Libraries

library(kableExtra)
library(tidyverse)
library(ggplot2)
library(dplyr)
library(TSstudio)
library(RColorBrewer)
library(GGally)
library(grid)
library(gridExtra)
library(mlbench)
library(psych)
library(cowplot)
library(corrplot)
library(caret)
library(geoR)
library(reshape)
library(naniar)
library(mice)
library(DMwR)
library(AppliedPredictiveModeling)
library(pls)
library(glmnet)
library(elasticnet)
library(earth)
library(kernlab)

Applied Predictive Modeling

Exercise 7.2

Friedman (1991) introduced several benchmark data sets create by simulation. One of these simulations used the following nonlinear equation to create data:

\(y=10\sin { (\pi { x }_{ 1 }{ x }_{ 2 }) } +20{ ({ x }_{ 3 }-0.5) }^{ 2 }+10{ x }_{ 4 }+5{ x }_{ 5 }+N(0,{ \sigma }^{ 2 })\)

where the x values are random variables uniformly distributed between [0, 1] (there are also 5 other non-informative variables also created in the simulation). The package mlbench contains a function called mlbench.friedman1 that simulates these data:

set.seed(200)

trainingData <- mlbench.friedman1(200, sd = 1)

## We convert the 'x' data from a matrix to a data frame. One reason is that this will give the columns names.
trainingData$x <- data.frame(trainingData$x)

## Look at the data using
featurePlot(trainingData$x, trainingData$y)

## or other methods.This creates a list with a vector 'y' and a matrix
## of predictors 'x'. Also simulate a large test set to
## estimate the true error rate with good precision:
testData <- mlbench.friedman1(5000, sd = 1)
testData$x <- data.frame(testData$x)

Tune several models on these data. For example:

KNN Model

knnModel <- train(x = trainingData$x,
                  y = trainingData$y,
                  method = "knn",
                  preProc = c("center", "scale"),
                  tuneLength = 10)

knnModel
## k-Nearest Neighbors 
## 
## 200 samples
##  10 predictor
## 
## Pre-processing: centered (10), scaled (10) 
## Resampling: Bootstrapped (25 reps) 
## Summary of sample sizes: 200, 200, 200, 200, 200, 200, ... 
## Resampling results across tuning parameters:
## 
##   k   RMSE      Rsquared   MAE     
##    5  3.466085  0.5121775  2.816838
##    7  3.349428  0.5452823  2.727410
##    9  3.264276  0.5785990  2.660026
##   11  3.214216  0.6024244  2.603767
##   13  3.196510  0.6176570  2.591935
##   15  3.184173  0.6305506  2.577482
##   17  3.183130  0.6425367  2.567787
##   19  3.198752  0.6483184  2.592683
##   21  3.188993  0.6611428  2.588787
##   23  3.200458  0.6638353  2.604529
## 
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was k = 17.
knnPred <- predict(knnModel, newdata = testData$x)

## The function 'postResample' can be used to get the test set
## perforamnce values
postResample(pred = knnPred, obs = testData$y)
##      RMSE  Rsquared       MAE 
## 3.2040595 0.6819919 2.5683461

Which models appear to give the best performance? Does MARS select the informative predictors (those named X1–X5)?

MARS Model

MARS_grid <- expand.grid(.degree = 1:2, .nprune = 2:15)
MARS_model <- train(x = trainingData$x, 
                  y = trainingData$y,
                  method = "earth",
                  tuneGrid = MARS_grid,
                  preProcess = c("center", "scale"),
                  tuneLength = 10)
MARS_model
## Multivariate Adaptive Regression Spline 
## 
## 200 samples
##  10 predictor
## 
## Pre-processing: centered (10), scaled (10) 
## Resampling: Bootstrapped (25 reps) 
## Summary of sample sizes: 200, 200, 200, 200, 200, 200, ... 
## Resampling results across tuning parameters:
## 
##   degree  nprune  RMSE      Rsquared   MAE     
##   1        2      4.383438  0.2405683  3.597961
##   1        3      3.645469  0.4745962  2.930453
##   1        4      2.727602  0.7035031  2.184240
##   1        5      2.449243  0.7611230  1.939231
##   1        6      2.331605  0.7835496  1.833420
##   1        7      1.976830  0.8421599  1.562591
##   1        8      1.870959  0.8585503  1.464551
##   1        9      1.804342  0.8683110  1.410395
##   1       10      1.787676  0.8711960  1.386944
##   1       11      1.790700  0.8707740  1.393076
##   1       12      1.821005  0.8670619  1.419893
##   1       13      1.858688  0.8617344  1.445459
##   1       14      1.862343  0.8623072  1.446050
##   1       15      1.871033  0.8607099  1.457618
##   2        2      4.383438  0.2405683  3.597961
##   2        3      3.644919  0.4742570  2.929647
##   2        4      2.730222  0.7028372  2.183075
##   2        5      2.481291  0.7545789  1.965749
##   2        6      2.338369  0.7827873  1.825542
##   2        7      2.030065  0.8328250  1.602024
##   2        8      1.890997  0.8551326  1.477422
##   2        9      1.742626  0.8757904  1.371910
##   2       10      1.608221  0.8943432  1.255416
##   2       11      1.474325  0.9111463  1.157848
##   2       12      1.437483  0.9157967  1.120977
##   2       13      1.439395  0.9164721  1.128309
##   2       14      1.428565  0.9184503  1.118634
##   2       15      1.434093  0.9182413  1.121622
## 
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were nprune = 14 and degree = 2.

The optimal MARS model minimized the RMSE when the nprune = 14 and the degree = 2.

MARS_predictions <- predict(MARS_model, newdata = testData$x)
postResample(pred = MARS_predictions, obs = testData$y)
##      RMSE  Rsquared       MAE 
## 1.2779993 0.9338365 1.0147070

The RMSE of the MARS model is a lot lower than the KNN model.

Variable Importance Check

Let’s see what variables are important for MARS Model -

varImp(MARS_model)
## earth variable importance
## 
##    Overall
## X1  100.00
## X4   75.40
## X2   49.00
## X5   15.72
## X3    0.00

The MARS model picks up the X1-X5 variables.

SVM Model

SVM_model <- train(x = trainingData$x,
                   y = trainingData$y,
                   method = "svmRadial",
                   preProcess = c("center", "scale"),
                   tuneLength = 10,
                   trControl = trainControl(method = "cv"))


SVM_model
## Support Vector Machines with Radial Basis Function Kernel 
## 
## 200 samples
##  10 predictor
## 
## Pre-processing: centered (10), scaled (10) 
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 180, 180, 180, 180, 180, 180, ... 
## Resampling results across tuning parameters:
## 
##   C       RMSE      Rsquared   MAE     
##     0.25  2.548095  0.7967225  2.001583
##     0.50  2.290826  0.8118225  1.779407
##     1.00  2.095918  0.8337552  1.634192
##     2.00  1.989469  0.8462100  1.539721
##     4.00  1.901332  0.8565135  1.510431
##     8.00  1.879815  0.8588126  1.514502
##    16.00  1.878866  0.8591568  1.518094
##    32.00  1.878866  0.8591568  1.518094
##    64.00  1.878866  0.8591568  1.518094
##   128.00  1.878866  0.8591568  1.518094
## 
## Tuning parameter 'sigma' was held constant at a value of 0.06670077
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were sigma = 0.06670077 and C = 16.

The optimal SVM mdoel has a σ of 0.07 and an C of 16.

SVM_predictions <- predict(SVM_model, newdata = testData$x)
postResample(pred = SVM_predictions, obs = testData$y)
##      RMSE  Rsquared       MAE 
## 2.0829707 0.8242096 1.5826017
Variable Importance Check
varImp(SVM_model)
## loess r-squared variable importance
## 
##      Overall
## X4  100.0000
## X1   95.5047
## X2   89.6186
## X5   45.2170
## X3   29.9330
## X9    6.3299
## X10   5.5182
## X8    3.2527
## X6    0.8884
## X7    0.0000

The SVM picked up the important variables.

Neural Network Model

nnet_grid <- expand.grid(.decay = c(0, 0.01, .1), .size = c(1:10), .bag = FALSE)
nnet_maxnwts <- 5 * (ncol(trainingData$x) + 1) + 5 + 1
nnet_model <- train(x = trainingData$x,
                    y = trainingData$y,
                    method = "avNNet",
                    preProcess = c("center", "scale"),
                    tuneGrid = nnet_grid,
                    trControl = trainControl(method = "cv"),
                    linout = TRUE,
                    trace = FALSE,
                    MaxNWts = nnet_maxnwts,
                    maxit = 500)
nnet_model
## Model Averaged Neural Network 
## 
## 200 samples
##  10 predictor
## 
## Pre-processing: centered (10), scaled (10) 
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 180, 180, 180, 180, 180, 180, ... 
## Resampling results across tuning parameters:
## 
##   decay  size  RMSE      Rsquared   MAE     
##   0.00    1    2.459523  0.7691775  1.920417
##   0.00    2    2.517390  0.7556275  1.973484
##   0.00    3    2.170133  0.8136101  1.698007
##   0.00    4    2.206065  0.8194369  1.649463
##   0.00    5    2.319063  0.7986176  1.783178
##   0.00    6         NaN        NaN       NaN
##   0.00    7         NaN        NaN       NaN
##   0.00    8         NaN        NaN       NaN
##   0.00    9         NaN        NaN       NaN
##   0.00   10         NaN        NaN       NaN
##   0.01    1    2.443513  0.7700880  1.902169
##   0.01    2    2.498223  0.7610107  1.965276
##   0.01    3    2.243864  0.8018360  1.802783
##   0.01    4    2.060693  0.8303930  1.626430
##   0.01    5    2.158157  0.8242275  1.716552
##   0.01    6         NaN        NaN       NaN
##   0.01    7         NaN        NaN       NaN
##   0.01    8         NaN        NaN       NaN
##   0.01    9         NaN        NaN       NaN
##   0.01   10         NaN        NaN       NaN
##   0.10    1    2.450808  0.7677685  1.905063
##   0.10    2    2.566992  0.7445497  2.007383
##   0.10    3    2.203412  0.8081681  1.717865
##   0.10    4    2.001697  0.8435571  1.594042
##   0.10    5    2.019386  0.8412724  1.606449
##   0.10    6         NaN        NaN       NaN
##   0.10    7         NaN        NaN       NaN
##   0.10    8         NaN        NaN       NaN
##   0.10    9         NaN        NaN       NaN
##   0.10   10         NaN        NaN       NaN
## 
## Tuning parameter 'bag' was held constant at a value of FALSE
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were size = 4, decay = 0.1 and bag = FALSE.

The best neural network has a size = 3 and a decay of 0.

nnet_predictions <- predict(nnet_model, newdata = testData$x)
postResample(pred = nnet_predictions, obs = testData$y)
##      RMSE  Rsquared       MAE 
## 2.0532719 0.8346367 1.5444560
Variable Importance Check
varImp(nnet_model)
## loess r-squared variable importance
## 
##      Overall
## X4  100.0000
## X1   95.5047
## X2   89.6186
## X5   45.2170
## X3   29.9330
## X9    6.3299
## X10   5.5182
## X8    3.2527
## X6    0.8884
## X7    0.0000

The top 5 variables include the intended list of X1-X5 variables.

Model Summary

results <- data.frame(t(postResample(pred = knnPred, obs = testData$y))) %>% 
  mutate("Model" = "KNN")

results <- data.frame(t(postResample(pred = MARS_predictions, obs = testData$y))) %>%
  mutate("Model"= "MARS") %>%
  bind_rows(results)

results <- data.frame(t(postResample(pred = SVM_predictions, obs = testData$y))) %>%
  mutate("Model"= "SVM") %>%
  bind_rows(results)

results <- data.frame(t(postResample(pred = nnet_predictions, obs = testData$y))) %>%
  mutate("Model"= "Neural Network") %>%
  bind_rows(results)

results %>%
  select(Model, RMSE, Rsquared, MAE) %>%
  arrange(RMSE) %>%
  kable() %>%
  kable_styling()
## Warning: namespace 'highr' is not available and has been replaced
## by .GlobalEnv when processing object '<unknown>'
Model RMSE Rsquared MAE
MARS 1.277999 0.9338365 1.014707
Neural Network 2.053272 0.8346367 1.544456
SVM 2.082971 0.8242096 1.582602
KNN 3.204060 0.6819919 2.568346

The MARS model preformed the best and identified the right variables as the important ones. The \({ R }^{ 2 }\) on it is extremely high. This model’s performance with test data is pretty impressive.

Exercise 7.5

Exercise 6.3 describes data for a chemical manufacturing process. Use the same data imputation, data splitting, and pre-processing steps as before and train several nonlinear regression models.

Data set Preview

data(ChemicalManufacturingProcess)

ChemicalManufacturingProcess %>% kable() %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive")) %>% 
  scroll_box(width="100%",height="300px")
Yield BiologicalMaterial01 BiologicalMaterial02 BiologicalMaterial03 BiologicalMaterial04 BiologicalMaterial05 BiologicalMaterial06 BiologicalMaterial07 BiologicalMaterial08 BiologicalMaterial09 BiologicalMaterial10 BiologicalMaterial11 BiologicalMaterial12 ManufacturingProcess01 ManufacturingProcess02 ManufacturingProcess03 ManufacturingProcess04 ManufacturingProcess05 ManufacturingProcess06 ManufacturingProcess07 ManufacturingProcess08 ManufacturingProcess09 ManufacturingProcess10 ManufacturingProcess11 ManufacturingProcess12 ManufacturingProcess13 ManufacturingProcess14 ManufacturingProcess15 ManufacturingProcess16 ManufacturingProcess17 ManufacturingProcess18 ManufacturingProcess19 ManufacturingProcess20 ManufacturingProcess21 ManufacturingProcess22 ManufacturingProcess23 ManufacturingProcess24 ManufacturingProcess25 ManufacturingProcess26 ManufacturingProcess27 ManufacturingProcess28 ManufacturingProcess29 ManufacturingProcess30 ManufacturingProcess31 ManufacturingProcess32 ManufacturingProcess33 ManufacturingProcess34 ManufacturingProcess35 ManufacturingProcess36 ManufacturingProcess37 ManufacturingProcess38 ManufacturingProcess39 ManufacturingProcess40 ManufacturingProcess41 ManufacturingProcess42 ManufacturingProcess43 ManufacturingProcess44 ManufacturingProcess45
38.00 6.25 49.58 56.97 12.74 19.51 43.73 100.00 16.66 11.44 3.46 138.09 18.83 NA NA NA NA NA NA NA NA 43.00 NA NA NA 35.5 4898 6108 4682 35.5 4865 6049 4665 0.0 NA NA NA 4873 6074 4685 10.7 21.0 9.9 69.1 156 66 2.4 486 0.019 0.5 3 7.2 NA NA 11.6 3.0 1.8 2.4
42.44 8.01 60.97 67.48 14.65 19.36 53.14 100.00 19.04 12.55 3.46 153.67 21.05 0.0 0.0 NA 917 1032.2 210.0 177 178 46.57 NA NA 0 34.0 4869 6095 4617 34.0 4867 6097 4621 0.0 3 0 3 4869 6107 4630 11.2 21.4 9.9 68.7 169 66 2.6 508 0.019 2.0 2 7.2 0.1 0.15 11.1 0.9 1.9 2.2
42.03 8.01 60.97 67.48 14.65 19.36 53.14 100.00 19.04 12.55 3.46 153.67 21.05 0.0 0.0 NA 912 1003.6 207.1 178 178 45.07 NA NA 0 34.8 4878 6087 4617 34.8 4877 6078 4621 0.0 4 1 4 4897 6116 4637 11.1 21.3 9.4 69.3 173 66 2.6 509 0.018 0.7 2 7.2 0.0 0.00 12.0 1.0 1.8 2.3
41.42 8.01 60.97 67.48 14.65 19.36 53.14 100.00 19.04 12.55 3.46 153.67 21.05 0.0 0.0 NA 911 1014.6 213.3 177 177 44.92 NA NA 0 34.8 4897 6102 4635 34.8 4872 6073 4611 0.0 5 2 5 4892 6111 4630 11.1 21.3 9.4 69.3 171 68 2.5 496 0.018 1.2 2 7.2 0.0 0.00 10.6 1.1 1.8 2.1
42.49 7.47 63.33 72.25 14.02 17.91 54.66 100.00 18.22 12.80 3.05 147.61 21.05 10.7 0.0 NA 918 1027.5 205.7 178 178 44.96 NA NA 0 34.6 4992 6233 4733 33.9 4886 6102 4659 -0.7 8 4 18 4930 6151 4684 11.3 21.6 9.0 69.4 171 70 2.5 468 0.017 0.2 2 7.3 0.0 0.00 11.0 1.1 1.7 2.1
43.57 6.12 58.36 65.31 15.17 21.79 51.23 100.00 18.30 12.13 3.78 151.88 20.76 12.0 0.0 NA 924 1016.8 208.9 178 178 45.32 NA NA 0 34.0 4985 6222 4786 33.4 4862 6115 4696 -0.6 9 1 1 4871 6128 4687 11.4 21.7 10.1 68.2 173 70 2.5 490 0.018 0.4 2 7.2 0.0 0.00 11.5 2.2 1.8 2.0
43.12 7.48 64.47 72.41 13.82 17.71 54.45 100.00 18.72 12.95 3.04 147.11 20.75 11.5 0.0 1.56 933 988.9 210.0 177 178 49.36 11.6 11.5 0 32.4 4745 5999 4486 33.8 4758 6013 4522 1.4 1 1 1 4795 6057 4572 11.2 21.2 11.2 67.6 159 65 2.5 475 0.019 0.8 2 7.3 0.0 0.00 11.7 0.7 2.0 2.2
43.06 6.94 63.60 72.06 15.70 19.42 54.72 100.00 18.85 13.13 3.85 154.20 21.45 12.0 0.0 1.55 929 1010.9 211.7 178 178 48.68 10.2 11.3 0 33.6 4854 6105 4626 33.6 4766 6022 4552 0.0 2 2 2 4806 6059 4586 11.1 21.2 10.9 67.9 161 65 2.5 478 0.019 1.0 2 7.3 0.0 0.00 11.4 0.8 2.0 2.2
41.49 6.94 63.60 72.06 15.70 19.42 54.72 100.00 18.85 13.13 3.85 154.20 21.45 12.0 0.0 1.56 928 1003.5 208.7 177 177 47.20 9.7 11.1 0 33.9 4893 6144 4658 33.9 4769 6033 4556 0.0 3 3 3 4842 6103 4609 11.3 21.5 10.5 68.0 160 65 2.5 491 0.019 1.2 3 7.4 0.0 0.00 11.4 0.9 1.9 2.1
42.45 6.94 63.60 72.06 15.70 19.42 54.72 100.00 18.85 13.13 3.85 154.20 21.45 12.0 0.0 1.55 938 1003.8 209.8 177 177 47.11 10.1 10.2 0 34.3 4846 6077 4614 35.3 4840 6091 4614 1.0 4 1 4 4893 6135 4650 11.4 21.7 9.8 68.5 164 66 2.5 488 0.019 1.8 3 7.1 0.0 0.00 11.3 0.8 1.9 2.4
42.04 7.17 61.23 70.01 13.36 18.67 52.83 100.00 17.88 12.62 2.90 143.28 20.21 10.3 0.0 1.55 932 983.1 209.4 177 177 46.24 9.0 9.5 0 35.8 4944 6156 4690 35.8 4900 6126 4665 0.0 6 3 6 4925 6161 4687 11.5 21.9 9.4 68.7 166 67 2.5 493 0.019 1.5 2 7.0 0.0 0.00 11.0 1.0 1.9 1.8
42.68 7.17 61.23 70.01 13.36 18.67 52.83 100.00 17.88 12.62 2.90 143.28 20.21 10.3 0.0 1.55 930 992.0 209.4 178 178 46.10 8.8 9.7 0 35.6 4959 6178 4708 35.2 4878 6134 4673 -0.4 7 4 7 4924 6161 4692 11.5 22.0 9.4 68.6 169 67 2.5 498 0.018 0.3 3 7.0 0.0 0.00 11.2 0.8 2.0 1.8
43.44 7.17 61.23 70.01 13.36 18.67 52.83 100.00 17.88 12.62 2.90 143.28 20.21 10.3 0.0 1.55 934 1004.1 207.8 177 177 47.53 9.3 10.4 0 35.1 4917 6158 4704 35.1 4835 6090 4651 0.0 8 1 8 4888 6129 4653 11.4 21.7 9.9 68.4 166 68 2.4 490 0.018 1.1 3 7.1 0.0 0.00 11.1 0.8 1.9 2.4
40.28 7.63 60.51 69.24 17.59 20.67 52.83 100.00 18.74 13.21 4.94 158.42 21.77 11.1 0.0 1.59 934 1036.8 209.1 178 178 45.28 9.6 9.8 0 34.9 4882 6108 4655 35.8 4858 6070 4628 0.9 10 2 2 4911 6124 4684 11.1 21.5 9.4 69.1 161 66 2.4 490 0.019 0.6 3 7.4 0.0 0.00 11.7 0.6 1.7 1.9
41.50 6.23 62.93 69.74 11.80 20.54 54.57 100.00 18.89 12.82 2.30 152.83 22.18 11.3 0.0 NA 930 1120.7 207.8 177 177 46.44 9.4 10.2 0 35.3 4918 6156 4690 35.3 4849 6093 4646 0.0 11 3 15 4874 6125 4659 11.3 21.6 9.9 68.5 160 64 2.5 490 0.019 1.6 3 7.2 0.0 0.00 11.6 0.8 1.9 2.0
41.21 7.13 60.30 68.18 13.80 20.72 52.49 100.00 18.68 12.75 3.25 152.82 21.35 11.1 0.0 NA 928 1073.6 207.1 177 177 45.40 9.6 10.2 0 35.4 4805 6124 4666 35.5 4842 6091 4641 0.1 12 4 16 4848 6095 4630 11.1 21.2 10.3 68.5 166 66 2.5 493 0.019 1.2 3 7.3 0.1 0.20 11.6 1.0 1.9 2.5
40.89 7.85 58.22 66.95 15.38 20.86 50.84 100.00 18.51 12.70 4.01 152.82 20.70 11.1 0.0 NA 928 1027.5 205.9 177 177 45.54 9.0 10.0 0 35.8 4942 6177 4725 35.8 4858 6100 4656 0.0 1 1 1 4860 6100 4659 11.1 21.3 10.0 68.7 167 68 2.5 495 0.019 1.3 3 7.4 0.0 0.00 11.5 1.1 1.9 2.3
40.14 7.64 59.44 67.22 15.67 21.50 52.02 100.00 18.72 12.86 4.16 156.51 21.47 12.4 0.0 NA 930 1021.4 208.4 177 177 45.73 9.5 10.6 0 35.5 4899 6123 4692 35.5 4811 6041 4636 0.0 2 1 2 4815 6055 4631 10.8 20.9 10.6 69.0 157 64 2.5 497 0.020 1.1 3 7.4 0.0 0.00 11.7 1.7 1.8 2.2
39.30 7.51 59.74 67.28 15.72 21.80 52.30 100.00 18.81 12.98 4.24 158.36 21.82 12.7 0.0 NA 929 1092.2 207.5 178 178 44.46 8.9 9.8 0 35.5 4957 6181 4751 35.5 4887 6124 4710 0.0 3 2 3 4876 6109 4696 11.1 21.4 9.8 68.8 156 64 2.4 514 0.021 0.7 3 7.3 0.0 0.00 11.6 1.8 1.7 2.3
39.53 7.51 59.74 67.28 15.72 21.80 52.30 100.00 18.81 12.98 4.24 158.36 21.82 12.7 0.0 NA 929 1175.3 204.1 177 177 45.02 8.9 9.9 0 35.6 4961 6180 4775 35.6 4869 6094 4690 0.0 4 3 4 4850 6094 4665 11.0 21.2 10.1 68.7 155 62 2.5 490 0.020 1.2 2 7.3 0.0 0.00 11.4 1.5 1.5 2.0
40.22 7.51 59.74 67.28 15.72 21.80 52.30 100.00 18.81 12.98 4.24 158.36 21.82 12.7 0.0 1.56 925 1102.8 206.6 178 178 45.22 9.0 10.0 0 35.2 4949 6161 4766 35.2 4871 6108 4705 0.0 5 4 5 4879 6117 4696 11.1 21.5 9.9 68.7 157 63 2.5 495 0.020 0.9 3 7.3 0.1 0.20 11.4 2.0 1.6 2.0
41.18 7.08 61.83 70.69 13.43 17.72 53.27 100.00 19.14 13.38 3.02 153.10 21.90 10.9 0.0 NA 936 1024.4 218.7 178 178 47.04 NA NA 0 33.2 4791 6026 4482 35.7 0 6111 0 2.5 6 2 16 4918 6152 4618 11.4 21.1 8.8 70.1 162 68 2.4 479 0.018 0.9 2 7.4 0.0 0.00 11.9 0.8 1.9 2.1
40.70 6.58 58.38 67.17 12.22 18.46 51.45 100.00 18.22 12.83 2.69 148.49 21.23 11.1 0.0 NA 937 997.7 209.6 177 177 46.43 NA NA 0 32.9 NA 6002 0 36.5 4902 6120 4621 3.6 7 3 17 4906 6134 4626 11.2 21.0 8.9 70.1 160 66 2.4 492 0.019 1.5 3 7.4 0.0 0.00 11.6 0.8 1.9 2.4
41.89 6.27 56.23 64.98 11.47 18.93 50.31 100.00 17.64 12.48 2.49 145.61 20.81 11.3 0.0 NA 940 1031.3 215.1 177 177 47.09 NA NA 0 33.6 4864 6085 4615 35.1 4847 6072 4607 1.5 1 1 1 4875 6095 4606 11.2 20.9 9.5 69.7 161 65 2.5 468 0.018 1.3 2 7.2 0.0 0.00 11.4 1.1 2.0 1.8
43.38 8.17 63.66 73.44 18.37 23.76 56.64 100.00 17.94 12.18 4.15 151.54 20.27 9.0 0.0 1.54 934 1007.3 209.4 178 178 47.28 11.1 9.0 0 33.3 4750 5994 4517 36.3 4887 6146 4653 3.0 5 5 12 4907 6150 4631 11.5 21.3 9.2 69.5 167 66 2.5 505 0.019 1.0 2 7.2 0.0 0.00 11.5 0.7 1.7 2.4
36.83 6.60 55.74 66.25 11.83 22.52 48.95 100.00 16.67 12.11 2.75 140.84 19.07 11.6 0.0 1.52 930 950.7 203.6 178 178 38.89 9.2 7.6 0 37.3 4840 5988 4577 40.0 4971 6114 4657 2.7 1 1 6 4990 6160 4693 11.0 21.0 7.5 71.5 161 65 2.5 500 0.019 0.9 3 6.9 0.0 0.00 11.8 0.8 1.7 2.2
35.25 6.90 54.26 60.99 12.22 20.16 47.23 100.00 16.57 11.73 3.06 139.52 18.62 9.2 0.0 1.53 926 955.8 203.0 177 178 39.02 8.4 7.5 0 38.0 4894 6022 4590 40.0 4971 6107 4675 2.0 2 2 7 4966 6112 4660 10.7 20.6 7.6 71.9 159 65 2.4 492 0.019 0.9 3 7.1 0.0 0.00 11.7 0.7 1.7 2.0
36.12 6.86 55.66 63.43 12.53 20.39 48.94 100.00 16.71 11.94 3.07 142.45 19.12 9.2 0.0 1.54 922 975.8 203.6 178 178 40.46 7.8 7.5 0 38.1 4942 6081 4645 39.3 4967 6117 4664 1.2 3 3 8 4961 6112 4649 10.7 20.5 7.6 71.8 157 64 2.5 522 0.021 0.9 3 7.4 0.0 0.00 11.6 1.3 1.7 2.2
38.52 6.67 63.44 76.94 14.28 21.67 58.42 100.00 17.47 13.12 3.10 158.66 21.88 9.2 0.0 1.52 924 986.9 206.4 177 177 42.67 7.5 7.7 0 38.6 5055 6213 4714 37.7 4960 6123 4639 -0.9 4 4 9 4966 6137 4641 10.8 20.7 7.6 71.7 158 63 2.5 499 0.020 1.9 3 7.3 0.1 0.20 11.7 0.8 1.7 2.2
38.35 6.53 61.68 77.15 11.81 21.12 59.38 100.00 17.31 12.83 2.14 154.56 22.18 10.4 0.0 1.52 921 1001.1 205.5 178 178 44.95 9.4 9.0 0 35.3 4831 6017 4556 35.3 4866 6028 4573 0.0 6 4 4 4863 6039 4564 10.6 20.1 9.0 70.9 157 64 2.5 504 0.020 0.7 3 6.8 0.0 0.00 11.6 0.5 1.9 2.2
39.98 6.89 61.54 76.07 12.41 21.14 57.89 100.00 17.42 12.79 2.35 153.00 21.58 10.3 0.0 1.54 928 1006.7 206.2 177 177 46.27 9.0 9.1 0 35.4 4872 6050 4585 35.0 4857 6036 4579 -0.4 7 1 5 4872 6060 4583 10.7 20.4 9.1 70.6 160 63 2.5 486 0.019 1.6 2 7.1 0.0 0.00 11.7 0.6 2.0 2.4
41.87 7.13 61.39 74.10 13.27 20.96 55.95 100.00 17.58 12.63 2.61 151.00 20.80 11.2 0.0 1.53 926 1024.0 208.2 178 178 47.08 10.7 9.5 0 33.5 4756 5972 4515 34.0 4854 6069 4600 0.5 8 2 6 4842 6057 4574 10.9 20.4 9.7 69.9 163 66 2.5 486 0.019 0.7 2 7.1 0.0 0.00 11.6 0.6 2.0 2.1
43.62 6.84 61.46 73.91 13.18 20.77 56.39 100.00 17.56 12.55 2.53 151.48 20.99 11.6 0.0 1.52 923 1041.2 207.3 177 177 48.77 10.1 10.5 0 33.4 4815 6033 4569 33.4 4773 5991 4521 0.0 9 3 7 4820 6042 4563 10.9 20.4 10.0 69.6 161 64 2.5 476 0.018 1.6 2 7.2 0.1 0.10 11.6 0.7 1.9 2.4
38.60 5.17 61.17 76.39 12.51 20.32 58.17 100.00 17.79 13.05 2.50 157.45 22.21 10.6 0.0 1.52 928 999.5 209.4 178 178 45.78 9.8 9.7 0 34.5 4811 5992 4578 34.5 4823 6010 4579 0.0 5 5 12 4829 6020 4590 10.6 20.1 9.7 70.3 156 61 2.5 496 0.020 1.1 2 7.5 0.1 0.10 11.6 0.5 1.8 2.3
39.65 7.01 61.30 72.71 13.23 24.85 54.89 100.00 17.38 12.47 2.76 149.46 20.42 11.6 0.0 1.53 925 1010.3 209.1 177 177 44.77 9.4 9.3 0 34.6 4852 6047 4852 34.4 4861 6073 4759 -0.2 3 3 16 4854 6061 4654 10.7 20.4 9.5 70.1 155 61 2.5 507 0.020 1.7 3 7.3 0.0 0.00 11.7 0.6 1.9 2.6
40.87 6.30 57.04 70.03 11.70 18.04 50.50 100.00 17.27 12.79 2.41 145.62 20.18 12.5 0.0 1.53 930 1002.4 207.5 177 177 46.65 9.7 10.0 4549 33.9 4844 6057 4562 33.1 4821 6033 4547 -0.8 1 1 13 4818 6041 4537 10.9 20.4 10.1 69.5 153 63 2.4 481 0.020 1.0 2 7.4 0.1 0.20 11.0 0.9 2.0 2.1
42.46 5.32 59.14 71.05 13.02 21.17 52.58 100.00 16.94 12.32 2.46 144.80 20.03 11.9 19.7 1.53 926 1019.6 206.4 178 178 46.17 9.4 10.2 4549 33.4 4854 6051 4595 32.2 4794 5992 4552 -1.2 3 2 2 4798 5982 4534 10.4 19.8 10.1 70.1 166 65 2.6 495 0.019 0.9 3 7.1 0.0 0.00 11.2 1.1 1.9 2.4
42.66 5.32 59.14 71.05 13.02 21.17 52.58 100.00 16.94 12.32 2.46 144.80 20.03 11.9 19.9 1.52 924 1008.6 208.7 177 177 46.38 9.7 10.0 4549 33.1 4825 6028 4571 32.6 4798 5986 4552 -0.5 4 3 3 4820 6006 4552 10.5 20.0 9.8 70.2 166 65 2.5 484 0.018 1.7 2 7.1 0.0 0.00 11.1 1.2 1.8 2.4
42.23 5.32 59.14 71.05 13.02 21.17 52.58 100.00 16.94 12.32 2.46 144.80 20.03 11.9 19.3 1.54 926 1014.3 208.7 178 178 45.92 9.5 10.0 4549 33.0 4838 6029 4593 32.6 4800 5991 4562 -0.4 5 4 4 4820 6013 4554 10.6 20.1 9.8 70.1 166 68 2.4 506 0.019 0.0 2 7.1 0.1 0.20 11.0 1.5 1.8 2.4
41.43 5.71 57.68 69.37 12.26 21.32 50.79 100.00 17.01 12.44 2.46 143.94 19.78 11.0 19.5 1.52 924 1027.0 206.6 177 177 46.77 10.2 9.8 4549 32.8 4806 6002 4591 32.8 4831 6027 4603 0.0 7 2 6 4847 6053 4607 10.9 20.5 9.7 69.9 160 65 2.5 488 0.019 0.0 2 7.2 0.0 0.00 11.4 1.0 1.9 2.3
41.47 6.60 58.80 71.17 12.40 22.14 52.24 100.00 17.21 12.77 2.58 148.28 20.33 11.3 19.3 1.52 925 1015.0 205.9 178 178 46.69 9.8 10.0 4549 33.0 4828 6020 4587 32.6 4815 6005 4582 -0.4 8 3 7 4837 6050 4598 10.9 20.4 9.8 59.8 159 64 2.5 493 0.019 0.0 2 7.2 0.0 0.00 10.9 1.0 1.9 2.2
42.07 6.76 55.42 69.80 11.25 18.15 49.89 100.00 17.61 13.40 2.57 151.50 20.88 10.8 22.5 1.48 936 954.7 211.2 177 177 45.95 11.1 10.5 4549 32.8 4713 5904 4467 32.8 4750 5927 4497 0.0 1 1 1 4784 5974 4543 10.3 19.6 10.1 70.3 157 61 2.6 509 0.020 1.1 3 7.4 0.0 0.00 11.4 0.7 1.8 2.4
44.35 6.76 55.42 69.80 11.25 18.15 49.89 100.00 17.61 13.40 2.57 151.50 20.88 10.8 20.5 1.53 923 954.0 210.0 178 177 46.66 8.1 8.9 4549 33.3 4934 6110 4635 32.5 4873 6058 4598 -0.8 2 2 2 4900 6089 4617 10.8 20.5 8.6 70.8 163 64 2.5 498 0.019 0.9 3 7.3 0.1 0.10 11.4 0.7 2.0 2.4
44.16 6.76 55.42 69.80 11.25 18.15 49.89 100.00 17.61 13.40 2.57 151.50 20.88 10.8 21.5 1.55 930 969.3 208.7 177 178 47.33 9.3 9.3 4549 32.5 4836 6014 4564 32.3 4844 6032 4577 -0.2 3 3 3 4869 6061 4603 10.7 20.3 9.0 70.7 160 63 2.5 501 0.020 1.0 3 7.1 0.0 0.00 11.0 0.7 1.8 2.4
43.33 6.77 58.76 72.74 12.12 20.65 53.17 100.00 17.59 13.31 2.61 154.06 21.31 11.4 20.5 1.56 928 980.3 208.2 178 178 46.78 9.0 8.8 4549 32.8 4869 6061 4583 32.3 4905 6117 4635 -0.5 4 4 4 4885 6098 4611 11.0 20.6 8.9 70.4 162 64 2.5 490 0.019 0.3 2 7.1 0.0 0.00 10.5 0.9 1.8 2.1
42.61 6.95 60.31 73.97 12.42 19.05 52.31 100.00 17.64 13.28 2.75 151.21 20.75 12.2 20.5 1.50 926 986.4 208.7 177 177 46.48 8.5 9.2 4549 33.2 4914 6108 4594 32.4 4850 6025 4535 -0.8 5 5 5 4854 6034 4547 10.6 20.0 9.1 70.9 165 65 2.5 490 0.019 1.2 3 7.0 0.0 0.00 10.7 0.7 1.8 2.3
42.96 6.95 60.31 73.97 12.42 19.05 52.31 100.00 17.64 13.28 2.75 151.21 20.75 12.2 20.5 1.50 925 977.8 227.4 178 178 46.03 9.4 9.1 4549 32.6 4833 6009 4521 32.6 4853 6027 4538 0.0 6 6 6 4864 6056 4556 10.7 20.2 9.0 70.7 168 65 2.6 492 0.018 0.7 3 7.4 0.0 0.00 11.1 1.1 1.8 2.1
43.84 6.95 60.31 73.97 12.42 19.05 52.31 100.00 17.64 13.28 2.75 151.21 20.75 12.2 20.0 1.56 927 1006.4 210.7 177 177 48.11 8.9 9.9 4549 32.6 4883 6146 4533 31.3 4812 6082 4484 -1.3 7 1 7 4816 6086 4481 11.0 20.2 9.9 69.9 164 69 2.4 493 0.019 1.8 3 6.7 0.1 0.10 11.6 1.4 1.8 2.4
46.34 7.97 64.75 74.10 15.11 22.66 56.22 100.00 18.82 12.76 3.18 157.34 21.33 11.7 18.0 1.52 921 1002.4 209.8 177 178 47.45 9.5 9.6 4549 32.1 4855 6077 4563 31.5 4836 6055 4551 -0.6 9 3 9 4850 6099 4548 11.2 20.7 9.6 69.7 167 68 2.4 490 0.018 0.6 3 7.3 0.0 0.00 11.6 1.3 1.8 2.1
39.74 6.94 57.02 69.51 13.45 18.44 50.16 100.00 17.55 12.83 3.09 149.60 20.25 10.4 19.0 1.52 923 971.2 207.8 178 178 44.65 8.9 9.1 4549 33.9 4852 6013 4518 33.6 4849 6015 4525 -0.3 10 4 10 4866 6045 4531 10.6 20.0 8.8 71.2 170 68 2.5 490 0.018 0.8 3 7.3 0.0 0.00 11.6 0.9 1.8 2.0
41.12 6.94 57.02 69.51 13.45 18.44 50.16 100.00 17.55 12.83 3.09 149.60 20.25 10.4 18.0 1.53 918 977.6 204.8 177 177 46.47 8.9 9.4 4549 33.4 4869 6043 4547 32.8 4827 6014 4526 -0.6 11 5 11 4846 6032 4521 10.6 20.0 9.2 70.8 169 67 2.5 504 0.019 1.3 3 7.1 0.0 0.00 11.4 2.5 1.8 2.1
40.14 6.94 57.02 69.51 13.45 18.44 50.16 100.00 17.55 12.83 3.09 149.60 20.25 10.4 19.5 1.54 926 989.2 206.4 178 178 47.33 8.7 11.0 4549 33.8 4874 6049 4551 33.1 4701 5890 4392 -0.7 12 6 12 4721 5901 4416 10.0 18.9 10.8 70.2 162 65 2.5 496 0.019 0.4 3 7.1 0.1 0.20 11.4 1.0 1.8 2.2
42.69 7.56 61.62 72.17 14.46 21.02 53.78 100.00 18.33 12.82 3.18 154.71 20.95 11.1 19.5 1.54 929 989.6 205.5 177 177 46.34 9.0 9.5 4549 33.1 4867 6061 4567 32.5 4836 6033 4541 -0.6 1 1 13 4861 6071 4550 10.9 20.5 9.3 70.3 165 66 2.5 495 0.019 1.9 3 7.4 0.0 0.00 11.4 1.1 2.0 2.3
40.15 6.87 57.33 71.52 13.22 15.62 50.85 100.00 17.74 13.16 2.91 148.45 20.44 9.7 19.5 1.54 923 1003.8 206.8 178 177 48.84 8.7 10.8 4549 33.6 4867 6039 4539 33.1 4718 5898 4404 -0.5 2 2 14 4747 5929 4423 10.1 19.2 10.5 70.3 157 63 2.5 501 0.020 1.4 3 7.3 0.0 0.00 11.6 1.2 1.9 2.2
39.77 6.87 57.33 71.52 13.22 15.62 50.85 100.00 17.74 13.16 2.91 148.45 20.44 9.7 19.5 1.54 925 984.2 205.2 177 178 46.32 8.4 8.6 4549 33.7 4891 6059 4563 33.1 4880 6048 4555 -0.6 3 3 15 4890 6069 4552 10.7 20.3 8.6 71.2 164 67 2.5 483 0.018 0.9 3 7.2 0.0 0.00 11.2 0.9 1.9 2.1
39.40 6.87 57.33 71.52 13.22 15.62 50.85 100.00 17.74 13.16 2.91 148.45 20.44 9.7 19.5 1.52 924 992.5 207.3 178 178 47.03 8.2 9.4 4549 33.9 4901 6055 4571 34.8 4816 5992 4493 0.9 4 4 16 4847 6021 4518 10.5 19.9 9.1 71.0 160 66 2.4 509 0.020 0.6 3 7.3 0.0 0.00 11.0 0.9 2.1 2.2
39.14 6.65 55.61 68.93 12.72 15.91 48.64 100.00 17.87 13.31 2.98 146.08 20.33 10.7 19.5 1.50 924 987.0 206.2 177 177 45.66 10.3 9.4 4549 33.8 4747 5918 4447 34.5 4829 6006 4531 0.7 5 5 17 4853 6033 4545 10.6 20.1 9.2 70.7 156 63 2.5 463 0.019 1.1 2 7.3 0.1 0.20 11.0 1.0 1.9 2.2
40.36 6.65 55.61 68.93 12.72 15.91 48.64 100.00 17.87 13.31 2.98 146.08 20.33 10.7 19.5 1.52 926 991.5 211.4 178 178 47.09 10.3 9.8 4549 33.5 4765 5946 4471 33.9 4808 5991 4509 0.4 6 6 18 4820 6016 4524 10.6 20.0 9.7 70.3 156 64 2.4 488 0.020 0.5 3 7.3 0.0 0.00 11.3 0.0 2.0 2.2
42.31 6.65 55.61 68.93 12.72 15.91 48.64 100.00 17.87 13.31 2.98 146.08 20.33 10.7 18.0 1.58 920 1003.2 207.8 177 177 49.04 11.1 10.2 4549 32.5 4724 5926 4441 33.5 4792 6002 4506 1.0 7 1 1 4811 6016 4519 10.7 20.1 10.0 69.9 157 63 2.5 512 0.020 1.4 3 7.1 0.0 0.00 11.8 11.0 1.9 2.3
40.49 6.72 57.24 71.27 12.25 16.58 50.88 100.00 18.18 13.60 2.75 151.23 21.30 9.3 20.0 1.57 928 983.2 208.0 177 178 46.30 9.4 9.1 4549 34.6 4813 5957 4491 35.2 4834 5983 4514 0.6 9 3 3 4863 6019 4541 10.4 19.9 8.8 71.3 160 63 2.5 499 0.019 0.8 3 7.0 0.0 0.00 11.5 0.7 1.8 2.3
40.57 6.57 55.93 69.48 11.95 18.00 50.50 100.00 17.92 13.23 2.63 151.67 21.29 8.7 19.0 1.60 921 980.8 206.2 178 178 46.37 9.6 9.1 4549 34.6 4803 5958 4506 35.0 4846 6009 4535 0.4 10 4 4 4867 6041 4554 10.6 20.1 8.9 71.0 161 64 2.5 513 0.020 0.7 3 7.1 0.1 0.10 11.6 0.9 1.8 2.2
38.20 6.16 54.67 66.95 11.15 17.25 48.12 100.83 17.97 13.12 2.48 149.03 20.88 9.1 20.0 1.51 925 982.3 205.9 177 177 46.32 10.4 9.0 4549 34.0 4756 5917 4484 35.3 4858 6039 4557 1.3 11 5 5 4877 6051 4587 10.7 20.3 8.9 70.8 153 61 2.5 484 0.020 1.3 2 7.1 0.0 0.00 11.7 0.8 1.8 2.1
38.70 6.16 54.67 66.95 11.15 17.25 48.12 100.83 17.97 13.12 2.48 149.03 20.88 9.1 19.5 1.51 923 983.4 206.2 178 178 46.02 10.2 8.7 4549 34.1 4772 5957 4494 35.4 4885 6065 4571 1.3 12 6 6 4889 6069 4590 10.8 20.4 8.8 70.8 156 62 2.5 502 0.020 0.5 3 7.1 0.0 0.00 11.6 0.8 1.8 2.0
38.94 6.16 54.67 66.95 11.15 17.25 48.12 100.83 17.97 13.12 2.48 149.03 20.88 9.1 19.5 1.49 928 1004.5 206.8 177 177 48.17 9.6 10.2 4549 33.9 4828 6010 4550 33.9 4763 5949 4510 0.0 1 1 7 4814 6010 4545 10.4 19.8 9.7 70.5 150 60 2.5 492 0.021 1.1 2 7.1 0.0 0.00 11.5 0.7 1.9 2.3
41.90 6.37 52.67 64.34 12.02 17.40 46.52 100.00 17.38 12.48 2.75 144.50 19.82 11.0 20.0 1.50 927 1016.1 210.3 178 177 47.44 11.2 9.9 4549 32.7 4716 5937 4476 34.1 4818 6043 4586 1.4 2 2 8 4835 6074 4592 10.9 20.4 9.7 69.8 162 63 2.6 492 0.019 1.0 2 7.0 0.0 0.00 11.6 0.9 2.0 2.3
42.03 6.37 52.67 64.34 12.02 17.40 46.52 100.00 17.38 12.48 2.75 144.50 19.82 11.0 19.5 1.51 922 999.7 213.3 177 178 47.30 10.9 10.1 4549 33.3 4742 5963 4505 33.9 4800 6038 4578 0.6 3 3 9 4841 6084 4593 11.0 20.5 9.7 69.8 163 63 2.6 498 0.019 1.0 3 6.9 0.0 0.00 11.7 1.4 1.9 1.8
41.96 6.37 52.67 64.34 12.02 17.40 46.52 100.00 17.38 12.48 2.75 144.50 19.82 11.0 19.5 1.50 923 1013.9 209.6 178 178 48.11 11.0 10.4 4549 32.9 4737 5967 4499 33.5 4785 6025 4558 0.6 4 4 10 4819 6065 4575 10.9 20.4 10.0 69.6 160 62 2.6 504 0.020 0.5 3 6.8 0.0 0.00 11.7 1.4 1.9 1.8
41.85 6.31 54.42 66.13 11.97 18.40 48.01 100.00 17.81 12.75 2.76 147.17 20.41 12.0 19.5 1.48 923 994.0 206.8 178 178 46.00 9.7 9.6 4549 34.2 4818 6019 4583 34.2 4830 6031 4603 0.0 6 6 12 4857 6065 4613 10.7 20.3 9.3 70.4 162 64 2.5 494 0.019 0.4 3 7.0 0.0 0.00 11.2 1.2 1.9 1.8
39.71 6.27 53.51 66.52 11.83 16.95 46.62 100.00 17.76 13.31 2.87 143.65 20.35 10.0 20.0 1.49 929 960.0 210.7 177 177 45.05 9.4 9.0 0 34.8 4824 5974 4534 35.4 4862 6021 4567 0.6 1 1 13 4877 6036 4569 10.4 20.0 8.7 71.3 156 62 2.5 500 0.020 1.1 3 7.3 0.0 0.00 11.9 1.2 1.8 2.5
39.38 6.27 53.51 66.52 11.83 16.95 46.62 100.00 17.76 13.31 2.87 143.65 20.35 10.2 19.0 1.48 921 961.3 205.0 178 177 43.83 8.9 8.4 0 35.5 4862 6023 4568 35.5 4905 6066 4597 0.0 2 2 14 4901 6063 4588 10.6 20.2 8.4 71.4 159 63 2.5 487 0.019 0.9 3 7.1 0.1 0.10 11.9 1.7 1.8 2.3
39.16 6.27 53.51 66.52 11.83 16.95 46.62 100.00 17.76 13.31 2.87 143.65 20.35 10.2 19.0 1.48 921 969.7 207.8 177 178 43.86 8.4 8.3 0 35.5 4897 6043 4584 35.5 4907 6064 4596 0.0 3 3 15 4916 6075 4595 10.6 20.3 8.2 70.5 158 62 2.6 484 0.019 0.7 3 7.0 0.0 0.00 11.5 1.7 1.9 2.2
39.38 6.58 52.50 63.29 12.24 18.28 46.04 100.00 17.67 12.47 2.85 144.40 19.85 9.5 19.0 1.47 923 989.7 205.7 177 177 47.40 9.7 9.5 0 34.2 4836 6047 4588 33.9 4854 6072 4603 -0.3 5 5 17 4876 6106 4609 11.1 20.8 9.3 69.9 162 65 2.5 494 0.019 1.3 3 7.1 0.0 0.00 11.7 1.2 1.8 1.9
40.08 6.45 53.18 64.98 12.11 18.77 46.80 100.00 17.58 12.69 2.79 145.90 19.96 10.9 19.5 1.51 923 996.4 206.2 178 178 47.52 10.2 9.9 0 33.5 4810 6039 4568 33.5 4827 6057 4580 0.0 6 6 18 4825 6063 4582 11.0 20.5 9.9 69.6 160 63 2.6 500 0.020 0.6 2 7.0 0.0 0.00 11.5 1.2 1.8 1.8
39.17 6.39 58.85 73.45 12.69 16.92 51.25 100.00 17.92 13.50 2.62 151.25 20.89 11.3 21.5 1.55 935 976.4 204.8 177 177 45.88 8.5 9.1 0 34.8 4879 6044 4574 34.4 4841 6018 4565 -0.4 7 1 1 4849 6041 4557 10.3 19.6 8.9 71.6 158 64 2.5 495 0.020 1.1 3 7.4 0.1 0.10 11.7 0.8 2.0 2.3
38.37 6.39 58.85 73.45 12.69 16.92 51.25 100.00 17.92 13.50 2.62 151.25 20.89 11.3 22.2 1.54 933 971.6 208.0 178 177 45.52 8.2 8.7 0 35.2 4899 6059 4609 34.5 4867 6037 4583 -0.7 8 2 2 4883 6045 4583 10.2 19.6 8.3 72.1 156 62 2.5 497 0.020 1.9 2 7.1 0.0 0.00 11.8 0.8 2.0 2.1
38.76 6.39 58.85 73.45 12.69 16.92 51.25 100.00 17.92 13.50 2.62 151.25 20.89 11.3 22.0 1.54 933 974.0 205.9 177 178 45.11 8.7 8.6 0 35.0 4857 6028 4569 34.6 4870 6051 4582 -0.4 9 3 3 4890 6058 4587 10.3 19.7 8.3 72.0 159 64 2.5 497 0.020 0.7 2 7.0 0.0 0.00 11.6 1.3 1.9 2.4
38.73 6.35 56.93 70.87 12.27 18.06 49.92 100.00 17.76 13.29 2.61 150.06 20.65 11.5 22.5 1.55 932 978.0 209.4 178 178 45.57 9.8 9.3 0 34.2 4795 5991 4520 34.2 4844 6031 4579 0.0 10 4 4 4859 6058 4581 10.5 19.8 8.9 71.2 157 61 2.6 507 0.020 0.8 3 7.1 0.0 0.00 11.6 0.6 2.0 2.3
38.95 6.17 53.80 65.53 12.70 18.65 47.67 100.00 16.82 12.11 2.58 142.66 19.64 11.4 21.5 1.55 932 980.2 205.7 177 177 44.92 8.7 9.1 0 35.1 4889 6089 4619 34.5 4857 6063 4594 -0.6 11 5 5 4876 6087 4601 10.6 20.0 8.8 71.2 163 65 2.5 498 0.019 1.7 3 7.0 0.0 0.00 11.4 1.3 1.9 2.2
40.41 6.97 58.18 71.85 14.25 17.08 50.06 100.00 18.02 13.51 3.37 148.92 20.33 11.0 21.5 1.55 937 993.4 205.5 177 177 46.11 9.3 9.4 0 34.5 4835 6014 4527 34.5 4827 5994 4525 0.0 1 1 7 4835 6015 4537 10.3 19.5 9.1 71.3 156 63 2.5 494 0.020 1.0 3 7.1 0.0 0.00 11.4 0.8 2.0 2.5
39.90 6.97 58.18 71.85 14.25 17.08 50.06 100.00 18.02 13.51 3.37 148.92 20.33 11.0 22.0 1.52 931 990.5 207.1 178 177 46.12 8.4 9.3 0 35.2 4899 6061 4572 33.8 4813 5977 4515 -1.4 2 2 8 4834 6015 4526 10.3 19.5 9.1 71.4 154 61 2.5 517 0.021 1.2 3 7.1 0.0 0.00 11.3 0.9 2.1 2.2
39.79 6.97 58.18 71.85 14.25 17.08 50.06 100.00 18.02 13.51 3.37 148.92 20.33 11.0 22.0 1.53 935 982.9 206.6 177 178 44.55 8.2 8.4 0 35.2 4897 6048 4572 34.8 4881 6059 4584 -0.4 3 3 9 4898 6073 4573 10.5 19.9 8.3 71.8 159 65 2.4 495 0.019 0.3 2 7.1 0.0 0.00 11.3 1.0 1.9 2.1
41.25 8.81 63.99 78.25 23.09 19.96 53.87 100.00 18.84 14.08 6.87 158.73 20.57 12.7 22.0 1.55 934 1000.7 205.5 178 178 45.10 8.6 8.8 0 34.9 4844 5990 4524 34.9 4825 5981 4517 0.0 4 4 10 4878 6049 4546 10.3 19.6 8.4 72.1 167 65 2.6 507 0.019 0.2 3 7.1 0.0 0.00 11.6 1.2 1.9 2.2
41.00 6.80 57.21 70.34 13.98 16.81 48.46 100.00 17.91 13.34 3.37 146.67 19.95 11.2 20.5 1.55 934 1000.8 205.2 178 178 44.99 9.1 8.5 0 34.7 4829 5998 4550 34.7 4879 6040 4573 0.0 6 6 12 4881 6060 4576 10.5 19.9 8.6 71.5 164 65 2.5 492 0.019 0.3 3 7.1 0.0 0.00 11.5 1.6 1.9 2.4
41.59 6.80 57.21 70.34 13.98 16.81 48.46 100.00 17.91 13.34 3.37 146.67 19.95 11.2 21.0 1.55 939 1171.2 206.4 177 178 45.64 8.9 9.1 0 35.1 4853 6022 4582 34.8 4826 5996 4564 -0.3 1 1 13 4866 6051 4567 10.4 19.7 8.7 71.6 164 66 2.5 506 0.019 0.9 2 7.2 0.0 0.00 11.5 1.5 1.9 2.4
40.91 6.80 57.21 70.34 13.98 16.81 48.46 100.00 17.91 13.34 3.37 146.67 19.95 11.2 22.0 1.54 936 979.2 208.7 178 178 44.62 8.6 8.4 0 35.0 4864 6030 4577 34.8 4887 6068 4599 -0.2 2 2 14 4907 6087 4602 10.5 20.0 8.2 71.8 165 68 2.4 493 0.019 0.9 2 7.1 0.0 0.00 11.6 1.6 2.0 2.4
38.99 6.30 51.96 64.07 12.65 19.23 44.66 100.00 17.16 12.71 3.15 142.11 19.13 11.6 21.0 1.55 932 994.5 207.8 177 177 45.45 9.4 9.4 0 34.8 4841 6048 4631 34.1 4839 6062 4631 -0.7 3 3 15 4867 6082 4642 10.7 20.2 9.1 70.7 160 64 2.5 499 0.019 1.4 3 7.2 0.0 0.00 11.5 1.0 1.9 2.4
38.81 6.30 51.96 64.07 12.65 19.23 44.66 100.00 17.16 12.71 3.15 142.11 19.13 11.6 21.5 1.55 937 989.2 205.2 178 178 45.52 9.3 9.5 0 34.5 4841 6052 4635 33.9 4830 6038 4618 -0.6 4 4 16 4844 6067 4632 10.7 20.1 9.4 70.5 159 64 2.5 513 0.020 0.9 2 7.1 0.1 0.10 11.7 1.1 1.8 2.1
39.30 6.30 51.96 64.07 12.65 19.23 44.66 100.00 17.16 12.71 3.15 142.11 19.13 11.6 21.5 1.55 939 983.7 206.4 177 177 46.10 9.4 9.6 0 34.6 4832 6035 4624 34.3 4822 6039 4617 -0.3 5 5 17 4838 6053 4622 10.6 20.0 9.4 70.6 159 62 2.5 498 0.020 1.2 2 7.2 0.0 0.00 11.7 1.1 1.9 2.3
40.77 6.45 55.09 69.18 11.98 17.22 47.12 100.00 17.74 13.47 2.86 148.00 20.04 10.8 21.5 1.54 937 960.4 204.8 177 178 43.52 8.1 8.3 0 35.8 4893 6028 4564 35.5 4879 6026 4556 -0.3 7 2 2 4873 6023 4546 10.2 19.5 8.4 72.1 163 65 2.5 486 0.019 0.8 2 7.2 0.0 0.00 11.5 1.1 1.9 2.3
39.27 6.45 55.09 69.18 11.98 17.22 47.12 100.00 17.74 13.47 2.86 148.00 20.04 10.8 21.5 1.55 935 954.8 NA 178 178 43.52 8.4 8.3 0 35.6 4866 6005 4550 35.6 4893 6046 4569 0.0 8 3 3 4897 6047 4572 10.3 19.7 8.1 72.2 157 64 2.5 493 0.020 1.2 2 7.2 0.0 0.00 11.3 0.8 1.9 2.1
40.06 6.45 55.09 69.18 11.98 17.22 47.12 100.00 17.74 13.47 2.86 148.00 20.04 10.8 21.7 1.55 938 975.8 205.2 177 177 44.11 8.4 8.3 0 35.4 4874 6012 4561 35.3 4885 6046 4571 -0.1 9 4 4 4885 6042 4546 10.3 19.7 8.3 72.0 158 63 2.5 478 0.019 1.0 2 7.2 0.1 0.10 11.6 0.9 1.9 2.5
39.17 6.28 54.33 68.30 12.37 15.46 46.72 100.00 17.41 13.28 2.96 143.47 19.85 12.4 22.0 1.54 941 1009.1 206.4 178 178 46.33 8.7 9.2 0 34.2 4867 6034 4588 33.8 4835 6015 4569 -0.4 10 5 5 4846 6019 4572 10.3 19.6 9.1 71.3 156 62 2.5 522 0.021 0.8 3 7.2 0.0 0.00 11.6 1.1 1.8 2.2
39.98 7.33 56.87 70.17 14.20 20.16 49.06 100.00 18.01 13.34 3.62 147.63 19.77 9.9 21.5 1.54 933 992.6 205.9 177 177 45.69 8.4 9.1 0 35.3 4896 6062 4614 34.5 4844 6021 4583 -0.8 11 6 6 4870 6054 4595 10.5 19.9 8.8 71.3 154 60 2.5 492 0.020 1.1 2 7.2 0.0 0.00 11.5 0.9 1.8 2.0
39.91 7.22 57.32 71.02 14.05 19.16 49.21 100.00 18.02 13.43 3.52 148.07 19.87 10.0 21.5 1.55 937 1003.7 205.0 178 178 44.22 8.6 8.9 0 35.6 4848 6005 4559 35.6 4866 6028 4579 0.0 1 1 7 4887 6056 4575 10.4 19.8 8.4 71.8 158 63 2.5 491 0.019 0.9 2 7.2 0.0 0.00 11.9 0.9 1.9 2.5
40.77 6.19 53.59 66.40 11.99 18.73 47.41 100.00 17.04 12.58 2.45 146.20 19.83 9.1 21.5 1.53 931 1006.1 206.8 178 177 45.49 9.1 8.9 0 35.2 4839 6020 4559 35.2 4849 6024 4576 0.0 3 3 9 4872 6054 4566 10.5 19.9 8.8 71.4 164 66 2.5 490 0.019 1.0 2 7.2 0.1 0.10 11.8 0.8 1.9 2.3
39.86 5.98 54.10 66.50 11.73 18.80 47.98 100.00 17.35 12.75 2.51 147.95 20.25 10.6 22.0 1.53 934 1001.0 204.8 177 177 44.09 8.8 8.7 0 35.3 4853 6021 4566 35.3 4864 6043 4582 0.0 4 4 10 4889 6070 4590 10.5 20.0 8.5 71.6 160 64 2.5 482 0.019 1.0 2 7.2 0.0 0.00 11.6 0.8 1.9 2.2
40.03 5.98 54.10 66.50 11.73 18.80 47.98 100.00 17.35 12.75 2.51 147.95 20.25 10.6 22.0 1.54 937 994.9 205.0 178 178 44.56 9.3 9.0 0 35.2 4815 5991 4541 35.2 4834 6008 4555 0.0 5 5 11 4862 6040 4562 10.4 19.7 8.8 71.5 159 64 2.5 499 0.020 0.7 2 7.2 0.0 0.00 11.6 0.9 2.0 2.1
40.81 5.98 54.10 66.50 11.73 18.80 47.98 100.00 17.35 12.75 2.51 147.95 20.25 10.6 20.9 1.55 933 1001.3 205.2 177 177 45.14 9.1 NA 0 35.1 4834 6022 4560 34.8 4859 6030 4568 -0.3 6 6 12 4869 6050 4574 10.5 19.9 8.8 71.3 160 64 2.5 493 0.019 0.9 2 7.3 0.0 0.00 11.5 0.9 1.9 2.1
37.94 5.85 51.75 64.02 10.41 20.40 44.30 100.00 16.96 12.68 2.34 143.33 19.63 11.5 22.0 1.54 934 1004.3 205.0 177 178 43.73 11.4 8.7 0 34.3 4701 5914 4579 35.7 4911 6124 4705 1.4 2 2 14 4923 6137 4710 11.0 20.7 8.6 70.7 154 63 2.4 490 0.020 0.8 3 7.2 0.1 0.10 11.7 1.1 1.9 2.2
37.73 5.85 51.75 64.02 10.41 20.40 44.30 100.00 16.96 12.68 2.34 143.33 19.63 11.5 21.0 1.55 934 1008.1 204.6 178 177 44.35 8.7 9.2 0 35.3 4895 6079 4670 34.3 4850 6022 4634 -1.0 3 3 15 4855 6046 4644 10.5 19.9 9.2 70.9 151 60 2.5 491 0.020 1.3 2 7.2 0.0 0.00 11.5 0.9 1.9 2.3
37.30 5.85 51.75 64.02 10.41 20.40 44.30 100.00 16.96 12.68 2.34 143.33 19.63 11.5 21.5 1.53 937 1004.8 206.6 177 177 44.13 8.9 9.3 0 35.3 4865 6037 4651 34.8 4839 6003 4619 -0.5 4 4 16 4856 6041 4634 10.4 19.9 9.1 71.1 150 60 2.5 486 0.020 1.6 2 7.2 0.0 0.00 11.5 0.8 1.9 2.3
37.86 6.01 51.83 63.80 11.22 19.69 44.57 100.00 17.09 12.57 2.55 143.07 19.47 11.8 21.9 1.54 937 992.8 204.6 178 178 43.49 8.8 9.0 0 35.4 4864 6025 4607 35.0 4847 6024 4614 -0.4 5 5 17 4865 6041 4606 10.4 19.7 8.8 71.4 154 62 2.5 507 0.021 0.8 3 7.2 0.0 0.00 11.6 1.1 1.8 2.3
38.05 5.89 51.28 64.04 9.99 16.90 44.74 100.00 16.79 13.04 2.33 142.66 19.67 12.3 21.7 1.55 936 974.0 206.4 177 177 42.66 8.9 8.7 0 35.5 4838 5997 4571 35.5 4855 6021 4584 0.0 6 6 18 4886 6051 4594 10.3 19.7 8.3 72.0 157 63 2.5 498 0.020 1.3 3 7.2 0.0 0.00 11.4 1.0 1.8 2.4
37.87 5.90 51.44 63.61 10.49 18.04 44.73 100.00 17.18 12.95 2.46 143.84 19.85 11.8 21.6 1.55 937 987.7 206.6 178 178 43.58 8.7 9.1 0 35.3 4861 6020 4611 34.9 4837 6007 4593 -0.4 7 1 1 4845 6019 4590 10.2 19.6 9.0 71.4 156 62 2.5 496 0.020 0.7 3 7.3 0.1 0.10 11.8 0.6 1.9 2.1
38.60 5.90 51.44 63.61 10.49 18.04 44.73 100.00 17.18 12.95 2.46 143.84 19.85 11.8 21.8 1.55 936 987.9 205.5 177 177 44.70 9.3 9.1 0 35.2 4816 5983 4579 35.2 4834 5997 4583 0.0 8 2 2 4841 6010 4583 10.2 19.5 9.1 71.4 155 62 2.5 481 0.019 1.0 2 6.9 0.0 0.00 11.7 0.8 1.9 2.0
38.44 5.90 51.44 63.61 10.49 18.04 44.73 100.00 17.18 12.95 2.46 143.84 19.85 11.8 20.8 1.55 933 986.6 205.5 178 178 44.23 8.7 9.0 0 35.2 4873 6031 4606 34.8 4846 6014 4595 -0.4 9 3 3 4853 6027 4605 0.0 19.7 9.0 71.4 156 62 2.5 493 0.020 0.5 3 7.1 0.0 0.00 11.9 0.8 1.9 2.3
39.42 5.79 53.96 66.53 10.40 18.26 47.57 100.00 17.24 12.99 2.16 146.64 20.57 9.8 22.0 1.54 932 992.3 208.4 177 177 45.61 9.0 8.9 0 35.1 4843 6016 4564 35.1 4850 6016 4569 0.0 10 4 4 4857 6036 4577 0.0 19.7 8.9 71.5 156 63 2.5 495 0.020 1.4 3 7.0 0.0 0.00 11.7 0.8 1.9 1.9
39.75 5.79 53.96 66.53 10.40 18.26 47.57 100.00 17.24 12.99 2.16 146.64 20.57 9.8 21.9 1.50 934 987.9 208.9 178 178 45.99 9.4 9.3 0 34.7 4807 5967 4536 34.7 4819 5997 4544 0.0 11 5 5 0 0 0 0.0 0.0 0.0 0.0 156 62 2.5 485 0.019 0.7 3 7.0 0.0 0.00 11.6 0.8 1.9 2.4
39.51 5.79 53.96 66.53 10.40 18.26 47.57 100.00 17.24 12.99 2.16 146.64 20.57 9.8 22.4 1.48 937 994.3 211.4 177 177 46.01 9.0 8.9 0 35.0 4839 6013 4561 35.0 4856 6032 4571 0.0 12 6 6 4859 6037 4590 0.0 19.7 8.8 71.5 155 62 2.5 491 0.020 1.5 2 7.1 0.0 0.10 11.7 0.8 1.9 1.9
38.35 5.94 51.27 63.54 10.48 17.72 44.43 100.00 17.13 13.00 2.52 143.19 19.69 11.7 22.0 1.52 940 980.3 205.2 178 178 43.75 9.6 9.4 0 35.1 4793 5953 4550 35.4 4808 5972 4551 0.3 1 1 7 4854 6013 4594 0.0 19.5 8.9 71.6 155 63 2.5 510 0.021 0.6 3 7.3 0.0 0.00 11.5 0.9 1.8 2.4
40.38 6.40 58.73 71.51 12.29 17.09 50.62 100.00 17.44 13.10 2.58 147.66 20.25 11.4 20.5 1.57 929 976.0 204.8 178 177 43.75 9.5 7.9 0 35.2 4783 5932 4485 35.7 4935 6105 4602 0.5 3 3 9 4912 6080 4572 0.0 19.9 8.0 72.1 162 65 2.5 494 0.019 0.7 2 7.0 0.0 0.00 11.6 1.7 1.8 2.2
40.19 6.40 58.73 71.51 12.29 17.09 50.62 100.00 17.44 13.10 2.58 147.66 20.25 11.4 22.2 1.54 937 994.1 208.9 177 177 44.64 7.8 8.7 0 35.9 4937 6098 4602 34.7 4845 6014 4533 -1.2 4 4 10 4859 6011 4535 0.0 19.3 8.6 72.1 158 63 2.5 488 0.019 0.7 3 7.0 0.0 0.00 11.3 1.2 1.9 2.3
39.96 6.40 58.73 71.51 12.29 17.09 50.62 100.00 17.44 13.10 2.58 147.66 20.25 11.4 22.3 1.53 936 983.2 213.7 178 178 43.84 8.1 8.7 0 35.7 4896 6050 4559 35.0 4849 6010 4536 -0.7 5 5 11 4871 6027 4544 0.0 19.5 8.4 72.1 160 64 2.5 497 0.019 0.9 2 7.0 0.1 0.10 11.3 0.9 1.8 2.3
39.79 6.10 56.36 69.52 11.71 16.35 49.10 100.00 17.15 12.99 2.44 146.29 20.16 11.7 22.0 1.51 935 981.6 204.3 177 177 43.37 7.8 8.1 0 36.2 4936 6076 4602 35.3 4887 6033 4567 -0.9 6 6 12 4884 6037 4563 0.0 19.5 8.2 72.3 161 65 2.5 500 0.019 0.7 3 7.1 0.0 0.00 11.4 1.1 1.8 2.3
41.86 5.78 53.70 67.22 11.17 15.44 47.33 100.00 16.76 12.81 2.30 144.34 19.95 12.0 21.2 1.55 942 992.0 204.1 177 177 44.94 9.1 9.0 0 34.7 4808 5941 4504 35.1 4822 5959 4526 0.4 7 1 13 4848 5976 4524 0.0 19.2 8.7 72.1 163 65 2.5 492 0.019 1.3 3 7.1 0.0 0.00 11.8 0.5 1.9 2.3
42.15 6.15 53.06 70.29 11.87 16.59 49.97 100.00 16.78 12.63 2.31 144.75 19.94 12.3 21.1 1.54 934 980.0 206.4 178 178 43.12 8.3 8.3 0 35.2 4880 6031 4567 35.2 4877 6035 4570 0.0 8 2 14 4902 6060 4566 0.0 19.9 8.1 72.0 167 68 2.5 501 0.019 0.4 3 7.2 0.0 0.00 11.8 0.6 1.9 2.2
43.88 6.40 52.62 72.39 12.34 17.38 51.77 100.00 16.80 12.51 2.32 145.03 19.93 12.5 21.0 1.55 938 997.8 205.7 177 177 45.23 8.5 9.1 0 34.9 4879 6047 4564 34.4 4827 6000 4535 -0.5 1 1 15 4858 6029 4546 0.0 19.6 8.8 71.6 163 65 2.5 495 0.019 1.0 3 6.9 0.0 0.00 11.8 0.7 1.9 2.2
39.58 5.60 51.45 63.44 10.50 19.17 45.06 100.00 16.83 12.53 2.27 142.90 19.64 11.4 21.0 1.55 934 991.9 205.0 178 177 44.10 8.8 9.2 0 35.1 4869 6037 4622 34.7 4835 5999 4585 -0.4 2 2 16 4857 6032 4598 0.0 19.7 9.0 71.3 153 61 2.5 500 0.020 0.9 3 7.0 0.1 0.10 11.7 0.8 1.9 2.0
40.19 5.60 51.45 63.44 10.50 19.17 45.06 100.00 16.83 12.53 2.27 142.90 19.64 11.4 20.9 1.54 934 986.1 204.1 177 178 43.92 9.0 9.1 0 35.1 4849 6011 4584 35.0 4844 6013 4589 -0.1 3 3 17 4863 6036 4608 0.0 19.7 8.9 71.4 156 61 2.6 501 0.020 0.7 2 7.1 0.0 0.00 11.6 0.8 1.7 2.4
39.84 5.60 51.45 63.44 10.50 19.17 45.06 100.00 16.83 12.53 2.27 142.90 19.64 11.4 21.1 1.55 935 923.0 204.8 178 178 43.26 8.7 8.6 0 35.6 4876 6040 4598 35.2 4880 6037 4611 -0.4 4 4 18 4873 6043 4601 0.0 19.8 8.7 71.5 157 61 2.6 497 0.020 0.5 3 6.9 0.0 0.00 11.9 0.5 1.9 2.2
40.59 5.43 49.10 62.08 10.11 19.09 44.45 100.00 16.54 12.21 2.11 141.49 19.46 12.0 21.2 1.55 935 1003.2 206.8 177 177 45.63 9.0 9.6 0 34.7 4872 6060 4633 34.1 4828 6015 4592 -0.6 5 5 19 4844 6055 4617 0.0 20.0 9.4 70.6 149 59 2.6 486 0.020 1.1 3 6.9 0.0 0.00 11.6 0.5 1.7 1.9
40.66 6.02 50.01 60.82 11.79 19.43 43.24 100.00 17.54 12.61 3.08 142.33 19.17 12.3 21.5 1.55 939 995.2 205.7 178 178 46.51 9.8 10.1 0 33.9 4839 6053 4654 33.1 4806 6022 4623 -0.8 6 6 20 4825 6053 4657 0.0 20.2 10.0 69.9 146 56 2.6 499 0.021 0.5 2 7.0 0.0 0.00 11.8 0.5 1.8 2.1
42.58 6.03 52.58 65.05 11.45 19.11 46.06 100.00 17.23 12.84 2.67 145.08 19.74 11.3 21.2 1.55 936 991.8 208.2 177 178 45.85 8.8 9.7 0 34.9 4882 6056 4600 33.9 4814 6004 4580 -1.0 7 1 1 4820 6022 4585 0.0 19.8 9.6 70.6 159 64 2.5 489 0.019 0.9 2 7.1 0.1 0.20 11.5 0.5 1.9 2.2
43.42 6.08 52.89 66.72 11.23 19.06 47.29 100.00 17.03 12.96 2.49 147.33 20.04 11.2 20.8 1.55 935 994.7 207.3 178 178 46.95 8.9 9.8 0 34.3 4878 6072 4614 33.2 4811 6018 4567 -1.1 8 2 2 4824 6045 4578 0.0 20.0 9.7 70.3 160 64 2.6 481 0.019 0.7 2 7.1 0.0 0.00 11.6 0.7 1.8 2.2
41.45 5.76 52.73 63.88 10.59 20.49 47.29 100.00 17.70 12.48 2.23 150.39 20.62 12.1 20.9 1.54 934 996.9 207.3 177 178 47.21 10.0 10.2 0 33.7 4812 6032 4626 33.2 4797 6019 4611 -0.5 9 3 3 4809 6057 4623 0.0 20.2 10.1 69.7 151 58 2.5 498 0.021 1.1 3 7.1 0.0 0.00 11.5 0.6 1.9 2.2
41.31 5.79 52.70 64.33 10.70 20.09 47.21 100.00 17.54 12.55 2.27 149.52 20.48 11.9 21.2 1.55 935 996.5 209.1 178 178 46.23 9.3 10.0 0 34.4 4859 6063 4635 33.3 4804 6024 4601 -1.1 10 4 4 4820 6050 4606 0.0 20.1 9.9 70.1 154 60 2.5 505 0.020 0.7 3 7.0 0.0 0.00 11.5 0.7 1.9 2.1
42.28 6.23 52.95 66.71 12.75 16.31 45.84 100.00 16.70 12.75 2.98 140.93 19.10 11.4 21.3 1.54 939 987.3 211.4 177 178 45.71 8.1 9.1 0 35.0 4905 6061 4595 33.8 4820 5982 4529 -1.2 11 5 5 4829 6009 4534 0.0 19.5 9.1 71.4 160 63 2.5 507 0.020 1.0 3 7.2 0.0 0.00 11.4 0.6 1.9 2.2
41.62 6.23 52.95 66.71 12.75 16.31 45.84 100.00 16.70 12.75 2.98 140.93 19.10 11.4 21.3 1.55 939 981.9 205.7 178 178 44.99 8.3 8.8 0 34.8 4883 6030 4577 34.2 4855 6024 4558 -0.6 12 6 6 4862 6035 4564 0.0 19.7 8.8 71.6 160 66 2.4 502 0.020 0.7 2 7.2 0.1 0.10 11.4 0.7 1.9 2.0
42.73 6.23 52.95 66.71 12.75 16.31 45.84 100.00 16.70 12.75 2.98 140.93 19.10 11.4 21.4 1.54 941 990.0 207.1 177 178 45.62 8.2 9.4 0 35.2 4903 6056 4550 34.1 4805 5955 4496 -1.1 1 1 7 4832 5990 4533 0.0 19.3 9.1 71.6 162 65 2.5 500 0.019 0.4 2 7.0 0.0 0.00 11.7 0.5 2.0 2.2
41.66 6.26 55.94 69.22 12.07 18.08 48.92 100.00 17.56 13.14 2.60 148.53 20.45 12.2 21.5 1.55 939 1004.4 206.4 178 178 46.67 9.1 10.1 0 33.8 4853 6027 4544 33.4 4777 5962 4509 -0.4 2 2 8 4856 6058 4580 0.0 20.0 9.1 70.9 158 64 2.5 516 0.020 0.8 3 7.0 0.0 0.00 11.4 0.5 1.9 2.3
40.89 6.26 55.94 69.22 12.07 18.08 48.92 100.00 17.56 13.14 2.60 148.53 20.45 12.2 21.4 1.55 936 990.8 208.2 177 177 45.23 8.9 8.2 0 34.4 4865 6034 4562 34.4 4926 6122 4643 0.0 3 3 9 4935 6145 4651 0.0 20.7 8.1 71.2 160 65 2.5 490 0.019 1.0 2 7.2 0.0 0.00 11.4 0.4 1.9 2.2
40.82 6.26 55.94 69.22 12.07 18.08 48.92 100.00 17.56 13.14 2.60 148.53 20.45 12.2 21.5 1.54 939 999.2 206.4 178 178 45.73 7.9 8.8 0 34.6 4950 6143 4665 33.6 4884 6084 4615 -1.0 4 4 10 4895 6120 4632 0.0 20.5 8.6 70.9 158 65 2.4 501 0.020 0.4 3 7.2 0.0 0.00 11.6 0.6 1.8 2.1
39.77 6.36 53.18 66.57 12.07 16.22 46.51 100.00 17.19 12.97 2.80 144.38 19.51 10.8 21.2 1.55 940 998.9 208.9 178 178 46.36 8.2 9.2 0 34.9 4912 6091 4625 33.5 4842 6027 4575 -1.4 1 1 12 4846 6040 4574 0.0 19.8 9.1 71.1 158 65 2.5 499 0.020 0.6 2 7.2 0.0 0.00 11.9 0.4 2.0 2.3
38.05 6.72 53.85 67.10 12.50 16.15 46.87 100.00 17.61 13.15 3.02 145.80 19.56 10.9 NA 1.55 934 1000.1 208.7 177 178 47.06 8.7 9.4 0 34.5 4875 6056 4596 33.4 4821 6003 4550 -1.1 2 2 13 4816 6037 4568 0.0 19.8 9.6 70.6 152 62 2.5 495 0.020 1.3 2 7.3 0.0 0.00 11.8 0.4 1.9 2.2
37.86 5.18 48.60 61.04 9.38 16.30 43.78 100.00 15.88 12.16 1.87 138.14 19.20 11.3 21.4 1.54 936 1001.2 206.2 178 177 46.95 9.3 9.6 0 34.3 4830 6001 4581 33.6 4809 5977 4569 -0.7 3 3 14 4817 6012 4584 0.0 19.6 9.6 70.8 150 62 2.4 502 0.021 1.1 3 7.2 0.0 0.00 11.8 0.4 1.9 2.4
38.03 5.18 48.60 61.04 9.38 16.30 43.78 100.00 15.88 12.16 1.87 138.14 19.20 11.3 21.3 1.55 936 1011.9 207.5 177 177 47.47 8.5 10.0 0 34.4 4893 6061 4635 32.6 4780 5952 4559 -1.8 4 4 15 4785 5973 4557 0.0 19.3 10.0 70.6 149 60 2.5 500 0.021 1.1 2 7.2 0.0 0.00 11.7 0.5 1.8 2.4
37.39 5.18 48.60 61.04 9.38 16.30 43.78 100.00 15.88 12.16 1.87 138.14 19.20 11.3 21.3 1.55 936 998.6 206.2 178 178 46.06 9.3 9.3 0 34.4 4833 6004 4589 34.0 4831 6005 4601 -0.4 5 5 16 4843 6014 4599 0.0 19.6 9.2 71.2 151 61 2.5 495 0.020 1.1 3 7.3 0.1 0.10 11.7 0.5 1.9 2.4
39.16 6.29 50.64 63.92 11.46 13.24 43.50 100.00 16.58 12.88 2.90 136.35 18.35 12.2 21.6 1.55 940 1002.1 207.5 178 178 46.58 9.7 9.3 0 33.4 4792 5964 4540 33.8 4822 5985 4562 0.4 7 1 1 4841 5996 4569 0.0 19.4 9.1 71.5 153 64 2.4 502 0.021 1.1 3 7.3 0.0 0.00 11.8 0.5 1.8 2.1
37.64 6.10 50.60 63.37 10.90 19.05 44.18 100.00 17.37 13.10 2.67 146.66 19.73 10.0 NA 1.55 935 986.1 205.2 177 178 46.06 9.5 9.5 0 34.7 4823 6003 4617 34.4 4831 6015 4609 -0.3 8 2 2 4822 6018 4606 0.0 19.8 9.6 70.6 152 60 2.6 497 0.020 1.1 3 7.2 0.0 0.00 11.7 0.7 1.9 2.3
39.77 5.30 46.87 57.56 9.93 18.07 40.60 100.00 16.34 12.12 2.43 135.81 18.57 13.1 21.3 1.55 936 983.6 207.5 178 178 45.30 10.4 9.8 0 33.7 4772 5962 4606 34.4 4812 5995 4621 0.7 9 3 3 4806 6000 4612 0.0 19.7 9.9 70.4 151 59 2.6 509 0.021 1.3 3 7.3 0.0 0.00 11.8 0.4 1.8 2.4
38.66 5.83 50.17 63.11 10.32 17.24 44.31 100.00 16.86 12.88 2.38 143.75 19.59 10.2 21.2 1.54 934 989.8 206.8 177 178 46.53 8.6 9.3 0 34.9 4883 6042 4623 33.9 4826 5997 4590 -1.0 10 4 4 4840 6001 4588 0.0 19.6 9.2 71.3 152 60 2.5 494 0.020 1.0 3 7.2 0.1 0.10 11.7 0.5 1.8 2.3
40.31 6.25 54.57 67.56 12.10 17.66 47.80 100.00 17.32 12.89 2.73 145.57 19.76 12.4 21.2 1.55 935 1008.1 206.6 178 178 46.12 8.7 9.5 0 34.4 4877 6059 4604 33.4 4821 6008 4568 -1.0 11 5 5 4829 6026 4572 0.0 19.8 9.4 70.7 156 61 2.5 497 0.020 1.0 3 7.2 0.0 0.00 11.7 0.6 1.8 2.3
40.54 6.25 54.57 67.56 12.10 17.66 47.80 100.00 17.32 12.89 2.73 145.57 19.76 12.4 21.4 1.54 934 1000.6 207.3 177 178 46.39 8.9 9.6 0 34.3 4864 6044 4589 33.4 4820 6008 4550 -0.9 12 6 6 4823 6022 4558 0.0 19.7 9.5 70.8 156 61 2.5 509 0.020 1.0 3 7.2 0.0 0.00 11.7 0.5 1.8 2.3
40.64 6.25 54.57 67.56 12.10 17.66 47.80 100.00 17.32 12.89 2.73 145.57 19.76 12.4 21.4 1.55 939 1011.6 206.8 178 178 46.50 9.0 10.0 0 33.9 4858 6035 4577 33.1 4790 5980 4531 -0.8 1 1 7 4802 5993 4533 0.0 19.5 9.8 70.7 156 64 2.4 493 0.020 1.1 2 7.3 0.0 0.00 11.8 0.5 1.9 2.3
38.60 6.00 53.29 65.50 11.71 18.80 46.34 100.00 17.32 12.75 2.63 145.37 19.75 12.7 21.4 1.55 937 1005.1 208.9 177 178 44.78 9.3 9.7 0 34.2 4846 6027 4608 33.7 4612 5999 4581 -0.5 2 2 8 4851 6049 4596 0.0 20.0 9.3 70.7 153 62 2.5 485 0.020 1.8 2 7.3 0.1 0.10 11.5 0.5 1.9 2.2
38.13 6.00 53.29 65.50 11.71 18.80 46.34 100.00 17.32 12.75 2.63 145.37 19.75 12.7 21.6 1.54 938 1014.4 206.4 178 178 44.52 9.3 9.4 0 34.2 4847 6029 4610 33.7 4831 6012 4605 -0.5 3 3 9 4844 6035 4588 0.0 19.9 9.4 70.7 152 63 2.4 517 0.021 1.0 3 7.3 0.0 0.00 11.8 0.5 1.9 1.8
40.10 6.00 53.29 65.50 11.71 18.80 46.34 100.00 17.32 12.75 2.63 145.37 19.75 12.7 21.6 1.55 941 1012.5 206.6 177 177 46.46 9.1 9.6 0 34.4 4858 6046 4619 33.5 4813 6004 4590 -0.9 4 1 10 4827 6011 4581 0.0 19.7 9.6 70.7 153 61 2.5 472 0.019 2.0 2 7.1 0.0 0.00 11.7 0.5 1.8 1.9
39.14 5.49 48.03 58.99 10.24 18.30 41.50 100.00 16.61 12.34 2.55 137.49 18.77 13.0 21.4 1.54 939 998.5 209.8 177 178 45.23 9.9 10.1 0 34.2 4802 5990 4620 34.0 4786 5983 4614 -0.2 6 3 12 4783 5983 4597 0.0 19.5 10.2 70.3 149 59 2.5 490 0.021 0.7 2 7.2 0.0 0.00 11.9 0.6 1.8 2.1
38.63 5.30 46.87 57.56 9.93 18.07 40.60 100.00 16.34 12.12 2.43 135.81 18.57 13.3 21.4 1.54 940 1012.2 209.4 178 178 46.74 9.4 10.6 0 34.0 4858 6067 4677 32.8 4768 5964 4596 -1.2 7 4 13 4776 5995 4607 0.0 19.7 10.5 69.8 143 56 2.5 496 0.022 1.0 3 7.1 0.1 0.10 11.9 0.4 1.7 1.8
41.43 5.54 52.48 64.98 10.30 18.24 45.86 100.00 17.07 12.90 2.18 145.88 20.08 13.4 21.4 1.54 939 1007.6 208.9 177 177 45.54 9.0 9.4 0 34.4 4862 6036 4601 33.5 4832 6003 4578 -0.9 8 5 14 4841 6023 4581 0.0 19.8 9.3 70.9 151 60 2.5 470 0.019 1.3 2 7.2 0.0 0.00 12.0 0.5 1.8 1.9
40.96 5.54 52.29 64.61 10.32 18.52 45.76 100.00 17.05 12.82 2.19 145.59 20.02 13.3 21.1 1.54 936 1022.3 206.4 178 178 46.26 9.3 10.1 0 34.2 4843 6021 4597 33.2 4780 5971 4553 -1.0 9 6 15 4781 5983 4551 0.0 19.5 10.1 70.4 148 59 2.5 507 0.021 0.6 3 7.2 0.0 0.00 11.7 0.6 1.7 2.3
37.89 6.25 52.68 65.12 11.64 18.11 45.42 100.00 17.51 13.01 2.88 145.07 19.56 12.7 21.5 1.60 946 1005.0 210.5 178 178 45.76 8.3 9.8 0 34.6 4920 6093 4648 33.3 4797 5977 4570 -1.3 1 1 16 4812 6008 4567 0.0 19.7 9.7 70.6 154 63 2.5 500 0.020 0.8 3 7.4 0.0 0.00 11.6 0.7 1.9 1.9
37.42 6.25 52.68 65.12 11.64 18.11 45.42 100.00 17.51 13.01 2.88 145.07 19.56 12.7 21.7 1.59 939 998.0 205.5 177 177 44.90 9.5 9.5 0 34.3 4831 6017 4591 34.2 4821 6009 4586 -0.1 2 2 17 4864 6056 4600 0.0 20.0 9.0 71.0 155 63 2.4 493 0.020 1.8 2 7.3 0.0 0.00 11.3 0.5 1.9 2.1
37.51 6.25 52.68 65.12 11.64 18.11 45.42 100.00 17.51 13.01 2.88 145.07 19.56 12.7 21.3 1.60 934 997.1 206.2 178 178 45.30 9.5 9.4 0 34.4 4824 6003 4586 34.3 4832 6012 4589 -0.1 3 3 18 4839 6019 4585 0.0 19.7 9.3 70.9 154 61 2.5 501 0.020 0.7 3 7.3 0.1 0.10 10.7 0.7 1.8 2.1
37.92 6.22 52.76 65.13 11.50 18.55 45.48 100.00 17.57 13.08 2.88 145.10 19.64 12.7 21.2 1.60 936 1006.1 207.3 177 177 45.28 8.7 9.5 0 34.7 4887 6076 4637 33.9 4829 6012 4599 -0.8 4 4 19 4844 6025 4594 0.0 19.8 9.3 70.9 152 61 2.5 470 0.019 1.7 2 7.3 0.0 0.00 11.3 0.5 1.8 1.8
36.77 5.90 51.37 63.65 10.76 19.90 45.07 100.00 17.06 12.78 2.46 144.98 19.73 12.4 21.3 1.54 935 990.5 205.7 177 177 44.38 9.1 9.1 0 35.0 4850 6015 4611 34.9 4856 6027 4618 -0.1 7 3 3 4852 6031 4606 0.0 19.8 9.1 71.0 152 65 2.3 505 0.021 1.5 3 7.3 0.0 0.00 11.0 0.4 1.9 2.3
37.14 5.90 51.37 63.65 10.76 19.90 45.07 100.00 17.06 12.78 2.46 144.98 19.73 12.4 21.0 1.55 934 1002.4 206.2 178 178 44.25 9.1 9.3 0 34.9 4854 6014 4617 34.6 4834 6009 4601 -0.3 8 4 4 4839 6015 4594 0.0 19.7 9.3 71.0 154 64 2.4 517 0.021 0.4 3 7.3 0.1 0.20 10.9 0.5 1.9 2.3
37.73 5.90 51.37 63.65 10.76 19.90 45.07 100.00 17.06 12.78 2.46 144.98 19.73 12.4 21.2 1.55 940 984.3 204.3 177 177 44.38 9.0 9.7 0 35.3 4861 6025 4611 34.8 4805 5975 4570 -0.5 9 5 5 4862 6060 4609 0.0 20.1 9.1 70.8 156 63 2.5 502 0.020 1.7 3 7.3 0.0 0.00 12.0 0.5 1.8 2.3
38.03 5.70 52.77 66.25 10.50 15.18 47.07 100.00 16.67 12.84 2.17 144.39 19.93 12.1 21.4 1.55 938 1005.3 207.1 178 178 44.86 8.5 8.8 0 34.8 4868 6012 4561 34.5 4844 5982 4542 -0.3 10 1 6 4852 6009 4556 0.0 19.4 8.8 71.8 156 64 2.5 502 0.020 0.9 3 7.3 0.0 0.00 12.1 0.3 1.8 2.3
37.86 5.70 52.77 66.25 10.50 15.18 47.07 100.00 16.67 12.84 2.17 144.39 19.93 12.1 21.3 1.55 936 1003.8 206.2 177 177 44.09 7.7 8.1 0 35.3 4924 6050 4597 34.8 4897 6022 4586 -0.5 11 2 7 4906 6040 4586 0.0 19.7 8.0 72.3 158 65 2.4 481 0.019 1.3 2 7.2 0.0 0.00 12.1 0.7 1.8 2.1
38.31 5.70 52.77 66.25 10.50 15.18 47.07 100.00 16.67 12.84 2.17 144.39 19.93 12.1 21.5 1.54 934 1009.5 205.7 178 178 44.62 7.8 8.6 0 35.2 4925 6058 4601 34.6 4863 6016 4594 -0.6 12 3 8 4906 6047 4585 0.0 19.7 8.1 72.2 158 63 2.5 506 0.020 0.9 3 7.3 0.0 0.00 12.0 0.3 1.8 2.3
38.66 5.97 53.13 66.58 11.00 16.55 46.77 100.00 16.97 13.00 2.40 145.03 19.88 12.1 21.1 1.54 938 1015.1 207.5 178 178 45.51 8.8 9.2 0 34.5 4856 6022 4579 34.1 4820 5989 4544 -0.4 2 1 10 4846 6015 4541 0.0 19.6 9.0 71.4 158 64 2.5 520 0.021 0.5 3 7.4 0.0 0.00 11.7 0.3 1.9 1.8
38.65 6.39 53.72 67.13 11.75 18.61 46.32 100.00 17.44 13.25 2.75 145.96 19.80 12.4 21.0 1.55 936 1020.8 206.6 177 177 46.22 8.8 9.2 0 34.7 4866 6040 4571 34.0 4844 6028 4553 -0.7 9 5 17 4855 6055 4581 0.0 19.9 9.1 71.0 158 65 2.4 482 0.019 1.6 3 7.3 0.0 0.00 11.5 0.6 1.8 2.2
38.67 5.36 53.39 65.30 12.05 18.57 46.91 100.00 16.42 12.32 2.31 144.29 19.71 11.5 21.2 1.55 939 1014.5 206.6 177 177 45.87 9.3 9.9 0 34.4 4833 6020 4569 34.1 4789 5973 4532 -0.3 1 1 19 4809 5990 4536 0.0 19.5 9.6 70.9 155 61 2.5 488 0.020 1.0 3 7.3 0.1 0.10 11.8 0.4 1.8 2.4
38.42 5.27 52.45 64.09 10.84 18.10 46.02 100.00 16.35 12.22 1.77 143.59 19.66 11.4 21.2 1.55 933 1029.0 205.9 178 177 47.70 10.5 10.3 0 33.5 4750 5952 4516 33.5 4765 5956 4520 0.0 2 2 20 4790 5993 4541 0.0 19.5 10.1 70.4 149 59 2.5 512 0.021 1.8 3 7.3 0.0 0.00 11.6 0.4 1.8 2.3
39.15 4.58 49.56 61.08 9.84 18.68 43.53 100.00 16.16 12.14 1.99 139.64 18.80 11.6 21.2 1.55 933 1008.0 205.5 177 178 45.51 9.3 10.1 0 34.4 4795 5982 4600 34.4 4785 5984 4587 0.0 3 3 21 4815 5991 4597 0.0 19.6 9.7 70.7 151 61 2.5 511 0.021 1.1 3 7.2 0.0 0.00 11.4 0.8 1.7 2.2
38.82 4.58 49.56 61.08 9.84 18.68 43.53 100.00 16.16 12.14 1.99 139.64 18.80 11.6 21.2 1.55 934 999.9 208.2 178 178 45.13 9.4 9.6 0 34.8 4832 6024 4625 34.7 4816 6001 4601 -0.1 4 4 22 4837 6024 4608 0.0 19.8 9.4 70.8 151 60 2.5 507 0.021 1.9 3 7.3 0.0 0.00 11.4 0.7 1.8 2.4
39.08 4.58 49.56 61.08 9.84 18.68 43.53 100.00 16.16 12.14 1.99 139.64 18.80 11.6 20.0 1.55 928 1003.2 206.6 177 177 45.73 9.7 10.0 0 34.4 4815 6010 4618 34.4 4786 5986 4590 0.0 5 5 23 4815 6011 4594 0.0 19.7 9.7 70.5 150 60 2.5 518 0.022 1.6 3 7.3 0.0 0.00 11.3 0.5 1.7 2.1
38.90 7.70 62.92 75.91 13.49 16.10 55.29 100.00 18.28 13.83 3.20 149.91 21.23 11.3 20.8 1.55 934 1014.6 208.7 177 177 46.04 8.2 8.2 0 34.8 4882 6022 4606 34.8 4884 6026 4613 0.0 7 1 1 4903 6034 4606 0.0 19.5 8.0 72.5 158 66 2.4 475 0.019 1.6 3 0.0 0.0 0.00 11.8 0.2 1.8 2.2
39.62 6.39 59.10 71.04 11.52 21.82 53.53 100.00 17.93 12.92 2.38 155.77 20.76 12.5 19.9 1.55 933 1005.1 205.2 178 177 45.31 8.8 9.1 0 34.9 4878 6058 4641 34.6 4853 6047 4630 -0.3 8 2 2 4872 6058 4629 0.0 20.1 8.9 71.0 160 66 2.4 496 0.019 1.4 3 0.0 0.0 0.00 11.6 0.3 1.8 2.5
39.77 6.63 59.81 71.94 11.89 20.76 53.86 100.00 17.99 13.09 2.53 154.68 20.85 14.1 20.0 1.54 936 1029.7 206.8 177 178 44.77 9.0 9.4 0 34.7 4860 6041 4617 34.0 4822 6000 4588 -0.7 9 3 3 4832 6013 4585 0.0 19.7 9.4 71.0 160 63 2.5 496 0.019 0.6 3 0.0 0.0 0.00 11.7 0.5 1.8 2.2
39.66 6.71 56.32 66.19 12.35 20.02 50.26 100.00 17.54 12.50 2.82 143.45 20.32 12.8 21.5 1.54 935 1027.0 206.2 178 177 46.78 9.6 9.6 0 33.9 4829 6026 4621 33.5 4815 6011 4612 -0.4 2 2 8 NA NA NA NA NA NA NA 156 NA NA NA NA 2.3 0 0.0 0.0 0.00 0.0 0.6 0.0 0.0
39.68 6.87 56.74 66.61 12.55 20.18 50.80 100.00 17.48 12.41 2.82 143.10 20.24 12.8 21.5 1.56 933 1032.0 206.6 177 178 46.51 9.5 9.9 0 34.0 4833 6029 4608 33.5 4807 6001 4584 -0.5 0 0 0 NA NA NA NA NA NA NA 158 NA NA NA NA 1.0 0 0.0 0.0 0.00 0.0 0.6 0.0 0.0
42.23 7.50 58.41 68.30 13.33 20.81 52.96 100.00 17.23 12.04 2.83 141.72 19.92 13.0 20.4 1.55 930 1040.0 208.7 178 177 48.05 10.1 10.4 0 33.1 4795 6000 4557 32.8 4764 5977 4538 -0.3 0 0 0 NA NA NA NA NA NA NA 167 NA NA NA NA 1.3 0 0.0 0.0 0.00 0.0 0.6 0.0 0.0
38.48 7.53 58.36 69.25 14.35 20.57 51.31 100.00 17.87 12.77 3.55 145.56 20.04 14.1 21.6 1.55 935 1044.8 208.0 177 177 48.11 10.2 10.3 0 32.9 4793 6029 4600 32.4 4787 6030 4592 -0.5 0 0 0 NA NA NA NA NA NA NA 156 NA NA NA NA 2.3 0 0.0 0.0 0.00 0.0 0.5 0.0 0.0
39.49 7.53 58.36 69.25 14.35 20.57 51.31 100.00 17.87 12.77 3.55 145.56 20.04 14.1 20.8 1.55 932 1053.8 207.5 178 178 48.13 9.9 10.3 0 32.9 4824 6068 4630 32.0 4795 6050 4607 -0.9 0 0 0 NA NA NA NA NA NA NA 160 NA NA NA NA 0.9 0 0.0 0.0 0.00 0.0 0.6 0.0 0.0

Imputation Process

K Nearest Neighbor Technique

I have adopted the KNN approach for imputation for the current data set using the knnImputation() fruntion from DMwR package. I am using k=10 as a tuning parameter.

ChemicalManProcessImputed <- knnImputation(ChemicalManufacturingProcess, k = 10)

Pre-Processing

Excluding Near Zero Variance Predictors
nZVIndices <- nearZeroVar(ChemicalManProcessImputed)

ChemicalManProcessTransformed <- ChemicalManProcessImputed[,-nZVIndices]
Excluding highly Correlated Predictors
corThresh <- 0.9
tooHigh <- findCorrelation(cor(ChemicalManProcessTransformed), corThresh)
corrPred <- names(ChemicalManProcessTransformed)[tooHigh]
ChemicalManProcessTransformed <- ChemicalManProcessTransformed[,-tooHigh]

Test/Train Split

trainingRows <- createDataPartition(ChemicalManProcessTransformed$Yield, times = 1, p = 0.8, list = FALSE)

train_df <- ChemicalManProcessTransformed[trainingRows,]
test_df <- ChemicalManProcessTransformed[-trainingRows,]

Linear PLS Model

pls_model <- train(
  Yield ~ ., data = train_df, method = "pls",
  center = TRUE,
  scale = TRUE,
  trControl = trainControl("cv", number = 10),
  tuneLength = 25
)

pls_model
## Partial Least Squares 
## 
## 144 samples
##  46 predictor
## 
## No pre-processing
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 131, 128, 130, 130, 129, 130, ... 
## Resampling results across tuning parameters:
## 
##   ncomp  RMSE      Rsquared   MAE     
##    1     1.531690  0.4496446  1.163700
##    2     1.547220  0.4873139  1.119879
##    3     1.607266  0.5376517  1.104752
##    4     1.825444  0.5178039  1.152061
##    5     2.146480  0.4823536  1.240617
##    6     2.416900  0.4635793  1.325782
##    7     2.852780  0.4486778  1.445887
##    8     3.272619  0.4452845  1.567872
##    9     3.659073  0.4409455  1.661615
##   10     3.989016  0.4380995  1.755627
##   11     4.292909  0.4396050  1.831603
##   12     4.487305  0.4395146  1.869397
##   13     4.704699  0.4392074  1.928953
##   14     4.795230  0.4389353  1.947829
##   15     4.910591  0.4395564  1.980380
##   16     5.053330  0.4415422  2.010911
##   17     5.176641  0.4419146  2.040667
##   18     5.266161  0.4396490  2.064457
##   19     5.386007  0.4401243  2.097618
##   20     5.476649  0.4416685  2.120398
##   21     5.627034  0.4423000  2.156865
##   22     5.729360  0.4425671  2.185449
##   23     5.857944  0.4406855  2.222400
##   24     5.955727  0.4371396  2.251753
##   25     5.991281  0.4348859  2.263472
## 
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was ncomp = 1.
pls_predictions <- predict(pls_model, test_df)

results_ <- data.frame(t(postResample(pred = pls_predictions, obs = test_df$Yield))) %>%
  mutate("Model"= "PLS")
  1. Which nonlinear regression model gives the optimal resampling and test set performance?

KNN Model

KNN_Model <- train(
                  Yield ~ ., data = train_df, method = "knn",
                  center = TRUE,
                  scale = TRUE,
                  trControl = trainControl("cv", number = 10),
                  tuneLength = 25)
KNN_Model
## k-Nearest Neighbors 
## 
## 144 samples
##  46 predictor
## 
## No pre-processing
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 130, 128, 129, 130, 129, 128, ... 
## Resampling results across tuning parameters:
## 
##   k   RMSE      Rsquared   MAE     
##    5  1.538830  0.2979078  1.233104
##    7  1.583751  0.2574915  1.262188
##    9  1.591300  0.2514446  1.267891
##   11  1.601359  0.2420973  1.289624
##   13  1.579840  0.2613202  1.268824
##   15  1.606836  0.2413608  1.294699
##   17  1.611544  0.2405870  1.286746
##   19  1.622715  0.2373953  1.290872
##   21  1.624339  0.2362901  1.296138
##   23  1.632503  0.2332327  1.301691
##   25  1.657831  0.2168566  1.338169
##   27  1.669691  0.2151954  1.341896
##   29  1.676987  0.2144434  1.345498
##   31  1.677858  0.2240214  1.350751
##   33  1.684099  0.2291292  1.351920
##   35  1.694858  0.2213519  1.359842
##   37  1.701904  0.2250788  1.367375
##   39  1.711609  0.2208245  1.375639
##   41  1.713360  0.2247125  1.374744
##   43  1.714253  0.2359008  1.373852
##   45  1.718399  0.2485101  1.380568
##   47  1.728350  0.2375636  1.386594
##   49  1.730080  0.2434653  1.389811
##   51  1.741987  0.2280506  1.401164
##   53  1.750291  0.2051428  1.408994
## 
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was k = 5.
KNN_Pred <- predict(KNN_Model, newdata = test_df)

results_ <- data.frame(t(postResample(pred = KNN_Pred, obs = test_df$Yield))) %>%
  mutate("Model"= "KNN") %>% rbind(results_)

MARS Model

MARS_grid <- expand.grid(.degree = 1:2, .nprune = 2:15)

MARS_model <- train(
  Yield ~ ., data = train_df, method = "earth",
  tuneGrid = MARS_grid,
  preProcess = c("center", "scale"),
  trControl = trainControl("cv", number = 10),
  tuneLength = 25
)
MARS_model
## Multivariate Adaptive Regression Spline 
## 
## 144 samples
##  46 predictor
## 
## Pre-processing: centered (46), scaled (46) 
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 130, 130, 129, 130, 129, 129, ... 
## Resampling results across tuning parameters:
## 
##   degree  nprune  RMSE      Rsquared   MAE      
##   1        2      1.452867  0.3930060  1.1473125
##   1        3      1.344280  0.4868924  1.0806599
##   1        4      1.187584  0.5905783  0.9440652
##   1        5      1.188432  0.5856458  0.9360078
##   1        6      1.202950  0.5813013  0.9521411
##   1        7      1.142291  0.6122901  0.9158920
##   1        8      1.159583  0.6145650  0.9199298
##   1        9      1.147710  0.6191827  0.9289759
##   1       10      1.157172  0.6153554  0.9265057
##   1       11      1.158571  0.6159548  0.9339272
##   1       12      1.185477  0.6007300  0.9403314
##   1       13      1.215585  0.5856282  0.9579280
##   1       14      1.189262  0.6031387  0.9457467
##   1       15      1.157069  0.6239886  0.9218104
##   2        2      1.482178  0.3815296  1.1581702
##   2        3      1.284403  0.5278808  1.0342802
##   2        4      1.233108  0.5686280  1.0080982
##   2        5      1.185967  0.5950316  0.9809369
##   2        6      1.286354  0.5442740  1.0237503
##   2        7      1.368844  0.4932049  1.0688890
##   2        8      1.352108  0.5191945  1.0442623
##   2        9      1.353261  0.5214838  1.0526310
##   2       10      1.330361  0.5498477  1.0374128
##   2       11      1.337156  0.5484313  1.0471669
##   2       12      1.346348  0.5475549  1.0524228
##   2       13      1.353769  0.5406293  1.0548767
##   2       14      1.572854  0.5096394  1.1236550
##   2       15      1.569258  0.5126063  1.1256675
## 
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were nprune = 7 and degree = 1.
MARS_predictions <- predict(MARS_model, test_df)

results_ <- data.frame(t(postResample(pred = MARS_predictions, obs = test_df$Yield))) %>%
  mutate("Model"= "MARS") %>% rbind(results_)

SVM Model

SVM_model <- train(
  Yield ~ ., data = train_df, method = "svmRadial",
  center = TRUE,
  scale = TRUE,
  trControl = trainControl(method = "cv"),
  tuneLength = 25
)
SVM_model
## Support Vector Machines with Radial Basis Function Kernel 
## 
## 144 samples
##  46 predictor
## 
## No pre-processing
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 131, 130, 130, 129, 131, 130, ... 
## Resampling results across tuning parameters:
## 
##   C           RMSE      Rsquared   MAE      
##         0.25  1.378402  0.5400946  1.1367177
##         0.50  1.262877  0.5894361  1.0459388
##         1.00  1.165623  0.6394720  0.9645419
##         2.00  1.152515  0.6422550  0.9359212
##         4.00  1.163228  0.6362881  0.9219777
##         8.00  1.169604  0.6266254  0.9333011
##        16.00  1.190450  0.6138222  0.9466976
##        32.00  1.190450  0.6138222  0.9466976
##        64.00  1.190450  0.6138222  0.9466976
##       128.00  1.190450  0.6138222  0.9466976
##       256.00  1.190450  0.6138222  0.9466976
##       512.00  1.190450  0.6138222  0.9466976
##      1024.00  1.190450  0.6138222  0.9466976
##      2048.00  1.190450  0.6138222  0.9466976
##      4096.00  1.190450  0.6138222  0.9466976
##      8192.00  1.190450  0.6138222  0.9466976
##     16384.00  1.190450  0.6138222  0.9466976
##     32768.00  1.190450  0.6138222  0.9466976
##     65536.00  1.190450  0.6138222  0.9466976
##    131072.00  1.190450  0.6138222  0.9466976
##    262144.00  1.190450  0.6138222  0.9466976
##    524288.00  1.190450  0.6138222  0.9466976
##   1048576.00  1.190450  0.6138222  0.9466976
##   2097152.00  1.190450  0.6138222  0.9466976
##   4194304.00  1.190450  0.6138222  0.9466976
## 
## Tuning parameter 'sigma' was held constant at a value of 0.01396929
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were sigma = 0.01396929 and C = 2.
SVM_predictions <- predict(SVM_model, test_df)

results_ <- data.frame(t(postResample(pred = SVM_predictions, obs = test_df$Yield))) %>%
  mutate("Model"= "SVM") %>% rbind(results_)

Neural Network Model

nnet_grid <- expand.grid(.decay = c(0, 0.01, .1), .size = c(1:10), .bag = FALSE)
nnet_maxnwts <- 5 * ncol(train_df) + 5 + 1
nnet_model <- train(
  Yield ~ ., data = train_df, method = "avNNet",
  center = TRUE,
  scale = TRUE,
  tuneGrid = nnet_grid,
  trControl = trainControl(method = "cv"),
  linout = TRUE,
  trace = FALSE,
  MaxNWts = nnet_maxnwts,
  maxit = 500
)

nnet_model
## Model Averaged Neural Network 
## 
## 144 samples
##  46 predictor
## 
## No pre-processing
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 130, 129, 129, 130, 129, 131, ... 
## Resampling results across tuning parameters:
## 
##   decay  size  RMSE      Rsquared    MAE     
##   0.00    1    1.809706  0.08812244  1.480013
##   0.00    2    1.820483  0.08589216  1.497667
##   0.00    3    1.780551  0.15860016  1.455172
##   0.00    4    1.891101  0.10362611  1.526117
##   0.00    5    1.823663  0.14284429  1.498001
##   0.00    6         NaN         NaN       NaN
##   0.00    7         NaN         NaN       NaN
##   0.00    8         NaN         NaN       NaN
##   0.00    9         NaN         NaN       NaN
##   0.00   10         NaN         NaN       NaN
##   0.01    1    1.553301  0.36918045  1.269452
##   0.01    2    1.590486  0.33655573  1.304391
##   0.01    3    1.345266  0.49924923  1.098344
##   0.01    4    1.785037  0.29566943  1.390056
##   0.01    5    1.468346  0.47781605  1.122994
##   0.01    6         NaN         NaN       NaN
##   0.01    7         NaN         NaN       NaN
##   0.01    8         NaN         NaN       NaN
##   0.01    9         NaN         NaN       NaN
##   0.01   10         NaN         NaN       NaN
##   0.10    1    1.496125  0.48701870  1.221730
##   0.10    2    1.413803  0.51602464  1.122862
##   0.10    3    1.846219  0.36080409  1.254734
##   0.10    4    1.689693  0.46744030  1.249126
##   0.10    5    1.924868  0.38450680  1.328834
##   0.10    6         NaN         NaN       NaN
##   0.10    7         NaN         NaN       NaN
##   0.10    8         NaN         NaN       NaN
##   0.10    9         NaN         NaN       NaN
##   0.10   10         NaN         NaN       NaN
## 
## Tuning parameter 'bag' was held constant at a value of FALSE
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were size = 3, decay = 0.01 and bag = FALSE.
nnet_predictions <- predict(nnet_model, test_df)

results_ <- data.frame(t(postResample(pred = nnet_predictions, obs = test_df$Yield))) %>%
  mutate("Model"= "Neural Network") %>% rbind(results_)

Model Summary

results_ %>%
  select(Model, RMSE, Rsquared, MAE) %>%
  arrange(RMSE) %>%
  kable() %>%
  kable_styling()
Model RMSE Rsquared MAE
SVM 1.238321 0.5818865 0.9681929
MARS 1.238899 0.5703493 0.9959592
KNN 1.524593 0.3296098 1.1638750
PLS 1.550276 0.3325869 1.2398936
Neural Network 1.917466 0.1368724 1.5143792

The SVM Model was the best non-linear model.

  1. Which predictors are most important in the optimal nonlinear regression model? Do either the biological or process variables dominate the list? How do the top ten important predictors compare to the top ten predictors from the optimal linear model?

Variable Importance: Non-Linear Model

varImp(SVM_model, 10)
## loess r-squared variable importance
## 
##   only 20 most important variables shown (out of 46)
## 
##                        Overall
## ManufacturingProcess13  100.00
## ManufacturingProcess32   96.61
## BiologicalMaterial06     92.92
## ManufacturingProcess09   88.09
## BiologicalMaterial03     83.39
## ManufacturingProcess36   79.25
## ManufacturingProcess17   78.66
## ManufacturingProcess06   68.82
## ManufacturingProcess11   61.52
## BiologicalMaterial08     60.12
## BiologicalMaterial11     55.75
## BiologicalMaterial01     49.44
## ManufacturingProcess33   47.60
## ManufacturingProcess30   45.36
## BiologicalMaterial09     34.40
## ManufacturingProcess12   29.04
## ManufacturingProcess35   27.96
## BiologicalMaterial10     26.21
## ManufacturingProcess04   24.93
## ManufacturingProcess10   24.15

13 out of 20 most important variables are process related. So in a way they dominate the list over biological variables.

Variable Importance: Linear Model

varImp(pls_model, 10)
## pls variable importance
## 
##   only 20 most important variables shown (out of 46)
## 
##                        Overall
## ManufacturingProcess32  100.00
## ManufacturingProcess09   94.85
## ManufacturingProcess36   90.51
## ManufacturingProcess13   89.51
## BiologicalMaterial06     82.19
## BiologicalMaterial03     77.84
## BiologicalMaterial08     76.45
## ManufacturingProcess17   73.17
## ManufacturingProcess11   71.46
## ManufacturingProcess06   70.82
## ManufacturingProcess33   70.00
## BiologicalMaterial01     68.23
## BiologicalMaterial11     65.26
## ManufacturingProcess12   54.55
## ManufacturingProcess28   47.91
## ManufacturingProcess10   46.64
## ManufacturingProcess30   43.46
## ManufacturingProcess04   39.14
## ManufacturingProcess02   39.03
## BiologicalMaterial10     38.78

Observations

  • ManufacturingProcess13 is the most important variable in the SVM model, whereas ManufacturingProcess32 shows up as most important in the PLS model.
  • For both the models, process variables dominate the top 10 variables list.
  • Most of the variables in top 10 overlap in both the models.
  1. Explore the relationships between the top predictors and the response for the predictors that are unique to the optimal nonlinear regression model. Do these plots reveal intuition about the biological or process predictors and their relationship with yield?
train_imp_df <- train_df %>% 
              dplyr::select(ManufacturingProcess13, ManufacturingProcess32, BiologicalMaterial06, 
                            ManufacturingProcess09, BiologicalMaterial03, ManufacturingProcess36, 
                            ManufacturingProcess17, ManufacturingProcess06, ManufacturingProcess11, 
                            BiologicalMaterial08, Yield)

correlations <- cor(train_imp_df)
corrplot::corrplot(correlations, order = "FPC", diag = TRUE)

  • The correlation plot illustrates some insight to these important variables.
  • Yield has a mostly positive correlation with many of the processes but with only Manufacturing processes have Yield with the strongest negative correlation seen in top variables.
  • Some very high correlations is noticed which it may implicate for possible issues of multi-collinearity.