | 158 | 62 | 2.6 | 484 | 0.019 | 0.7 | 3 | 7.0 | 0.0 | 0.00 | 11.5 | 1.7 | 1.9 | 2.2 |
39.38 | 6.58 | 52.50 | 63.29 | 12.24 | 18.28 | 46.04 | 100.00 | 17.67 | 12.47 | 2.85 | 144.40 | 19.85 | 9.5 | 19.0 | 1.47 | 923 | 989.7 | 205.7 | 177 | 177 | 47.40 | 9.7 | 9.5 | 0 | 34.2 | 4836 | 6047 | 4588 | 33.9 | 4854 | 6072 | 4603 | -0.3 | 5 | 5 | 17 | 4876 | 6106 | 4609 | 11.1 | 20.8 | 9.3 | 69.9 | 162 | 65 | 2.5 | 494 | 0.019 | 1.3 | 3 | 7.1 | 0.0 | 0.00 | 11.7 | 1.2 | 1.8 | 1.9 |
40.08 | 6.45 | 53.18 | 64.98 | 12.11 | 18.77 | 46.80 | 100.00 | 17.58 | 12.69 | 2.79 | 145.90 | 19.96 | 10.9 | 19.5 | 1.51 | 923 | 996.4 | 206.2 | 178 | 178 | 47.52 | 10.2 | 9.9 | 0 | 33.5 | 4810 | 6039 | 4568 | 33.5 | 4827 | 6057 | 4580 | 0.0 | 6 | 6 | 18 | 4825 | 6063 | 4582 | 11.0 | 20.5 | 9.9 | 69.6 | 160 | 63 | 2.6 | 500 | 0.020 | 0.6 | 2 | 7.0 | 0.0 | 0.00 | 11.5 | 1.2 | 1.8 | 1.8 |
39.17 | 6.39 | 58.85 | 73.45 | 12.69 | 16.92 | 51.25 | 100.00 | 17.92 | 13.50 | 2.62 | 151.25 | 20.89 | 11.3 | 21.5 | 1.55 | 935 | 976.4 | 204.8 | 177 | 177 | 45.88 | 8.5 | 9.1 | 0 | 34.8 | 4879 | 6044 | 4574 | 34.4 | 4841 | 6018 | 4565 | -0.4 | 7 | 1 | 1 | 4849 | 6041 | 4557 | 10.3 | 19.6 | 8.9 | 71.6 | 158 | 64 | 2.5 | 495 | 0.020 | 1.1 | 3 | 7.4 | 0.1 | 0.10 | 11.7 | 0.8 | 2.0 | 2.3 |
38.37 | 6.39 | 58.85 | 73.45 | 12.69 | 16.92 | 51.25 | 100.00 | 17.92 | 13.50 | 2.62 | 151.25 | 20.89 | 11.3 | 22.2 | 1.54 | 933 | 971.6 | 208.0 | 178 | 177 | 45.52 | 8.2 | 8.7 | 0 | 35.2 | 4899 | 6059 | 4609 | 34.5 | 4867 | 6037 | 4583 | -0.7 | 8 | 2 | 2 | 4883 | 6045 | 4583 | 10.2 | 19.6 | 8.3 | 72.1 | 156 | 62 | 2.5 | 497 | 0.020 | 1.9 | 2 | 7.1 | 0.0 | 0.00 | 11.8 | 0.8 | 2.0 | 2.1 |
38.76 | 6.39 | 58.85 | 73.45 | 12.69 | 16.92 | 51.25 | 100.00 | 17.92 | 13.50 | 2.62 | 151.25 | 20.89 | 11.3 | 22.0 | 1.54 | 933 | 974.0 | 205.9 | 177 | 178 | 45.11 | 8.7 | 8.6 | 0 | 35.0 | 4857 | 6028 | 4569 | 34.6 | 4870 | 6051 | 4582 | -0.4 | 9 | 3 | 3 | 4890 | 6058 | 4587 | 10.3 | 19.7 | 8.3 | 72.0 | 159 | 64 | 2.5 | 497 | 0.020 | 0.7 | 2 | 7.0 | 0.0 | 0.00 | 11.6 | 1.3 | 1.9 | 2.4 |
38.73 | 6.35 | 56.93 | 70.87 | 12.27 | 18.06 | 49.92 | 100.00 | 17.76 | 13.29 | 2.61 | 150.06 | 20.65 | 11.5 | 22.5 | 1.55 | 932 | 978.0 | 209.4 | 178 | 178 | 45.57 | 9.8 | 9.3 | 0 | 34.2 | 4795 | 5991 | 4520 | 34.2 | 4844 | 6031 | 4579 | 0.0 | 10 | 4 | 4 | 4859 | 6058 | 4581 | 10.5 | 19.8 | 8.9 | 71.2 | 157 | 61 | 2.6 | 507 | 0.020 | 0.8 | 3 | 7.1 | 0.0 | 0.00 | 11.6 | 0.6 | 2.0 | 2.3 |
38.95 | 6.17 | 53.80 | 65.53 | 12.70 | 18.65 | 47.67 | 100.00 | 16.82 | 12.11 | 2.58 | 142.66 | 19.64 | 11.4 | 21.5 | 1.55 | 932 | 980.2 | 205.7 | 177 | 177 | 44.92 | 8.7 | 9.1 | 0 | 35.1 | 4889 | 6089 | 4619 | 34.5 | 4857 | 6063 | 4594 | -0.6 | 11 | 5 | 5 | 4876 | 6087 | 4601 | 10.6 | 20.0 | 8.8 | 71.2 | 163 | 65 | 2.5 | 498 | 0.019 | 1.7 | 3 | 7.0 | 0.0 | 0.00 | 11.4 | 1.3 | 1.9 | 2.2 |
40.41 | 6.97 | 58.18 | 71.85 | 14.25 | 17.08 | 50.06 | 100.00 | 18.02 | 13.51 | 3.37 | 148.92 | 20.33 | 11.0 | 21.5 | 1.55 | 937 | 993.4 | 205.5 | 177 | 177 | 46.11 | 9.3 | 9.4 | 0 | 34.5 | 4835 | 6014 | 4527 | 34.5 | 4827 | 5994 | 4525 | 0.0 | 1 | 1 | 7 | 4835 | 6015 | 4537 | 10.3 | 19.5 | 9.1 | 71.3 | 156 | 63 | 2.5 | 494 | 0.020 | 1.0 | 3 | 7.1 | 0.0 | 0.00 | 11.4 | 0.8 | 2.0 | 2.5 |
39.90 | 6.97 | 58.18 | 71.85 | 14.25 | 17.08 | 50.06 | 100.00 | 18.02 | 13.51 | 3.37 | 148.92 | 20.33 | 11.0 | 22.0 | 1.52 | 931 | 990.5 | 207.1 | 178 | 177 | 46.12 | 8.4 | 9.3 | 0 | 35.2 | 4899 | 6061 | 4572 | 33.8 | 4813 | 5977 | 4515 | -1.4 | 2 | 2 | 8 | 4834 | 6015 | 4526 | 10.3 | 19.5 | 9.1 | 71.4 | 154 | 61 | 2.5 | 517 | 0.021 | 1.2 | 3 | 7.1 | 0.0 | 0.00 | 11.3 | 0.9 | 2.1 | 2.2 |
39.79 | 6.97 | 58.18 | 71.85 | 14.25 | 17.08 | 50.06 | 100.00 | 18.02 | 13.51 | 3.37 | 148.92 | 20.33 | 11.0 | 22.0 | 1.53 | 935 | 982.9 | 206.6 | 177 | 178 | 44.55 | 8.2 | 8.4 | 0 | 35.2 | 4897 | 6048 | 4572 | 34.8 | 4881 | 6059 | 4584 | -0.4 | 3 | 3 | 9 | 4898 | 6073 | 4573 | 10.5 | 19.9 | 8.3 | 71.8 | 159 | 65 | 2.4 | 495 | 0.019 | 0.3 | 2 | 7.1 | 0.0 | 0.00 | 11.3 | 1.0 | 1.9 | 2.1 |
41.25 | 8.81 | 63.99 | 78.25 | 23.09 | 19.96 | 53.87 | 100.00 | 18.84 | 14.08 | 6.87 | 158.73 | 20.57 | 12.7 | 22.0 | 1.55 | 934 | 1000.7 | 205.5 | 178 | 178 | 45.10 | 8.6 | 8.8 | 0 | 34.9 | 4844 | 5990 | 4524 | 34.9 | 4825 | 5981 | 4517 | 0.0 | 4 | 4 | 10 | 4878 | 6049 | 4546 | 10.3 | 19.6 | 8.4 | 72.1 | 167 | 65 | 2.6 | 507 | 0.019 | 0.2 | 3 | 7.1 | 0.0 | 0.00 | 11.6 | 1.2 | 1.9 | 2.2 |
41.00 | 6.80 | 57.21 | 70.34 | 13.98 | 16.81 | 48.46 | 100.00 | 17.91 | 13.34 | 3.37 | 146.67 | 19.95 | 11.2 | 20.5 | 1.55 | 934 | 1000.8 | 205.2 | 178 | 178 | 44.99 | 9.1 | 8.5 | 0 | 34.7 | 4829 | 5998 | 4550 | 34.7 | 4879 | 6040 | 4573 | 0.0 | 6 | 6 | 12 | 4881 | 6060 | 4576 | 10.5 | 19.9 | 8.6 | 71.5 | 164 | 65 | 2.5 | 492 | 0.019 | 0.3 | 3 | 7.1 | 0.0 | 0.00 | 11.5 | 1.6 | 1.9 | 2.4 |
41.59 | 6.80 | 57.21 | 70.34 | 13.98 | 16.81 | 48.46 | 100.00 | 17.91 | 13.34 | 3.37 | 146.67 | 19.95 | 11.2 | 21.0 | 1.55 | 939 | 1171.2 | 206.4 | 177 | 178 | 45.64 | 8.9 | 9.1 | 0 | 35.1 | 4853 | 6022 | 4582 | 34.8 | 4826 | 5996 | 4564 | -0.3 | 1 | 1 | 13 | 4866 | 6051 | 4567 | 10.4 | 19.7 | 8.7 | 71.6 | 164 | 66 | 2.5 | 506 | 0.019 | 0.9 | 2 | 7.2 | 0.0 | 0.00 | 11.5 | 1.5 | 1.9 | 2.4 |
40.91 | 6.80 | 57.21 | 70.34 | 13.98 | 16.81 | 48.46 | 100.00 | 17.91 | 13.34 | 3.37 | 146.67 | 19.95 | 11.2 | 22.0 | 1.54 | 936 | 979.2 | 208.7 | 178 | 178 | 44.62 | 8.6 | 8.4 | 0 | 35.0 | 4864 | 6030 | 4577 | 34.8 | 4887 | 6068 | 4599 | -0.2 | 2 | 2 | 14 | 4907 | 6087 | 4602 | 10.5 | 20.0 | 8.2 | 71.8 | 165 | 68 | 2.4 | 493 | 0.019 | 0.9 | 2 | 7.1 | 0.0 | 0.00 | 11.6 | 1.6 | 2.0 | 2.4 |
38.99 | 6.30 | 51.96 | 64.07 | 12.65 | 19.23 | 44.66 | 100.00 | 17.16 | 12.71 | 3.15 | 142.11 | 19.13 | 11.6 | 21.0 | 1.55 | 932 | 994.5 | 207.8 | 177 | 177 | 45.45 | 9.4 | 9.4 | 0 | 34.8 | 4841 | 6048 | 4631 | 34.1 | 4839 | 6062 | 4631 | -0.7 | 3 | 3 | 15 | 4867 | 6082 | 4642 | 10.7 | 20.2 | 9.1 | 70.7 | 160 | 64 | 2.5 | 499 | 0.019 | 1.4 | 3 | 7.2 | 0.0 | 0.00 | 11.5 | 1.0 | 1.9 | 2.4 |
38.81 | 6.30 | 51.96 | 64.07 | 12.65 | 19.23 | 44.66 | 100.00 | 17.16 | 12.71 | 3.15 | 142.11 | 19.13 | 11.6 | 21.5 | 1.55 | 937 | 989.2 | 205.2 | 178 | 178 | 45.52 | 9.3 | 9.5 | 0 | 34.5 | 4841 | 6052 | 4635 | 33.9 | 4830 | 6038 | 4618 | -0.6 | 4 | 4 | 16 | 4844 | 6067 | 4632 | 10.7 | 20.1 | 9.4 | 70.5 | 159 | 64 | 2.5 | 513 | 0.020 | 0.9 | 2 | 7.1 | 0.1 | 0.10 | 11.7 | 1.1 | 1.8 | 2.1 |
39.30 | 6.30 | 51.96 | 64.07 | 12.65 | 19.23 | 44.66 | 100.00 | 17.16 | 12.71 | 3.15 | 142.11 | 19.13 | 11.6 | 21.5 | 1.55 | 939 | 983.7 | 206.4 | 177 | 177 | 46.10 | 9.4 | 9.6 | 0 | 34.6 | 4832 | 6035 | 4624 | 34.3 | 4822 | 6039 | 4617 | -0.3 | 5 | 5 | 17 | 4838 | 6053 | 4622 | 10.6 | 20.0 | 9.4 | 70.6 | 159 | 62 | 2.5 | 498 | 0.020 | 1.2 | 2 | 7.2 | 0.0 | 0.00 | 11.7 | 1.1 | 1.9 | 2.3 |
40.77 | 6.45 | 55.09 | 69.18 | 11.98 | 17.22 | 47.12 | 100.00 | 17.74 | 13.47 | 2.86 | 148.00 | 20.04 | 10.8 | 21.5 | 1.54 | 937 | 960.4 | 204.8 | 177 | 178 | 43.52 | 8.1 | 8.3 | 0 | 35.8 | 4893 | 6028 | 4564 | 35.5 | 4879 | 6026 | 4556 | -0.3 | 7 | 2 | 2 | 4873 | 6023 | 4546 | 10.2 | 19.5 | 8.4 | 72.1 | 163 | 65 | 2.5 | 486 | 0.019 | 0.8 | 2 | 7.2 | 0.0 | 0.00 | 11.5 | 1.1 | 1.9 | 2.3 |
39.27 | 6.45 | 55.09 | 69.18 | 11.98 | 17.22 | 47.12 | 100.00 | 17.74 | 13.47 | 2.86 | 148.00 | 20.04 | 10.8 | 21.5 | 1.55 | 935 | 954.8 | NA | 178 | 178 | 43.52 | 8.4 | 8.3 | 0 | 35.6 | 4866 | 6005 | 4550 | 35.6 | 4893 | 6046 | 4569 | 0.0 | 8 | 3 | 3 | 4897 | 6047 | 4572 | 10.3 | 19.7 | 8.1 | 72.2 | 157 | 64 | 2.5 | 493 | 0.020 | 1.2 | 2 | 7.2 | 0.0 | 0.00 | 11.3 | 0.8 | 1.9 | 2.1 |
40.06 | 6.45 | 55.09 | 69.18 | 11.98 | 17.22 | 47.12 | 100.00 | 17.74 | 13.47 | 2.86 | 148.00 | 20.04 | 10.8 | 21.7 | 1.55 | 938 | 975.8 | 205.2 | 177 | 177 | 44.11 | 8.4 | 8.3 | 0 | 35.4 | 4874 | 6012 | 4561 | 35.3 | 4885 | 6046 | 4571 | -0.1 | 9 | 4 | 4 | 4885 | 6042 | 4546 | 10.3 | 19.7 | 8.3 | 72.0 | 158 | 63 | 2.5 | 478 | 0.019 | 1.0 | 2 | 7.2 | 0.1 | 0.10 | 11.6 | 0.9 | 1.9 | 2.5 |
39.17 | 6.28 | 54.33 | 68.30 | 12.37 | 15.46 | 46.72 | 100.00 | 17.41 | 13.28 | 2.96 | 143.47 | 19.85 | 12.4 | 22.0 | 1.54 | 941 | 1009.1 | 206.4 | 178 | 178 | 46.33 | 8.7 | 9.2 | 0 | 34.2 | 4867 | 6034 | 4588 | 33.8 | 4835 | 6015 | 4569 | -0.4 | 10 | 5 | 5 | 4846 | 6019 | 4572 | 10.3 | 19.6 | 9.1 | 71.3 | 156 | 62 | 2.5 | 522 | 0.021 | 0.8 | 3 | 7.2 | 0.0 | 0.00 | 11.6 | 1.1 | 1.8 | 2.2 |
39.98 | 7.33 | 56.87 | 70.17 | 14.20 | 20.16 | 49.06 | 100.00 | 18.01 | 13.34 | 3.62 | 147.63 | 19.77 | 9.9 | 21.5 | 1.54 | 933 | 992.6 | 205.9 | 177 | 177 | 45.69 | 8.4 | 9.1 | 0 | 35.3 | 4896 | 6062 | 4614 | 34.5 | 4844 | 6021 | 4583 | -0.8 | 11 | 6 | 6 | 4870 | 6054 | 4595 | 10.5 | 19.9 | 8.8 | 71.3 | 154 | 60 | 2.5 | 492 | 0.020 | 1.1 | 2 | 7.2 | 0.0 | 0.00 | 11.5 | 0.9 | 1.8 | 2.0 |
39.91 | 7.22 | 57.32 | 71.02 | 14.05 | 19.16 | 49.21 | 100.00 | 18.02 | 13.43 | 3.52 | 148.07 | 19.87 | 10.0 | 21.5 | 1.55 | 937 | 1003.7 | 205.0 | 178 | 178 | 44.22 | 8.6 | 8.9 | 0 | 35.6 | 4848 | 6005 | 4559 | 35.6 | 4866 | 6028 | 4579 | 0.0 | 1 | 1 | 7 | 4887 | 6056 | 4575 | 10.4 | 19.8 | 8.4 | 71.8 | 158 | 63 | 2.5 | 491 | 0.019 | 0.9 | 2 | 7.2 | 0.0 | 0.00 | 11.9 | 0.9 | 1.9 | 2.5 |
40.77 | 6.19 | 53.59 | 66.40 | 11.99 | 18.73 | 47.41 | 100.00 | 17.04 | 12.58 | 2.45 | 146.20 | 19.83 | 9.1 | 21.5 | 1.53 | 931 | 1006.1 | 206.8 | 178 | 177 | 45.49 | 9.1 | 8.9 | 0 | 35.2 | 4839 | 6020 | 4559 | 35.2 | 4849 | 6024 | 4576 | 0.0 | 3 | 3 | 9 | 4872 | 6054 | 4566 | 10.5 | 19.9 | 8.8 | 71.4 | 164 | 66 | 2.5 | 490 | 0.019 | 1.0 | 2 | 7.2 | 0.1 | 0.10 | 11.8 | 0.8 | 1.9 | 2.3 |
39.86 | 5.98 | 54.10 | 66.50 | 11.73 | 18.80 | 47.98 | 100.00 | 17.35 | 12.75 | 2.51 | 147.95 | 20.25 | 10.6 | 22.0 | 1.53 | 934 | 1001.0 | 204.8 | 177 | 177 | 44.09 | 8.8 | 8.7 | 0 | 35.3 | 4853 | 6021 | 4566 | 35.3 | 4864 | 6043 | 4582 | 0.0 | 4 | 4 | 10 | 4889 | 6070 | 4590 | 10.5 | 20.0 | 8.5 | 71.6 | 160 | 64 | 2.5 | 482 | 0.019 | 1.0 | 2 | 7.2 | 0.0 | 0.00 | 11.6 | 0.8 | 1.9 | 2.2 |
40.03 | 5.98 | 54.10 | 66.50 | 11.73 | 18.80 | 47.98 | 100.00 | 17.35 | 12.75 | 2.51 | 147.95 | 20.25 | 10.6 | 22.0 | 1.54 | 937 | 994.9 | 205.0 | 178 | 178 | 44.56 | 9.3 | 9.0 | 0 | 35.2 | 4815 | 5991 | 4541 | 35.2 | 4834 | 6008 | 4555 | 0.0 | 5 | 5 | 11 | 4862 | 6040 | 4562 | 10.4 | 19.7 | 8.8 | 71.5 | 159 | 64 | 2.5 | 499 | 0.020 | 0.7 | 2 | 7.2 | 0.0 | 0.00 | 11.6 | 0.9 | 2.0 | 2.1 |
40.81 | 5.98 | 54.10 | 66.50 | 11.73 | 18.80 | 47.98 | 100.00 | 17.35 | 12.75 | 2.51 | 147.95 | 20.25 | 10.6 | 20.9 | 1.55 | 933 | 1001.3 | 205.2 | 177 | 177 | 45.14 | 9.1 | NA | 0 | 35.1 | 4834 | 6022 | 4560 | 34.8 | 4859 | 6030 | 4568 | -0.3 | 6 | 6 | 12 | 4869 | 6050 | 4574 | 10.5 | 19.9 | 8.8 | 71.3 | 160 | 64 | 2.5 | 493 | 0.019 | 0.9 | 2 | 7.3 | 0.0 | 0.00 | 11.5 | 0.9 | 1.9 | 2.1 |
37.94 | 5.85 | 51.75 | 64.02 | 10.41 | 20.40 | 44.30 | 100.00 | 16.96 | 12.68 | 2.34 | 143.33 | 19.63 | 11.5 | 22.0 | 1.54 | 934 | 1004.3 | 205.0 | 177 | 178 | 43.73 | 11.4 | 8.7 | 0 | 34.3 | 4701 | 5914 | 4579 | 35.7 | 4911 | 6124 | 4705 | 1.4 | 2 | 2 | 14 | 4923 | 6137 | 4710 | 11.0 | 20.7 | 8.6 | 70.7 | 154 | 63 | 2.4 | 490 | 0.020 | 0.8 | 3 | 7.2 | 0.1 | 0.10 | 11.7 | 1.1 | 1.9 | 2.2 |
37.73 | 5.85 | 51.75 | 64.02 | 10.41 | 20.40 | 44.30 | 100.00 | 16.96 | 12.68 | 2.34 | 143.33 | 19.63 | 11.5 | 21.0 | 1.55 | 934 | 1008.1 | 204.6 | 178 | 177 | 44.35 | 8.7 | 9.2 | 0 | 35.3 | 4895 | 6079 | 4670 | 34.3 | 4850 | 6022 | 4634 | -1.0 | 3 | 3 | 15 | 4855 | 6046 | 4644 | 10.5 | 19.9 | 9.2 | 70.9 | 151 | 60 | 2.5 | 491 | 0.020 | 1.3 | 2 | 7.2 | 0.0 | 0.00 | 11.5 | 0.9 | 1.9 | 2.3 |
37.30 | 5.85 | 51.75 | 64.02 | 10.41 | 20.40 | 44.30 | 100.00 | 16.96 | 12.68 | 2.34 | 143.33 | 19.63 | 11.5 | 21.5 | 1.53 | 937 | 1004.8 | 206.6 | 177 | 177 | 44.13 | 8.9 | 9.3 | 0 | 35.3 | 4865 | 6037 | 4651 | 34.8 | 4839 | 6003 | 4619 | -0.5 | 4 | 4 | 16 | 4856 | 6041 | 4634 | 10.4 | 19.9 | 9.1 | 71.1 | 150 | 60 | 2.5 | 486 | 0.020 | 1.6 | 2 | 7.2 | 0.0 | 0.00 | 11.5 | 0.8 | 1.9 | 2.3 |
37.86 | 6.01 | 51.83 | 63.80 | 11.22 | 19.69 | 44.57 | 100.00 | 17.09 | 12.57 | 2.55 | 143.07 | 19.47 | 11.8 | 21.9 | 1.54 | 937 | 992.8 | 204.6 | 178 | 178 | 43.49 | 8.8 | 9.0 | 0 | 35.4 | 4864 | 6025 | 4607 | 35.0 | 4847 | 6024 | 4614 | -0.4 | 5 | 5 | 17 | 4865 | 6041 | 4606 | 10.4 | 19.7 | 8.8 | 71.4 | 154 | 62 | 2.5 | 507 | 0.021 | 0.8 | 3 | 7.2 | 0.0 | 0.00 | 11.6 | 1.1 | 1.8 | 2.3 |
38.05 | 5.89 | 51.28 | 64.04 | 9.99 | 16.90 | 44.74 | 100.00 | 16.79 | 13.04 | 2.33 | 142.66 | 19.67 | 12.3 | 21.7 | 1.55 | 936 | 974.0 | 206.4 | 177 | 177 | 42.66 | 8.9 | 8.7 | 0 | 35.5 | 4838 | 5997 | 4571 | 35.5 | 4855 | 6021 | 4584 | 0.0 | 6 | 6 | 18 | 4886 | 6051 | 4594 | 10.3 | 19.7 | 8.3 | 72.0 | 157 | 63 | 2.5 | 498 | 0.020 | 1.3 | 3 | 7.2 | 0.0 | 0.00 | 11.4 | 1.0 | 1.8 | 2.4 |
37.87 | 5.90 | 51.44 | 63.61 | 10.49 | 18.04 | 44.73 | 100.00 | 17.18 | 12.95 | 2.46 | 143.84 | 19.85 | 11.8 | 21.6 | 1.55 | 937 | 987.7 | 206.6 | 178 | 178 | 43.58 | 8.7 | 9.1 | 0 | 35.3 | 4861 | 6020 | 4611 | 34.9 | 4837 | 6007 | 4593 | -0.4 | 7 | 1 | 1 | 4845 | 6019 | 4590 | 10.2 | 19.6 | 9.0 | 71.4 | 156 | 62 | 2.5 | 496 | 0.020 | 0.7 | 3 | 7.3 | 0.1 | 0.10 | 11.8 | 0.6 | 1.9 | 2.1 |
38.60 | 5.90 | 51.44 | 63.61 | 10.49 | 18.04 | 44.73 | 100.00 | 17.18 | 12.95 | 2.46 | 143.84 | 19.85 | 11.8 | 21.8 | 1.55 | 936 | 987.9 | 205.5 | 177 | 177 | 44.70 | 9.3 | 9.1 | 0 | 35.2 | 4816 | 5983 | 4579 | 35.2 | 4834 | 5997 | 4583 | 0.0 | 8 | 2 | 2 | 4841 | 6010 | 4583 | 10.2 | 19.5 | 9.1 | 71.4 | 155 | 62 | 2.5 | 481 | 0.019 | 1.0 | 2 | 6.9 | 0.0 | 0.00 | 11.7 | 0.8 | 1.9 | 2.0 |
38.44 | 5.90 | 51.44 | 63.61 | 10.49 | 18.04 | 44.73 | 100.00 | 17.18 | 12.95 | 2.46 | 143.84 | 19.85 | 11.8 | 20.8 | 1.55 | 933 | 986.6 | 205.5 | 178 | 178 | 44.23 | 8.7 | 9.0 | 0 | 35.2 | 4873 | 6031 | 4606 | 34.8 | 4846 | 6014 | 4595 | -0.4 | 9 | 3 | 3 | 4853 | 6027 | 4605 | 0.0 | 19.7 | 9.0 | 71.4 | 156 | 62 | 2.5 | 493 | 0.020 | 0.5 | 3 | 7.1 | 0.0 | 0.00 | 11.9 | 0.8 | 1.9 | 2.3 |
39.42 | 5.79 | 53.96 | 66.53 | 10.40 | 18.26 | 47.57 | 100.00 | 17.24 | 12.99 | 2.16 | 146.64 | 20.57 | 9.8 | 22.0 | 1.54 | 932 | 992.3 | 208.4 | 177 | 177 | 45.61 | 9.0 | 8.9 | 0 | 35.1 | 4843 | 6016 | 4564 | 35.1 | 4850 | 6016 | 4569 | 0.0 | 10 | 4 | 4 | 4857 | 6036 | 4577 | 0.0 | 19.7 | 8.9 | 71.5 | 156 | 63 | 2.5 | 495 | 0.020 | 1.4 | 3 | 7.0 | 0.0 | 0.00 | 11.7 | 0.8 | 1.9 | 1.9 |
39.75 | 5.79 | 53.96 | 66.53 | 10.40 | 18.26 | 47.57 | 100.00 | 17.24 | 12.99 | 2.16 | 146.64 | 20.57 | 9.8 | 21.9 | 1.50 | 934 | 987.9 | 208.9 | 178 | 178 | 45.99 | 9.4 | 9.3 | 0 | 34.7 | 4807 | 5967 | 4536 | 34.7 | 4819 | 5997 | 4544 | 0.0 | 11 | 5 | 5 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 156 | 62 | 2.5 | 485 | 0.019 | 0.7 | 3 | 7.0 | 0.0 | 0.00 | 11.6 | 0.8 | 1.9 | 2.4 |
39.51 | 5.79 | 53.96 | 66.53 | 10.40 | 18.26 | 47.57 | 100.00 | 17.24 | 12.99 | 2.16 | 146.64 | 20.57 | 9.8 | 22.4 | 1.48 | 937 | 994.3 | 211.4 | 177 | 177 | 46.01 | 9.0 | 8.9 | 0 | 35.0 | 4839 | 6013 | 4561 | 35.0 | 4856 | 6032 | 4571 | 0.0 | 12 | 6 | 6 | 4859 | 6037 | 4590 | 0.0 | 19.7 | 8.8 | 71.5 | 155 | 62 | 2.5 | 491 | 0.020 | 1.5 | 2 | 7.1 | 0.0 | 0.10 | 11.7 | 0.8 | 1.9 | 1.9 |
38.35 | 5.94 | 51.27 | 63.54 | 10.48 | 17.72 | 44.43 | 100.00 | 17.13 | 13.00 | 2.52 | 143.19 | 19.69 | 11.7 | 22.0 | 1.52 | 940 | 980.3 | 205.2 | 178 | 178 | 43.75 | 9.6 | 9.4 | 0 | 35.1 | 4793 | 5953 | 4550 | 35.4 | 4808 | 5972 | 4551 | 0.3 | 1 | 1 | 7 | 4854 | 6013 | 4594 | 0.0 | 19.5 | 8.9 | 71.6 | 155 | 63 | 2.5 | 510 | 0.021 | 0.6 | 3 | 7.3 | 0.0 | 0.00 | 11.5 | 0.9 | 1.8 | 2.4 |
40.38 | 6.40 | 58.73 | 71.51 | 12.29 | 17.09 | 50.62 | 100.00 | 17.44 | 13.10 | 2.58 | 147.66 | 20.25 | 11.4 | 20.5 | 1.57 | 929 | 976.0 | 204.8 | 178 | 177 | 43.75 | 9.5 | 7.9 | 0 | 35.2 | 4783 | 5932 | 4485 | 35.7 | 4935 | 6105 | 4602 | 0.5 | 3 | 3 | 9 | 4912 | 6080 | 4572 | 0.0 | 19.9 | 8.0 | 72.1 | 162 | 65 | 2.5 | 494 | 0.019 | 0.7 | 2 | 7.0 | 0.0 | 0.00 | 11.6 | 1.7 | 1.8 | 2.2 |
40.19 | 6.40 | 58.73 | 71.51 | 12.29 | 17.09 | 50.62 | 100.00 | 17.44 | 13.10 | 2.58 | 147.66 | 20.25 | 11.4 | 22.2 | 1.54 | 937 | 994.1 | 208.9 | 177 | 177 | 44.64 | 7.8 | 8.7 | 0 | 35.9 | 4937 | 6098 | 4602 | 34.7 | 4845 | 6014 | 4533 | -1.2 | 4 | 4 | 10 | 4859 | 6011 | 4535 | 0.0 | 19.3 | 8.6 | 72.1 | 158 | 63 | 2.5 | 488 | 0.019 | 0.7 | 3 | 7.0 | 0.0 | 0.00 | 11.3 | 1.2 | 1.9 | 2.3 |
39.96 | 6.40 | 58.73 | 71.51 | 12.29 | 17.09 | 50.62 | 100.00 | 17.44 | 13.10 | 2.58 | 147.66 | 20.25 | 11.4 | 22.3 | 1.53 | 936 | 983.2 | 213.7 | 178 | 178 | 43.84 | 8.1 | 8.7 | 0 | 35.7 | 4896 | 6050 | 4559 | 35.0 | 4849 | 6010 | 4536 | -0.7 | 5 | 5 | 11 | 4871 | 6027 | 4544 | 0.0 | 19.5 | 8.4 | 72.1 | 160 | 64 | 2.5 | 497 | 0.019 | 0.9 | 2 | 7.0 | 0.1 | 0.10 | 11.3 | 0.9 | 1.8 | 2.3 |
39.79 | 6.10 | 56.36 | 69.52 | 11.71 | 16.35 | 49.10 | 100.00 | 17.15 | 12.99 | 2.44 | 146.29 | 20.16 | 11.7 | 22.0 | 1.51 | 935 | 981.6 | 204.3 | 177 | 177 | 43.37 | 7.8 | 8.1 | 0 | 36.2 | 4936 | 6076 | 4602 | 35.3 | 4887 | 6033 | 4567 | -0.9 | 6 | 6 | 12 | 4884 | 6037 | 4563 | 0.0 | 19.5 | 8.2 | 72.3 | 161 | 65 | 2.5 | 500 | 0.019 | 0.7 | 3 | 7.1 | 0.0 | 0.00 | 11.4 | 1.1 | 1.8 | 2.3 |
41.86 | 5.78 | 53.70 | 67.22 | 11.17 | 15.44 | 47.33 | 100.00 | 16.76 | 12.81 | 2.30 | 144.34 | 19.95 | 12.0 | 21.2 | 1.55 | 942 | 992.0 | 204.1 | 177 | 177 | 44.94 | 9.1 | 9.0 | 0 | 34.7 | 4808 | 5941 | 4504 | 35.1 | 4822 | 5959 | 4526 | 0.4 | 7 | 1 | 13 | 4848 | 5976 | 4524 | 0.0 | 19.2 | 8.7 | 72.1 | 163 | 65 | 2.5 | 492 | 0.019 | 1.3 | 3 | 7.1 | 0.0 | 0.00 | 11.8 | 0.5 | 1.9 | 2.3 |
42.15 | 6.15 | 53.06 | 70.29 | 11.87 | 16.59 | 49.97 | 100.00 | 16.78 | 12.63 | 2.31 | 144.75 | 19.94 | 12.3 | 21.1 | 1.54 | 934 | 980.0 | 206.4 | 178 | 178 | 43.12 | 8.3 | 8.3 | 0 | 35.2 | 4880 | 6031 | 4567 | 35.2 | 4877 | 6035 | 4570 | 0.0 | 8 | 2 | 14 | 4902 | 6060 | 4566 | 0.0 | 19.9 | 8.1 | 72.0 | 167 | 68 | 2.5 | 501 | 0.019 | 0.4 | 3 | 7.2 | 0.0 | 0.00 | 11.8 | 0.6 | 1.9 | 2.2 |
43.88 | 6.40 | 52.62 | 72.39 | 12.34 | 17.38 | 51.77 | 100.00 | 16.80 | 12.51 | 2.32 | 145.03 | 19.93 | 12.5 | 21.0 | 1.55 | 938 | 997.8 | 205.7 | 177 | 177 | 45.23 | 8.5 | 9.1 | 0 | 34.9 | 4879 | 6047 | 4564 | 34.4 | 4827 | 6000 | 4535 | -0.5 | 1 | 1 | 15 | 4858 | 6029 | 4546 | 0.0 | 19.6 | 8.8 | 71.6 | 163 | 65 | 2.5 | 495 | 0.019 | 1.0 | 3 | 6.9 | 0.0 | 0.00 | 11.8 | 0.7 | 1.9 | 2.2 |
39.58 | 5.60 | 51.45 | 63.44 | 10.50 | 19.17 | 45.06 | 100.00 | 16.83 | 12.53 | 2.27 | 142.90 | 19.64 | 11.4 | 21.0 | 1.55 | 934 | 991.9 | 205.0 | 178 | 177 | 44.10 | 8.8 | 9.2 | 0 | 35.1 | 4869 | 6037 | 4622 | 34.7 | 4835 | 5999 | 4585 | -0.4 | 2 | 2 | 16 | 4857 | 6032 | 4598 | 0.0 | 19.7 | 9.0 | 71.3 | 153 | 61 | 2.5 | 500 | 0.020 | 0.9 | 3 | 7.0 | 0.1 | 0.10 | 11.7 | 0.8 | 1.9 | 2.0 |
40.19 | 5.60 | 51.45 | 63.44 | 10.50 | 19.17 | 45.06 | 100.00 | 16.83 | 12.53 | 2.27 | 142.90 | 19.64 | 11.4 | 20.9 | 1.54 | 934 | 986.1 | 204.1 | 177 | 178 | 43.92 | 9.0 | 9.1 | 0 | 35.1 | 4849 | 6011 | 4584 | 35.0 | 4844 | 6013 | 4589 | -0.1 | 3 | 3 | 17 | 4863 | 6036 | 4608 | 0.0 | 19.7 | 8.9 | 71.4 | 156 | 61 | 2.6 | 501 | 0.020 | 0.7 | 2 | 7.1 | 0.0 | 0.00 | 11.6 | 0.8 | 1.7 | 2.4 |
39.84 | 5.60 | 51.45 | 63.44 | 10.50 | 19.17 | 45.06 | 100.00 | 16.83 | 12.53 | 2.27 | 142.90 | 19.64 | 11.4 | 21.1 | 1.55 | 935 | 923.0 | 204.8 | 178 | 178 | 43.26 | 8.7 | 8.6 | 0 | 35.6 | 4876 | 6040 | 4598 | 35.2 | 4880 | 6037 | 4611 | -0.4 | 4 | 4 | 18 | 4873 | 6043 | 4601 | 0.0 | 19.8 | 8.7 | 71.5 | 157 | 61 | 2.6 | 497 | 0.020 | 0.5 | 3 | 6.9 | 0.0 | 0.00 | 11.9 | 0.5 | 1.9 | 2.2 |
40.59 | 5.43 | 49.10 | 62.08 | 10.11 | 19.09 | 44.45 | 100.00 | 16.54 | 12.21 | 2.11 | 141.49 | 19.46 | 12.0 | 21.2 | 1.55 | 935 | 1003.2 | 206.8 | 177 | 177 | 45.63 | 9.0 | 9.6 | 0 | 34.7 | 4872 | 6060 | 4633 | 34.1 | 4828 | 6015 | 4592 | -0.6 | 5 | 5 | 19 | 4844 | 6055 | 4617 | 0.0 | 20.0 | 9.4 | 70.6 | 149 | 59 | 2.6 | 486 | 0.020 | 1.1 | 3 | 6.9 | 0.0 | 0.00 | 11.6 | 0.5 | 1.7 | 1.9 |
40.66 | 6.02 | 50.01 | 60.82 | 11.79 | 19.43 | 43.24 | 100.00 | 17.54 | 12.61 | 3.08 | 142.33 | 19.17 | 12.3 | 21.5 | 1.55 | 939 | 995.2 | 205.7 | 178 | 178 | 46.51 | 9.8 | 10.1 | 0 | 33.9 | 4839 | 6053 | 4654 | 33.1 | 4806 | 6022 | 4623 | -0.8 | 6 | 6 | 20 | 4825 | 6053 | 4657 | 0.0 | 20.2 | 10.0 | 69.9 | 146 | 56 | 2.6 | 499 | 0.021 | 0.5 | 2 | 7.0 | 0.0 | 0.00 | 11.8 | 0.5 | 1.8 | 2.1 |
42.58 | 6.03 | 52.58 | 65.05 | 11.45 | 19.11 | 46.06 | 100.00 | 17.23 | 12.84 | 2.67 | 145.08 | 19.74 | 11.3 | 21.2 | 1.55 | 936 | 991.8 | 208.2 | 177 | 178 | 45.85 | 8.8 | 9.7 | 0 | 34.9 | 4882 | 6056 | 4600 | 33.9 | 4814 | 6004 | 4580 | -1.0 | 7 | 1 | 1 | 4820 | 6022 | 4585 | 0.0 | 19.8 | 9.6 | 70.6 | 159 | 64 | 2.5 | 489 | 0.019 | 0.9 | 2 | 7.1 | 0.1 | 0.20 | 11.5 | 0.5 | 1.9 | 2.2 |
43.42 | 6.08 | 52.89 | 66.72 | 11.23 | 19.06 | 47.29 | 100.00 | 17.03 | 12.96 | 2.49 | 147.33 | 20.04 | 11.2 | 20.8 | 1.55 | 935 | 994.7 | 207.3 | 178 | 178 | 46.95 | 8.9 | 9.8 | 0 | 34.3 | 4878 | 6072 | 4614 | 33.2 | 4811 | 6018 | 4567 | -1.1 | 8 | 2 | 2 | 4824 | 6045 | 4578 | 0.0 | 20.0 | 9.7 | 70.3 | 160 | 64 | 2.6 | 481 | 0.019 | 0.7 | 2 | 7.1 | 0.0 | 0.00 | 11.6 | 0.7 | 1.8 | 2.2 |
41.45 | 5.76 | 52.73 | 63.88 | 10.59 | 20.49 | 47.29 | 100.00 | 17.70 | 12.48 | 2.23 | 150.39 | 20.62 | 12.1 | 20.9 | 1.54 | 934 | 996.9 | 207.3 | 177 | 178 | 47.21 | 10.0 | 10.2 | 0 | 33.7 | 4812 | 6032 | 4626 | 33.2 | 4797 | 6019 | 4611 | -0.5 | 9 | 3 | 3 | 4809 | 6057 | 4623 | 0.0 | 20.2 | 10.1 | 69.7 | 151 | 58 | 2.5 | 498 | 0.021 | 1.1 | 3 | 7.1 | 0.0 | 0.00 | 11.5 | 0.6 | 1.9 | 2.2 |
41.31 | 5.79 | 52.70 | 64.33 | 10.70 | 20.09 | 47.21 | 100.00 | 17.54 | 12.55 | 2.27 | 149.52 | 20.48 | 11.9 | 21.2 | 1.55 | 935 | 996.5 | 209.1 | 178 | 178 | 46.23 | 9.3 | 10.0 | 0 | 34.4 | 4859 | 6063 | 4635 | 33.3 | 4804 | 6024 | 4601 | -1.1 | 10 | 4 | 4 | 4820 | 6050 | 4606 | 0.0 | 20.1 | 9.9 | 70.1 | 154 | 60 | 2.5 | 505 | 0.020 | 0.7 | 3 | 7.0 | 0.0 | 0.00 | 11.5 | 0.7 | 1.9 | 2.1 |
42.28 | 6.23 | 52.95 | 66.71 | 12.75 | 16.31 | 45.84 | 100.00 | 16.70 | 12.75 | 2.98 | 140.93 | 19.10 | 11.4 | 21.3 | 1.54 | 939 | 987.3 | 211.4 | 177 | 178 | 45.71 | 8.1 | 9.1 | 0 | 35.0 | 4905 | 6061 | 4595 | 33.8 | 4820 | 5982 | 4529 | -1.2 | 11 | 5 | 5 | 4829 | 6009 | 4534 | 0.0 | 19.5 | 9.1 | 71.4 | 160 | 63 | 2.5 | 507 | 0.020 | 1.0 | 3 | 7.2 | 0.0 | 0.00 | 11.4 | 0.6 | 1.9 | 2.2 |
41.62 | 6.23 | 52.95 | 66.71 | 12.75 | 16.31 | 45.84 | 100.00 | 16.70 | 12.75 | 2.98 | 140.93 | 19.10 | 11.4 | 21.3 | 1.55 | 939 | 981.9 | 205.7 | 178 | 178 | 44.99 | 8.3 | 8.8 | 0 | 34.8 | 4883 | 6030 | 4577 | 34.2 | 4855 | 6024 | 4558 | -0.6 | 12 | 6 | 6 | 4862 | 6035 | 4564 | 0.0 | 19.7 | 8.8 | 71.6 | 160 | 66 | 2.4 | 502 | 0.020 | 0.7 | 2 | 7.2 | 0.1 | 0.10 | 11.4 | 0.7 | 1.9 | 2.0 |
42.73 | 6.23 | 52.95 | 66.71 | 12.75 | 16.31 | 45.84 | 100.00 | 16.70 | 12.75 | 2.98 | 140.93 | 19.10 | 11.4 | 21.4 | 1.54 | 941 | 990.0 | 207.1 | 177 | 178 | 45.62 | 8.2 | 9.4 | 0 | 35.2 | 4903 | 6056 | 4550 | 34.1 | 4805 | 5955 | 4496 | -1.1 | 1 | 1 | 7 | 4832 | 5990 | 4533 | 0.0 | 19.3 | 9.1 | 71.6 | 162 | 65 | 2.5 | 500 | 0.019 | 0.4 | 2 | 7.0 | 0.0 | 0.00 | 11.7 | 0.5 | 2.0 | 2.2 |
41.66 | 6.26 | 55.94 | 69.22 | 12.07 | 18.08 | 48.92 | 100.00 | 17.56 | 13.14 | 2.60 | 148.53 | 20.45 | 12.2 | 21.5 | 1.55 | 939 | 1004.4 | 206.4 | 178 | 178 | 46.67 | 9.1 | 10.1 | 0 | 33.8 | 4853 | 6027 | 4544 | 33.4 | 4777 | 5962 | 4509 | -0.4 | 2 | 2 | 8 | 4856 | 6058 | 4580 | 0.0 | 20.0 | 9.1 | 70.9 | 158 | 64 | 2.5 | 516 | 0.020 | 0.8 | 3 | 7.0 | 0.0 | 0.00 | 11.4 | 0.5 | 1.9 | 2.3 |
40.89 | 6.26 | 55.94 | 69.22 | 12.07 | 18.08 | 48.92 | 100.00 | 17.56 | 13.14 | 2.60 | 148.53 | 20.45 | 12.2 | 21.4 | 1.55 | 936 | 990.8 | 208.2 | 177 | 177 | 45.23 | 8.9 | 8.2 | 0 | 34.4 | 4865 | 6034 | 4562 | 34.4 | 4926 | 6122 | 4643 | 0.0 | 3 | 3 | 9 | 4935 | 6145 | 4651 | 0.0 | 20.7 | 8.1 | 71.2 | 160 | 65 | 2.5 | 490 | 0.019 | 1.0 | 2 | 7.2 | 0.0 | 0.00 | 11.4 | 0.4 | 1.9 | 2.2 |
40.82 | 6.26 | 55.94 | 69.22 | 12.07 | 18.08 | 48.92 | 100.00 | 17.56 | 13.14 | 2.60 | 148.53 | 20.45 | 12.2 | 21.5 | 1.54 | 939 | 999.2 | 206.4 | 178 | 178 | 45.73 | 7.9 | 8.8 | 0 | 34.6 | 4950 | 6143 | 4665 | 33.6 | 4884 | 6084 | 4615 | -1.0 | 4 | 4 | 10 | 4895 | 6120 | 4632 | 0.0 | 20.5 | 8.6 | 70.9 | 158 | 65 | 2.4 | 501 | 0.020 | 0.4 | 3 | 7.2 | 0.0 | 0.00 | 11.6 | 0.6 | 1.8 | 2.1 |
39.77 | 6.36 | 53.18 | 66.57 | 12.07 | 16.22 | 46.51 | 100.00 | 17.19 | 12.97 | 2.80 | 144.38 | 19.51 | 10.8 | 21.2 | 1.55 | 940 | 998.9 | 208.9 | 178 | 178 | 46.36 | 8.2 | 9.2 | 0 | 34.9 | 4912 | 6091 | 4625 | 33.5 | 4842 | 6027 | 4575 | -1.4 | 1 | 1 | 12 | 4846 | 6040 | 4574 | 0.0 | 19.8 | 9.1 | 71.1 | 158 | 65 | 2.5 | 499 | 0.020 | 0.6 | 2 | 7.2 | 0.0 | 0.00 | 11.9 | 0.4 | 2.0 | 2.3 |
38.05 | 6.72 | 53.85 | 67.10 | 12.50 | 16.15 | 46.87 | 100.00 | 17.61 | 13.15 | 3.02 | 145.80 | 19.56 | 10.9 | NA | 1.55 | 934 | 1000.1 | 208.7 | 177 | 178 | 47.06 | 8.7 | 9.4 | 0 | 34.5 | 4875 | 6056 | 4596 | 33.4 | 4821 | 6003 | 4550 | -1.1 | 2 | 2 | 13 | 4816 | 6037 | 4568 | 0.0 | 19.8 | 9.6 | 70.6 | 152 | 62 | 2.5 | 495 | 0.020 | 1.3 | 2 | 7.3 | 0.0 | 0.00 | 11.8 | 0.4 | 1.9 | 2.2 |
37.86 | 5.18 | 48.60 | 61.04 | 9.38 | 16.30 | 43.78 | 100.00 | 15.88 | 12.16 | 1.87 | 138.14 | 19.20 | 11.3 | 21.4 | 1.54 | 936 | 1001.2 | 206.2 | 178 | 177 | 46.95 | 9.3 | 9.6 | 0 | 34.3 | 4830 | 6001 | 4581 | 33.6 | 4809 | 5977 | 4569 | -0.7 | 3 | 3 | 14 | 4817 | 6012 | 4584 | 0.0 | 19.6 | 9.6 | 70.8 | 150 | 62 | 2.4 | 502 | 0.021 | 1.1 | 3 | 7.2 | 0.0 | 0.00 | 11.8 | 0.4 | 1.9 | 2.4 |
38.03 | 5.18 | 48.60 | 61.04 | 9.38 | 16.30 | 43.78 | 100.00 | 15.88 | 12.16 | 1.87 | 138.14 | 19.20 | 11.3 | 21.3 | 1.55 | 936 | 1011.9 | 207.5 | 177 | 177 | 47.47 | 8.5 | 10.0 | 0 | 34.4 | 4893 | 6061 | 4635 | 32.6 | 4780 | 5952 | 4559 | -1.8 | 4 | 4 | 15 | 4785 | 5973 | 4557 | 0.0 | 19.3 | 10.0 | 70.6 | 149 | 60 | 2.5 | 500 | 0.021 | 1.1 | 2 | 7.2 | 0.0 | 0.00 | 11.7 | 0.5 | 1.8 | 2.4 |
37.39 | 5.18 | 48.60 | 61.04 | 9.38 | 16.30 | 43.78 | 100.00 | 15.88 | 12.16 | 1.87 | 138.14 | 19.20 | 11.3 | 21.3 | 1.55 | 936 | 998.6 | 206.2 | 178 | 178 | 46.06 | 9.3 | 9.3 | 0 | 34.4 | 4833 | 6004 | 4589 | 34.0 | 4831 | 6005 | 4601 | -0.4 | 5 | 5 | 16 | 4843 | 6014 | 4599 | 0.0 | 19.6 | 9.2 | 71.2 | 151 | 61 | 2.5 | 495 | 0.020 | 1.1 | 3 | 7.3 | 0.1 | 0.10 | 11.7 | 0.5 | 1.9 | 2.4 |
39.16 | 6.29 | 50.64 | 63.92 | 11.46 | 13.24 | 43.50 | 100.00 | 16.58 | 12.88 | 2.90 | 136.35 | 18.35 | 12.2 | 21.6 | 1.55 | 940 | 1002.1 | 207.5 | 178 | 178 | 46.58 | 9.7 | 9.3 | 0 | 33.4 | 4792 | 5964 | 4540 | 33.8 | 4822 | 5985 | 4562 | 0.4 | 7 | 1 | 1 | 4841 | 5996 | 4569 | 0.0 | 19.4 | 9.1 | 71.5 | 153 | 64 | 2.4 | 502 | 0.021 | 1.1 | 3 | 7.3 | 0.0 | 0.00 | 11.8 | 0.5 | 1.8 | 2.1 |
37.64 | 6.10 | 50.60 | 63.37 | 10.90 | 19.05 | 44.18 | 100.00 | 17.37 | 13.10 | 2.67 | 146.66 | 19.73 | 10.0 | NA | 1.55 | 935 | 986.1 | 205.2 | 177 | 178 | 46.06 | 9.5 | 9.5 | 0 | 34.7 | 4823 | 6003 | 4617 | 34.4 | 4831 | 6015 | 4609 | -0.3 | 8 | 2 | 2 | 4822 | 6018 | 4606 | 0.0 | 19.8 | 9.6 | 70.6 | 152 | 60 | 2.6 | 497 | 0.020 | 1.1 | 3 | 7.2 | 0.0 | 0.00 | 11.7 | 0.7 | 1.9 | 2.3 |
39.77 | 5.30 | 46.87 | 57.56 | 9.93 | 18.07 | 40.60 | 100.00 | 16.34 | 12.12 | 2.43 | 135.81 | 18.57 | 13.1 | 21.3 | 1.55 | 936 | 983.6 | 207.5 | 178 | 178 | 45.30 | 10.4 | 9.8 | 0 | 33.7 | 4772 | 5962 | 4606 | 34.4 | 4812 | 5995 | 4621 | 0.7 | 9 | 3 | 3 | 4806 | 6000 | 4612 | 0.0 | 19.7 | 9.9 | 70.4 | 151 | 59 | 2.6 | 509 | 0.021 | 1.3 | 3 | 7.3 | 0.0 | 0.00 | 11.8 | 0.4 | 1.8 | 2.4 |
38.66 | 5.83 | 50.17 | 63.11 | 10.32 | 17.24 | 44.31 | 100.00 | 16.86 | 12.88 | 2.38 | 143.75 | 19.59 | 10.2 | 21.2 | 1.54 | 934 | 989.8 | 206.8 | 177 | 178 | 46.53 | 8.6 | 9.3 | 0 | 34.9 | 4883 | 6042 | 4623 | 33.9 | 4826 | 5997 | 4590 | -1.0 | 10 | 4 | 4 | 4840 | 6001 | 4588 | 0.0 | 19.6 | 9.2 | 71.3 | 152 | 60 | 2.5 | 494 | 0.020 | 1.0 | 3 | 7.2 | 0.1 | 0.10 | 11.7 | 0.5 | 1.8 | 2.3 |
40.31 | 6.25 | 54.57 | 67.56 | 12.10 | 17.66 | 47.80 | 100.00 | 17.32 | 12.89 | 2.73 | 145.57 | 19.76 | 12.4 | 21.2 | 1.55 | 935 | 1008.1 | 206.6 | 178 | 178 | 46.12 | 8.7 | 9.5 | 0 | 34.4 | 4877 | 6059 | 4604 | 33.4 | 4821 | 6008 | 4568 | -1.0 | 11 | 5 | 5 | 4829 | 6026 | 4572 | 0.0 | 19.8 | 9.4 | 70.7 | 156 | 61 | 2.5 | 497 | 0.020 | 1.0 | 3 | 7.2 | 0.0 | 0.00 | 11.7 | 0.6 | 1.8 | 2.3 |
40.54 | 6.25 | 54.57 | 67.56 | 12.10 | 17.66 | 47.80 | 100.00 | 17.32 | 12.89 | 2.73 | 145.57 | 19.76 | 12.4 | 21.4 | 1.54 | 934 | 1000.6 | 207.3 | 177 | 178 | 46.39 | 8.9 | 9.6 | 0 | 34.3 | 4864 | 6044 | 4589 | 33.4 | 4820 | 6008 | 4550 | -0.9 | 12 | 6 | 6 | 4823 | 6022 | 4558 | 0.0 | 19.7 | 9.5 | 70.8 | 156 | 61 | 2.5 | 509 | 0.020 | 1.0 | 3 | 7.2 | 0.0 | 0.00 | 11.7 | 0.5 | 1.8 | 2.3 |
40.64 | 6.25 | 54.57 | 67.56 | 12.10 | 17.66 | 47.80 | 100.00 | 17.32 | 12.89 | 2.73 | 145.57 | 19.76 | 12.4 | 21.4 | 1.55 | 939 | 1011.6 | 206.8 | 178 | 178 | 46.50 | 9.0 | 10.0 | 0 | 33.9 | 4858 | 6035 | 4577 | 33.1 | 4790 | 5980 | 4531 | -0.8 | 1 | 1 | 7 | 4802 | 5993 | 4533 | 0.0 | 19.5 | 9.8 | 70.7 | 156 | 64 | 2.4 | 493 | 0.020 | 1.1 | 2 | 7.3 | 0.0 | 0.00 | 11.8 | 0.5 | 1.9 | 2.3 |
38.60 | 6.00 | 53.29 | 65.50 | 11.71 | 18.80 | 46.34 | 100.00 | 17.32 | 12.75 | 2.63 | 145.37 | 19.75 | 12.7 | 21.4 | 1.55 | 937 | 1005.1 | 208.9 | 177 | 178 | 44.78 | 9.3 | 9.7 | 0 | 34.2 | 4846 | 6027 | 4608 | 33.7 | 4612 | 5999 | 4581 | -0.5 | 2 | 2 | 8 | 4851 | 6049 | 4596 | 0.0 | 20.0 | 9.3 | 70.7 | 153 | 62 | 2.5 | 485 | 0.020 | 1.8 | 2 | 7.3 | 0.1 | 0.10 | 11.5 | 0.5 | 1.9 | 2.2 |
38.13 | 6.00 | 53.29 | 65.50 | 11.71 | 18.80 | 46.34 | 100.00 | 17.32 | 12.75 | 2.63 | 145.37 | 19.75 | 12.7 | 21.6 | 1.54 | 938 | 1014.4 | 206.4 | 178 | 178 | 44.52 | 9.3 | 9.4 | 0 | 34.2 | 4847 | 6029 | 4610 | 33.7 | 4831 | 6012 | 4605 | -0.5 | 3 | 3 | 9 | 4844 | 6035 | 4588 | 0.0 | 19.9 | 9.4 | 70.7 | 152 | 63 | 2.4 | 517 | 0.021 | 1.0 | 3 | 7.3 | 0.0 | 0.00 | 11.8 | 0.5 | 1.9 | 1.8 |
40.10 | 6.00 | 53.29 | 65.50 | 11.71 | 18.80 | 46.34 | 100.00 | 17.32 | 12.75 | 2.63 | 145.37 | 19.75 | 12.7 | 21.6 | 1.55 | 941 | 1012.5 | 206.6 | 177 | 177 | 46.46 | 9.1 | 9.6 | 0 | 34.4 | 4858 | 6046 | 4619 | 33.5 | 4813 | 6004 | 4590 | -0.9 | 4 | 1 | 10 | 4827 | 6011 | 4581 | 0.0 | 19.7 | 9.6 | 70.7 | 153 | 61 | 2.5 | 472 | 0.019 | 2.0 | 2 | 7.1 | 0.0 | 0.00 | 11.7 | 0.5 | 1.8 | 1.9 |
39.14 | 5.49 | 48.03 | 58.99 | 10.24 | 18.30 | 41.50 | 100.00 | 16.61 | 12.34 | 2.55 | 137.49 | 18.77 | 13.0 | 21.4 | 1.54 | 939 | 998.5 | 209.8 | 177 | 178 | 45.23 | 9.9 | 10.1 | 0 | 34.2 | 4802 | 5990 | 4620 | 34.0 | 4786 | 5983 | 4614 | -0.2 | 6 | 3 | 12 | 4783 | 5983 | 4597 | 0.0 | 19.5 | 10.2 | 70.3 | 149 | 59 | 2.5 | 490 | 0.021 | 0.7 | 2 | 7.2 | 0.0 | 0.00 | 11.9 | 0.6 | 1.8 | 2.1 |
38.63 | 5.30 | 46.87 | 57.56 | 9.93 | 18.07 | 40.60 | 100.00 | 16.34 | 12.12 | 2.43 | 135.81 | 18.57 | 13.3 | 21.4 | 1.54 | 940 | 1012.2 | 209.4 | 178 | 178 | 46.74 | 9.4 | 10.6 | 0 | 34.0 | 4858 | 6067 | 4677 | 32.8 | 4768 | 5964 | 4596 | -1.2 | 7 | 4 | 13 | 4776 | 5995 | 4607 | 0.0 | 19.7 | 10.5 | 69.8 | 143 | 56 | 2.5 | 496 | 0.022 | 1.0 | 3 | 7.1 | 0.1 | 0.10 | 11.9 | 0.4 | 1.7 | 1.8 |
41.43 | 5.54 | 52.48 | 64.98 | 10.30 | 18.24 | 45.86 | 100.00 | 17.07 | 12.90 | 2.18 | 145.88 | 20.08 | 13.4 | 21.4 | 1.54 | 939 | 1007.6 | 208.9 | 177 | 177 | 45.54 | 9.0 | 9.4 | 0 | 34.4 | 4862 | 6036 | 4601 | 33.5 | 4832 | 6003 | 4578 | -0.9 | 8 | 5 | 14 | 4841 | 6023 | 4581 | 0.0 | 19.8 | 9.3 | 70.9 | 151 | 60 | 2.5 | 470 | 0.019 | 1.3 | 2 | 7.2 | 0.0 | 0.00 | 12.0 | 0.5 | 1.8 | 1.9 |
40.96 | 5.54 | 52.29 | 64.61 | 10.32 | 18.52 | 45.76 | 100.00 | 17.05 | 12.82 | 2.19 | 145.59 | 20.02 | 13.3 | 21.1 | 1.54 | 936 | 1022.3 | 206.4 | 178 | 178 | 46.26 | 9.3 | 10.1 | 0 | 34.2 | 4843 | 6021 | 4597 | 33.2 | 4780 | 5971 | 4553 | -1.0 | 9 | 6 | 15 | 4781 | 5983 | 4551 | 0.0 | 19.5 | 10.1 | 70.4 | 148 | 59 | 2.5 | 507 | 0.021 | 0.6 | 3 | 7.2 | 0.0 | 0.00 | 11.7 | 0.6 | 1.7 | 2.3 |
37.89 | 6.25 | 52.68 | 65.12 | 11.64 | 18.11 | 45.42 | 100.00 | 17.51 | 13.01 | 2.88 | 145.07 | 19.56 | 12.7 | 21.5 | 1.60 | 946 | 1005.0 | 210.5 | 178 | 178 | 45.76 | 8.3 | 9.8 | 0 | 34.6 | 4920 | 6093 | 4648 | 33.3 | 4797 | 5977 | 4570 | -1.3 | 1 | 1 | 16 | 4812 | 6008 | 4567 | 0.0 | 19.7 | 9.7 | 70.6 | 154 | 63 | 2.5 | 500 | 0.020 | 0.8 | 3 | 7.4 | 0.0 | 0.00 | 11.6 | 0.7 | 1.9 | 1.9 |
37.42 | 6.25 | 52.68 | 65.12 | 11.64 | 18.11 | 45.42 | 100.00 | 17.51 | 13.01 | 2.88 | 145.07 | 19.56 | 12.7 | 21.7 | 1.59 | 939 | 998.0 | 205.5 | 177 | 177 | 44.90 | 9.5 | 9.5 | 0 | 34.3 | 4831 | 6017 | 4591 | 34.2 | 4821 | 6009 | 4586 | -0.1 | 2 | 2 | 17 | 4864 | 6056 | 4600 | 0.0 | 20.0 | 9.0 | 71.0 | 155 | 63 | 2.4 | 493 | 0.020 | 1.8 | 2 | 7.3 | 0.0 | 0.00 | 11.3 | 0.5 | 1.9 | 2.1 |
37.51 | 6.25 | 52.68 | 65.12 | 11.64 | 18.11 | 45.42 | 100.00 | 17.51 | 13.01 | 2.88 | 145.07 | 19.56 | 12.7 | 21.3 | 1.60 | 934 | 997.1 | 206.2 | 178 | 178 | 45.30 | 9.5 | 9.4 | 0 | 34.4 | 4824 | 6003 | 4586 | 34.3 | 4832 | 6012 | 4589 | -0.1 | 3 | 3 | 18 | 4839 | 6019 | 4585 | 0.0 | 19.7 | 9.3 | 70.9 | 154 | 61 | 2.5 | 501 | 0.020 | 0.7 | 3 | 7.3 | 0.1 | 0.10 | 10.7 | 0.7 | 1.8 | 2.1 |
37.92 | 6.22 | 52.76 | 65.13 | 11.50 | 18.55 | 45.48 | 100.00 | 17.57 | 13.08 | 2.88 | 145.10 | 19.64 | 12.7 | 21.2 | 1.60 | 936 | 1006.1 | 207.3 | 177 | 177 | 45.28 | 8.7 | 9.5 | 0 | 34.7 | 4887 | 6076 | 4637 | 33.9 | 4829 | 6012 | 4599 | -0.8 | 4 | 4 | 19 | 4844 | 6025 | 4594 | 0.0 | 19.8 | 9.3 | 70.9 | 152 | 61 | 2.5 | 470 | 0.019 | 1.7 | 2 | 7.3 | 0.0 | 0.00 | 11.3 | 0.5 | 1.8 | 1.8 |
36.77 | 5.90 | 51.37 | 63.65 | 10.76 | 19.90 | 45.07 | 100.00 | 17.06 | 12.78 | 2.46 | 144.98 | 19.73 | 12.4 | 21.3 | 1.54 | 935 | 990.5 | 205.7 | 177 | 177 | 44.38 | 9.1 | 9.1 | 0 | 35.0 | 4850 | 6015 | 4611 | 34.9 | 4856 | 6027 | 4618 | -0.1 | 7 | 3 | 3 | 4852 | 6031 | 4606 | 0.0 | 19.8 | 9.1 | 71.0 | 152 | 65 | 2.3 | 505 | 0.021 | 1.5 | 3 | 7.3 | 0.0 | 0.00 | 11.0 | 0.4 | 1.9 | 2.3 |
37.14 | 5.90 | 51.37 | 63.65 | 10.76 | 19.90 | 45.07 | 100.00 | 17.06 | 12.78 | 2.46 | 144.98 | 19.73 | 12.4 | 21.0 | 1.55 | 934 | 1002.4 | 206.2 | 178 | 178 | 44.25 | 9.1 | 9.3 | 0 | 34.9 | 4854 | 6014 | 4617 | 34.6 | 4834 | 6009 | 4601 | -0.3 | 8 | 4 | 4 | 4839 | 6015 | 4594 | 0.0 | 19.7 | 9.3 | 71.0 | 154 | 64 | 2.4 | 517 | 0.021 | 0.4 | 3 | 7.3 | 0.1 | 0.20 | 10.9 | 0.5 | 1.9 | 2.3 |
37.73 | 5.90 | 51.37 | 63.65 | 10.76 | 19.90 | 45.07 | 100.00 | 17.06 | 12.78 | 2.46 | 144.98 | 19.73 | 12.4 | 21.2 | 1.55 | 940 | 984.3 | 204.3 | 177 | 177 | 44.38 | 9.0 | 9.7 | 0 | 35.3 | 4861 | 6025 | 4611 | 34.8 | 4805 | 5975 | 4570 | -0.5 | 9 | 5 | 5 | 4862 | 6060 | 4609 | 0.0 | 20.1 | 9.1 | 70.8 | 156 | 63 | 2.5 | 502 | 0.020 | 1.7 | 3 | 7.3 | 0.0 | 0.00 | 12.0 | 0.5 | 1.8 | 2.3 |
38.03 | 5.70 | 52.77 | 66.25 | 10.50 | 15.18 | 47.07 | 100.00 | 16.67 | 12.84 | 2.17 | 144.39 | 19.93 | 12.1 | 21.4 | 1.55 | 938 | 1005.3 | 207.1 | 178 | 178 | 44.86 | 8.5 | 8.8 | 0 | 34.8 | 4868 | 6012 | 4561 | 34.5 | 4844 | 5982 | 4542 | -0.3 | 10 | 1 | 6 | 4852 | 6009 | 4556 | 0.0 | 19.4 | 8.8 | 71.8 | 156 | 64 | 2.5 | 502 | 0.020 | 0.9 | 3 | 7.3 | 0.0 | 0.00 | 12.1 | 0.3 | 1.8 | 2.3 |
37.86 | 5.70 | 52.77 | 66.25 | 10.50 | 15.18 | 47.07 | 100.00 | 16.67 | 12.84 | 2.17 | 144.39 | 19.93 | 12.1 | 21.3 | 1.55 | 936 | 1003.8 | 206.2 | 177 | 177 | 44.09 | 7.7 | 8.1 | 0 | 35.3 | 4924 | 6050 | 4597 | 34.8 | 4897 | 6022 | 4586 | -0.5 | 11 | 2 | 7 | 4906 | 6040 | 4586 | 0.0 | 19.7 | 8.0 | 72.3 | 158 | 65 | 2.4 | 481 | 0.019 | 1.3 | 2 | 7.2 | 0.0 | 0.00 | 12.1 | 0.7 | 1.8 | 2.1 |
38.31 | 5.70 | 52.77 | 66.25 | 10.50 | 15.18 | 47.07 | 100.00 | 16.67 | 12.84 | 2.17 | 144.39 | 19.93 | 12.1 | 21.5 | 1.54 | 934 | 1009.5 | 205.7 | 178 | 178 | 44.62 | 7.8 | 8.6 | 0 | 35.2 | 4925 | 6058 | 4601 | 34.6 | 4863 | 6016 | 4594 | -0.6 | 12 | 3 | 8 | 4906 | 6047 | 4585 | 0.0 | 19.7 | 8.1 | 72.2 | 158 | 63 | 2.5 | 506 | 0.020 | 0.9 | 3 | 7.3 | 0.0 | 0.00 | 12.0 | 0.3 | 1.8 | 2.3 |
38.66 | 5.97 | 53.13 | 66.58 | 11.00 | 16.55 | 46.77 | 100.00 | 16.97 | 13.00 | 2.40 | 145.03 | 19.88 | 12.1 | 21.1 | 1.54 | 938 | 1015.1 | 207.5 | 178 | 178 | 45.51 | 8.8 | 9.2 | 0 | 34.5 | 4856 | 6022 | 4579 | 34.1 | 4820 | 5989 | 4544 | -0.4 | 2 | 1 | 10 | 4846 | 6015 | 4541 | 0.0 | 19.6 | 9.0 | 71.4 | 158 | 64 | 2.5 | 520 | 0.021 | 0.5 | 3 | 7.4 | 0.0 | 0.00 | 11.7 | 0.3 | 1.9 | 1.8 |
38.65 | 6.39 | 53.72 | 67.13 | 11.75 | 18.61 | 46.32 | 100.00 | 17.44 | 13.25 | 2.75 | 145.96 | 19.80 | 12.4 | 21.0 | 1.55 | 936 | 1020.8 | 206.6 | 177 | 177 | 46.22 | 8.8 | 9.2 | 0 | 34.7 | 4866 | 6040 | 4571 | 34.0 | 4844 | 6028 | 4553 | -0.7 | 9 | 5 | 17 | 4855 | 6055 | 4581 | 0.0 | 19.9 | 9.1 | 71.0 | 158 | 65 | 2.4 | 482 | 0.019 | 1.6 | 3 | 7.3 | 0.0 | 0.00 | 11.5 | 0.6 | 1.8 | 2.2 |
38.67 | 5.36 | 53.39 | 65.30 | 12.05 | 18.57 | 46.91 | 100.00 | 16.42 | 12.32 | 2.31 | 144.29 | 19.71 | 11.5 | 21.2 | 1.55 | 939 | 1014.5 | 206.6 | 177 | 177 | 45.87 | 9.3 | 9.9 | 0 | 34.4 | 4833 | 6020 | 4569 | 34.1 | 4789 | 5973 | 4532 | -0.3 | 1 | 1 | 19 | 4809 | 5990 | 4536 | 0.0 | 19.5 | 9.6 | 70.9 | 155 | 61 | 2.5 | 488 | 0.020 | 1.0 | 3 | 7.3 | 0.1 | 0.10 | 11.8 | 0.4 | 1.8 | 2.4 |
38.42 | 5.27 | 52.45 | 64.09 | 10.84 | 18.10 | 46.02 | 100.00 | 16.35 | 12.22 | 1.77 | 143.59 | 19.66 | 11.4 | 21.2 | 1.55 | 933 | 1029.0 | 205.9 | 178 | 177 | 47.70 | 10.5 | 10.3 | 0 | 33.5 | 4750 | 5952 | 4516 | 33.5 | 4765 | 5956 | 4520 | 0.0 | 2 | 2 | 20 | 4790 | 5993 | 4541 | 0.0 | 19.5 | 10.1 | 70.4 | 149 | 59 | 2.5 | 512 | 0.021 | 1.8 | 3 | 7.3 | 0.0 | 0.00 | 11.6 | 0.4 | 1.8 | 2.3 |
39.15 | 4.58 | 49.56 | 61.08 | 9.84 | 18.68 | 43.53 | 100.00 | 16.16 | 12.14 | 1.99 | 139.64 | 18.80 | 11.6 | 21.2 | 1.55 | 933 | 1008.0 | 205.5 | 177 | 178 | 45.51 | 9.3 | 10.1 | 0 | 34.4 | 4795 | 5982 | 4600 | 34.4 | 4785 | 5984 | 4587 | 0.0 | 3 | 3 | 21 | 4815 | 5991 | 4597 | 0.0 | 19.6 | 9.7 | 70.7 | 151 | 61 | 2.5 | 511 | 0.021 | 1.1 | 3 | 7.2 | 0.0 | 0.00 | 11.4 | 0.8 | 1.7 | 2.2 |
38.82 | 4.58 | 49.56 | 61.08 | 9.84 | 18.68 | 43.53 | 100.00 | 16.16 | 12.14 | 1.99 | 139.64 | 18.80 | 11.6 | 21.2 | 1.55 | 934 | 999.9 | 208.2 | 178 | 178 | 45.13 | 9.4 | 9.6 | 0 | 34.8 | 4832 | 6024 | 4625 | 34.7 | 4816 | 6001 | 4601 | -0.1 | 4 | 4 | 22 | 4837 | 6024 | 4608 | 0.0 | 19.8 | 9.4 | 70.8 | 151 | 60 | 2.5 | 507 | 0.021 | 1.9 | 3 | 7.3 | 0.0 | 0.00 | 11.4 | 0.7 | 1.8 | 2.4 |
39.08 | 4.58 | 49.56 | 61.08 | 9.84 | 18.68 | 43.53 | 100.00 | 16.16 | 12.14 | 1.99 | 139.64 | 18.80 | 11.6 | 20.0 | 1.55 | 928 | 1003.2 | 206.6 | 177 | 177 | 45.73 | 9.7 | 10.0 | 0 | 34.4 | 4815 | 6010 | 4618 | 34.4 | 4786 | 5986 | 4590 | 0.0 | 5 | 5 | 23 | 4815 | 6011 | 4594 | 0.0 | 19.7 | 9.7 | 70.5 | 150 | 60 | 2.5 | 518 | 0.022 | 1.6 | 3 | 7.3 | 0.0 | 0.00 | 11.3 | 0.5 | 1.7 | 2.1 |
38.90 | 7.70 | 62.92 | 75.91 | 13.49 | 16.10 | 55.29 | 100.00 | 18.28 | 13.83 | 3.20 | 149.91 | 21.23 | 11.3 | 20.8 | 1.55 | 934 | 1014.6 | 208.7 | 177 | 177 | 46.04 | 8.2 | 8.2 | 0 | 34.8 | 4882 | 6022 | 4606 | 34.8 | 4884 | 6026 | 4613 | 0.0 | 7 | 1 | 1 | 4903 | 6034 | 4606 | 0.0 | 19.5 | 8.0 | 72.5 | 158 | 66 | 2.4 | 475 | 0.019 | 1.6 | 3 | 0.0 | 0.0 | 0.00 | 11.8 | 0.2 | 1.8 | 2.2 |
39.62 | 6.39 | 59.10 | 71.04 | 11.52 | 21.82 | 53.53 | 100.00 | 17.93 | 12.92 | 2.38 | 155.77 | 20.76 | 12.5 | 19.9 | 1.55 | 933 | 1005.1 | 205.2 | 178 | 177 | 45.31 | 8.8 | 9.1 | 0 | 34.9 | 4878 | 6058 | 4641 | 34.6 | 4853 | 6047 | 4630 | -0.3 | 8 | 2 | 2 | 4872 | 6058 | 4629 | 0.0 | 20.1 | 8.9 | 71.0 | 160 | 66 | 2.4 | 496 | 0.019 | 1.4 | 3 | 0.0 | 0.0 | 0.00 | 11.6 | 0.3 | 1.8 | 2.5 |
39.77 | 6.63 | 59.81 | 71.94 | 11.89 | 20.76 | 53.86 | 100.00 | 17.99 | 13.09 | 2.53 | 154.68 | 20.85 | 14.1 | 20.0 | 1.54 | 936 | 1029.7 | 206.8 | 177 | 178 | 44.77 | 9.0 | 9.4 | 0 | 34.7 | 4860 | 6041 | 4617 | 34.0 | 4822 | 6000 | 4588 | -0.7 | 9 | 3 | 3 | 4832 | 6013 | 4585 | 0.0 | 19.7 | 9.4 | 71.0 | 160 | 63 | 2.5 | 496 | 0.019 | 0.6 | 3 | 0.0 | 0.0 | 0.00 | 11.7 | 0.5 | 1.8 | 2.2 |
39.66 | 6.71 | 56.32 | 66.19 | 12.35 | 20.02 | 50.26 | 100.00 | 17.54 | 12.50 | 2.82 | 143.45 | 20.32 | 12.8 | 21.5 | 1.54 | 935 | 1027.0 | 206.2 | 178 | 177 | 46.78 | 9.6 | 9.6 | 0 | 33.9 | 4829 | 6026 | 4621 | 33.5 | 4815 | 6011 | 4612 | -0.4 | 2 | 2 | 8 | NA | NA | NA | NA | NA | NA | NA | 156 | NA | NA | NA | NA | 2.3 | 0 | 0.0 | 0.0 | 0.00 | 0.0 | 0.6 | 0.0 | 0.0 |
39.68 | 6.87 | 56.74 | 66.61 | 12.55 | 20.18 | 50.80 | 100.00 | 17.48 | 12.41 | 2.82 | 143.10 | 20.24 | 12.8 | 21.5 | 1.56 | 933 | 1032.0 | 206.6 | 177 | 178 | 46.51 | 9.5 | 9.9 | 0 | 34.0 | 4833 | 6029 | 4608 | 33.5 | 4807 | 6001 | 4584 | -0.5 | 0 | 0 | 0 | NA | NA | NA | NA | NA | NA | NA | 158 | NA | NA | NA | NA | 1.0 | 0 | 0.0 | 0.0 | 0.00 | 0.0 | 0.6 | 0.0 | 0.0 |
42.23 | 7.50 | 58.41 | 68.30 | 13.33 | 20.81 | 52.96 | 100.00 | 17.23 | 12.04 | 2.83 | 141.72 | 19.92 | 13.0 | 20.4 | 1.55 | 930 | 1040.0 | 208.7 | 178 | 177 | 48.05 | 10.1 | 10.4 | 0 | 33.1 | 4795 | 6000 | 4557 | 32.8 | 4764 | 5977 | 4538 | -0.3 | 0 | 0 | 0 | NA | NA | NA | NA | NA | NA | NA | 167 | NA | NA | NA | NA | 1.3 | 0 | 0.0 | 0.0 | 0.00 | 0.0 | 0.6 | 0.0 | 0.0 |
38.48 | 7.53 | 58.36 | 69.25 | 14.35 | 20.57 | 51.31 | 100.00 | 17.87 | 12.77 | 3.55 | 145.56 | 20.04 | 14.1 | 21.6 | 1.55 | 935 | 1044.8 | 208.0 | 177 | 177 | 48.11 | 10.2 | 10.3 | 0 | 32.9 | 4793 | 6029 | 4600 | 32.4 | 4787 | 6030 | 4592 | -0.5 | 0 | 0 | 0 | NA | NA | NA | NA | NA | NA | NA | 156 | NA | NA | NA | NA | 2.3 | 0 | 0.0 | 0.0 | 0.00 | 0.0 | 0.5 | 0.0 | 0.0 |
39.49 | 7.53 | 58.36 | 69.25 | 14.35 | 20.57 | 51.31 | 100.00 | 17.87 | 12.77 | 3.55 | 145.56 | 20.04 | 14.1 | 20.8 | 1.55 | 932 | 1053.8 | 207.5 | 178 | 178 | 48.13 | 9.9 | 10.3 | 0 | 32.9 | 4824 | 6068 | 4630 | 32.0 | 4795 | 6050 | 4607 | -0.9 | 0 | 0 | 0 | NA | NA | NA | NA | NA | NA | NA | 160 | NA | NA | NA | NA | 0.9 | 0 | 0.0 | 0.0 | 0.00 | 0.0 | 0.6 | 0.0 | 0.0 |
pls_model <- train(
Yield ~ ., data = train_df, method = "pls",
center = TRUE,
scale = TRUE,
trControl = trainControl("cv", number = 10),
tuneLength = 25
)
pls_model
## Partial Least Squares
##
## 144 samples
## 46 predictor
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 131, 128, 130, 130, 129, 130, ...
## Resampling results across tuning parameters:
##
## ncomp RMSE Rsquared MAE
## 1 1.531690 0.4496446 1.163700
## 2 1.547220 0.4873139 1.119879
## 3 1.607266 0.5376517 1.104752
## 4 1.825444 0.5178039 1.152061
## 5 2.146480 0.4823536 1.240617
## 6 2.416900 0.4635793 1.325782
## 7 2.852780 0.4486778 1.445887
## 8 3.272619 0.4452845 1.567872
## 9 3.659073 0.4409455 1.661615
## 10 3.989016 0.4380995 1.755627
## 11 4.292909 0.4396050 1.831603
## 12 4.487305 0.4395146 1.869397
## 13 4.704699 0.4392074 1.928953
## 14 4.795230 0.4389353 1.947829
## 15 4.910591 0.4395564 1.980380
## 16 5.053330 0.4415422 2.010911
## 17 5.176641 0.4419146 2.040667
## 18 5.266161 0.4396490 2.064457
## 19 5.386007 0.4401243 2.097618
## 20 5.476649 0.4416685 2.120398
## 21 5.627034 0.4423000 2.156865
## 22 5.729360 0.4425671 2.185449
## 23 5.857944 0.4406855 2.222400
## 24 5.955727 0.4371396 2.251753
## 25 5.991281 0.4348859 2.263472
##
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was ncomp = 1.
pls_predictions <- predict(pls_model, test_df)
results_ <- data.frame(t(postResample(pred = pls_predictions, obs = test_df$Yield))) %>%
mutate("Model"= "PLS")
KNN_Model <- train(
Yield ~ ., data = train_df, method = "knn",
center = TRUE,
scale = TRUE,
trControl = trainControl("cv", number = 10),
tuneLength = 25)
KNN_Model
## k-Nearest Neighbors
##
## 144 samples
## 46 predictor
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 130, 128, 129, 130, 129, 128, ...
## Resampling results across tuning parameters:
##
## k RMSE Rsquared MAE
## 5 1.538830 0.2979078 1.233104
## 7 1.583751 0.2574915 1.262188
## 9 1.591300 0.2514446 1.267891
## 11 1.601359 0.2420973 1.289624
## 13 1.579840 0.2613202 1.268824
## 15 1.606836 0.2413608 1.294699
## 17 1.611544 0.2405870 1.286746
## 19 1.622715 0.2373953 1.290872
## 21 1.624339 0.2362901 1.296138
## 23 1.632503 0.2332327 1.301691
## 25 1.657831 0.2168566 1.338169
## 27 1.669691 0.2151954 1.341896
## 29 1.676987 0.2144434 1.345498
## 31 1.677858 0.2240214 1.350751
## 33 1.684099 0.2291292 1.351920
## 35 1.694858 0.2213519 1.359842
## 37 1.701904 0.2250788 1.367375
## 39 1.711609 0.2208245 1.375639
## 41 1.713360 0.2247125 1.374744
## 43 1.714253 0.2359008 1.373852
## 45 1.718399 0.2485101 1.380568
## 47 1.728350 0.2375636 1.386594
## 49 1.730080 0.2434653 1.389811
## 51 1.741987 0.2280506 1.401164
## 53 1.750291 0.2051428 1.408994
##
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was k = 5.
MARS_grid <- expand.grid(.degree = 1:2, .nprune = 2:15)
MARS_model <- train(
Yield ~ ., data = train_df, method = "earth",
tuneGrid = MARS_grid,
preProcess = c("center", "scale"),
trControl = trainControl("cv", number = 10),
tuneLength = 25
)
MARS_model
## Multivariate Adaptive Regression Spline
##
## 144 samples
## 46 predictor
##
## Pre-processing: centered (46), scaled (46)
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 130, 130, 129, 130, 129, 129, ...
## Resampling results across tuning parameters:
##
## degree nprune RMSE Rsquared MAE
## 1 2 1.452867 0.3930060 1.1473125
## 1 3 1.344280 0.4868924 1.0806599
## 1 4 1.187584 0.5905783 0.9440652
## 1 5 1.188432 0.5856458 0.9360078
## 1 6 1.202950 0.5813013 0.9521411
## 1 7 1.142291 0.6122901 0.9158920
## 1 8 1.159583 0.6145650 0.9199298
## 1 9 1.147710 0.6191827 0.9289759
## 1 10 1.157172 0.6153554 0.9265057
## 1 11 1.158571 0.6159548 0.9339272
## 1 12 1.185477 0.6007300 0.9403314
## 1 13 1.215585 0.5856282 0.9579280
## 1 14 1.189262 0.6031387 0.9457467
## 1 15 1.157069 0.6239886 0.9218104
## 2 2 1.482178 0.3815296 1.1581702
## 2 3 1.284403 0.5278808 1.0342802
## 2 4 1.233108 0.5686280 1.0080982
## 2 5 1.185967 0.5950316 0.9809369
## 2 6 1.286354 0.5442740 1.0237503
## 2 7 1.368844 0.4932049 1.0688890
## 2 8 1.352108 0.5191945 1.0442623
## 2 9 1.353261 0.5214838 1.0526310
## 2 10 1.330361 0.5498477 1.0374128
## 2 11 1.337156 0.5484313 1.0471669
## 2 12 1.346348 0.5475549 1.0524228
## 2 13 1.353769 0.5406293 1.0548767
## 2 14 1.572854 0.5096394 1.1236550
## 2 15 1.569258 0.5126063 1.1256675
##
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were nprune = 7 and degree = 1.
SVM_model <- train(
Yield ~ ., data = train_df, method = "svmRadial",
center = TRUE,
scale = TRUE,
trControl = trainControl(method = "cv"),
tuneLength = 25
)
SVM_model
## Support Vector Machines with Radial Basis Function Kernel
##
## 144 samples
## 46 predictor
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 131, 130, 130, 129, 131, 130, ...
## Resampling results across tuning parameters:
##
## C RMSE Rsquared MAE
## 0.25 1.378402 0.5400946 1.1367177
## 0.50 1.262877 0.5894361 1.0459388
## 1.00 1.165623 0.6394720 0.9645419
## 2.00 1.152515 0.6422550 0.9359212
## 4.00 1.163228 0.6362881 0.9219777
## 8.00 1.169604 0.6266254 0.9333011
## 16.00 1.190450 0.6138222 0.9466976
## 32.00 1.190450 0.6138222 0.9466976
## 64.00 1.190450 0.6138222 0.9466976
## 128.00 1.190450 0.6138222 0.9466976
## 256.00 1.190450 0.6138222 0.9466976
## 512.00 1.190450 0.6138222 0.9466976
## 1024.00 1.190450 0.6138222 0.9466976
## 2048.00 1.190450 0.6138222 0.9466976
## 4096.00 1.190450 0.6138222 0.9466976
## 8192.00 1.190450 0.6138222 0.9466976
## 16384.00 1.190450 0.6138222 0.9466976
## 32768.00 1.190450 0.6138222 0.9466976
## 65536.00 1.190450 0.6138222 0.9466976
## 131072.00 1.190450 0.6138222 0.9466976
## 262144.00 1.190450 0.6138222 0.9466976
## 524288.00 1.190450 0.6138222 0.9466976
## 1048576.00 1.190450 0.6138222 0.9466976
## 2097152.00 1.190450 0.6138222 0.9466976
## 4194304.00 1.190450 0.6138222 0.9466976
##
## Tuning parameter 'sigma' was held constant at a value of 0.01396929
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were sigma = 0.01396929 and C = 2.
nnet_grid <- expand.grid(.decay = c(0, 0.01, .1), .size = c(1:10), .bag = FALSE)
nnet_maxnwts <- 5 * ncol(train_df) + 5 + 1
nnet_model <- train(
Yield ~ ., data = train_df, method = "avNNet",
center = TRUE,
scale = TRUE,
tuneGrid = nnet_grid,
trControl = trainControl(method = "cv"),
linout = TRUE,
trace = FALSE,
MaxNWts = nnet_maxnwts,
maxit = 500
)
nnet_model
## Model Averaged Neural Network
##
## 144 samples
## 46 predictor
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 130, 129, 129, 130, 129, 131, ...
## Resampling results across tuning parameters:
##
## decay size RMSE Rsquared MAE
## 0.00 1 1.809706 0.08812244 1.480013
## 0.00 2 1.820483 0.08589216 1.497667
## 0.00 3 1.780551 0.15860016 1.455172
## 0.00 4 1.891101 0.10362611 1.526117
## 0.00 5 1.823663 0.14284429 1.498001
## 0.00 6 NaN NaN NaN
## 0.00 7 NaN NaN NaN
## 0.00 8 NaN NaN NaN
## 0.00 9 NaN NaN NaN
## 0.00 10 NaN NaN NaN
## 0.01 1 1.553301 0.36918045 1.269452
## 0.01 2 1.590486 0.33655573 1.304391
## 0.01 3 1.345266 0.49924923 1.098344
## 0.01 4 1.785037 0.29566943 1.390056
## 0.01 5 1.468346 0.47781605 1.122994
## 0.01 6 NaN NaN NaN
## 0.01 7 NaN NaN NaN
## 0.01 8 NaN NaN NaN
## 0.01 9 NaN NaN NaN
## 0.01 10 NaN NaN NaN
## 0.10 1 1.496125 0.48701870 1.221730
## 0.10 2 1.413803 0.51602464 1.122862
## 0.10 3 1.846219 0.36080409 1.254734
## 0.10 4 1.689693 0.46744030 1.249126
## 0.10 5 1.924868 0.38450680 1.328834
## 0.10 6 NaN NaN NaN
## 0.10 7 NaN NaN NaN
## 0.10 8 NaN NaN NaN
## 0.10 9 NaN NaN NaN
## 0.10 10 NaN NaN NaN
##
## Tuning parameter 'bag' was held constant at a value of FALSE
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were size = 3, decay = 0.01 and bag = FALSE.
Model | RMSE | Rsquared | MAE |
---|---|---|---|
SVM | 1.238321 | 0.5818865 | 0.9681929 |
MARS | 1.238899 | 0.5703493 | 0.9959592 |
KNN | 1.524593 | 0.3296098 | 1.1638750 |
PLS | 1.550276 | 0.3325869 | 1.2398936 |
Neural Network | 1.917466 | 0.1368724 | 1.5143792 |
The SVM Model was the best non-linear model.
## loess r-squared variable importance
##
## only 20 most important variables shown (out of 46)
##
## Overall
## ManufacturingProcess13 100.00
## ManufacturingProcess32 96.61
## BiologicalMaterial06 92.92
## ManufacturingProcess09 88.09
## BiologicalMaterial03 83.39
## ManufacturingProcess36 79.25
## ManufacturingProcess17 78.66
## ManufacturingProcess06 68.82
## ManufacturingProcess11 61.52
## BiologicalMaterial08 60.12
## BiologicalMaterial11 55.75
## BiologicalMaterial01 49.44
## ManufacturingProcess33 47.60
## ManufacturingProcess30 45.36
## BiologicalMaterial09 34.40
## ManufacturingProcess12 29.04
## ManufacturingProcess35 27.96
## BiologicalMaterial10 26.21
## ManufacturingProcess04 24.93
## ManufacturingProcess10 24.15
13 out of 20 most important variables are process related. So in a way they dominate the list over biological variables.
## pls variable importance
##
## only 20 most important variables shown (out of 46)
##
## Overall
## ManufacturingProcess32 100.00
## ManufacturingProcess09 94.85
## ManufacturingProcess36 90.51
## ManufacturingProcess13 89.51
## BiologicalMaterial06 82.19
## BiologicalMaterial03 77.84
## BiologicalMaterial08 76.45
## ManufacturingProcess17 73.17
## ManufacturingProcess11 71.46
## ManufacturingProcess06 70.82
## ManufacturingProcess33 70.00
## BiologicalMaterial01 68.23
## BiologicalMaterial11 65.26
## ManufacturingProcess12 54.55
## ManufacturingProcess28 47.91
## ManufacturingProcess10 46.64
## ManufacturingProcess30 43.46
## ManufacturingProcess04 39.14
## ManufacturingProcess02 39.03
## BiologicalMaterial10 38.78
train_imp_df <- train_df %>%
dplyr::select(ManufacturingProcess13, ManufacturingProcess32, BiologicalMaterial06,
ManufacturingProcess09, BiologicalMaterial03, ManufacturingProcess36,
ManufacturingProcess17, ManufacturingProcess06, ManufacturingProcess11,
BiologicalMaterial08, Yield)
correlations <- cor(train_imp_df)
corrplot::corrplot(correlations, order = "FPC", diag = TRUE)