rm(list = ls())
1. Se van a comprarar dos softwares para la autocorrelación espacial al calcular Indice de Moran
library(readxl)
df <- read_excel("d:/Users/Janus/Documents/Computacion estadistica/BD_MODELADO.xlsx")
library(DT)
Registered S3 method overwritten by 'htmlwidgets':
method from
print.htmlwidget tools:rstudio
Importamos datos de modelado
datatable(df, class='cell-border stripe', filter='top', options = list(pageLength=10,autoWidth=T))
NA
1.1 Parte I. Muestreo Espacial (Datos reales)
Profundidad de 75 cm
A continuación se presentan el calculo del Indice de Moran de los datos modelados de Conductividad Electrica Aparente (CEA) a 75 y 150 cm de profundidad, así como de NDVI. Los datos originales se encuentran disponibles en la entrada “E5. CE” de Rpubs.
Todas las variables analizadas presentan un p valor de 0, con lo cual se rechaza la hipotesis nula de que los datos presentan autocorrelación espacial cero.
Se adjuntan los mapas de las diferentes variables
1.2 Mapa CEA 75 cm
library(ggplot2)
ggplot(df, aes(x = Avg_X_MCB, y=Avg_Y_MCE, colour=Avg_CEa_07))+
geom_point(size = 4)+
scale_color_continuous(type = 'viridis')

1.3 Mapa CEA 150 cm
ggplot(df, aes(x = Avg_X_MCB, y=Avg_Y_MCE, colour=Avg_CEa_15))+
geom_point(size = 4)+
scale_color_continuous(type = 'viridis')

ggplot(df, aes(x = Avg_X_MCB, y=Avg_Y_MCE, colour=NDVI))+
geom_point(size = 4, shape = 15)+
scale_color_continuous(type = 'viridis')

2 INDICE DE MORAN
library(ape)
t.dists<-as.matrix(dist(cbind(df$Avg_X_MCB, df$Avg_Y_MCE)))
dim(t.dists)
[1] 313 313
t.dists.inv<-1/t.dists
t.dists.inv[is.infinite(t.dists.inv)] <- 0
diag(t.dists.inv)<-0
t.dists.inv[1:5, 1:5]
1 2 3 4 5
1 0.00000000 0.19320482 0.02207833 0.05403989 0.04558763
2 0.19320482 0.00000000 0.02476496 0.04650837 0.05738726
3 0.02207833 0.02476496 0.00000000 0.01665161 0.03039597
4 0.05403989 0.04650837 0.01665161 0.00000000 0.03392139
5 0.04558763 0.05738726 0.03039597 0.03392139 0.00000000
2.1 Indice moran de conductividad electrica a 70 cm de profundidad
I.Moran_70<-Moran.I(df$Avg_CEa_07, t.dists.inv); I.Moran_70
$observed
[1] 0.2687468
$expected
[1] -0.003205128
$sd
[1] 0.004665906
$p.value
[1] 0
#2.2 Indice moran de conductividad electrica a 150 cm de profundidad
I.Moran_150<-Moran.I(df$Avg_CEa_15, t.dists.inv); I.Moran_150
$observed
[1] 0.160951
$expected
[1] -0.003205128
$sd
[1] 0.00465455
$p.value
[1] 0
2.3 Indice moran NVDI
I.Moran_NDVI<-Moran.I(df$NDVI, t.dists.inv); I.Moran_NDVI
$observed
[1] 0.09750403
$expected
[1] -0.003205128
$sd
[1] 0.004644979
$p.value
[1] 0
LS0tDQp0aXRsZTogIlRhcmVhIE1vZGVsYWNpb24gQl9Nb2RlbGFkb3MiDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQoNCmBgYHtyfQ0Kcm0obGlzdCA9IGxzKCkpDQoNCmBgYA0KIyAxLiBTZSB2YW4gYSBjb21wcmFyYXIgZG9zIHNvZnR3YXJlcyBwYXJhIGxhIGF1dG9jb3JyZWxhY2nDs24gZXNwYWNpYWwgYWwgY2FsY3VsYXIgSW5kaWNlIGRlIE1vcmFuDQoNCg0KDQpgYGB7cn0NCmxpYnJhcnkocmVhZHhsKQ0KZGYgPC0gcmVhZF9leGNlbCgiZDovVXNlcnMvSmFudXMvRG9jdW1lbnRzL0NvbXB1dGFjaW9uIGVzdGFkaXN0aWNhL0JEX01PREVMQURPLnhsc3giKQ0KbGlicmFyeShEVCkNCmBgYA0KSW1wb3J0YW1vcyBkYXRvcyBkZSBtb2RlbGFkbw0KDQpgYGB7cn0NCmRhdGF0YWJsZShkZiwgY2xhc3M9J2NlbGwtYm9yZGVyIHN0cmlwZScsIGZpbHRlcj0ndG9wJywgb3B0aW9ucyA9IGxpc3QocGFnZUxlbmd0aD0xMCxhdXRvV2lkdGg9VCkpDQoNCmBgYA0KIyAxLjEgUGFydGUgSS4gTXVlc3RyZW8gRXNwYWNpYWwgKERhdG9zIHJlYWxlcykNCg0KUHJvZnVuZGlkYWQgZGUgNzUgY20NCg0KQSBjb250aW51YWNpw7NuIHNlIHByZXNlbnRhbiBlbCBjYWxjdWxvIGRlbCBJbmRpY2UgZGUgTW9yYW4gZGUgbG9zIGRhdG9zIG1vZGVsYWRvcyBkZSBDb25kdWN0aXZpZGFkIEVsZWN0cmljYSBBcGFyZW50ZSAoQ0VBKSBhIDc1IHkgMTUwIGNtIGRlIHByb2Z1bmRpZGFkLCBhc8OtIGNvbW8gZGUgTkRWSS4gTG9zIGRhdG9zIG9yaWdpbmFsZXMgc2UgZW5jdWVudHJhbiBkaXNwb25pYmxlcyBlbiBsYSBlbnRyYWRhIOKAnEU1LiBDReKAnSBkZSBScHVicy4NCg0KVG9kYXMgbGFzIHZhcmlhYmxlcyBhbmFsaXphZGFzIHByZXNlbnRhbiB1biBwIHZhbG9yIGRlIDAsIGNvbiBsbyBjdWFsIHNlIHJlY2hhemEgbGEgaGlwb3Rlc2lzIG51bGEgZGUgcXVlIGxvcyBkYXRvcyBwcmVzZW50YW4gYXV0b2NvcnJlbGFjacOzbiBlc3BhY2lhbCBjZXJvLg0KDQpTZSBhZGp1bnRhbiBsb3MgbWFwYXMgZGUgbGFzIGRpZmVyZW50ZXMgdmFyaWFibGVzDQoNCiMgMS4yIE1hcGEgQ0VBIDc1IGNtDQoNCmBgYHtyfQ0KbGlicmFyeShnZ3Bsb3QyKQ0KDQpnZ3Bsb3QoZGYsIGFlcyh4ID0gQXZnX1hfTUNCLCB5PUF2Z19ZX01DRSwgY29sb3VyPUF2Z19DRWFfMDcpKSsNCiAgIGdlb21fcG9pbnQoc2l6ZSA9IDQpKw0KICAgc2NhbGVfY29sb3JfY29udGludW91cyh0eXBlID0gJ3ZpcmlkaXMnKQ0KDQpgYGANCiMgMS4zIE1hcGEgQ0VBIDE1MCBjbQ0KDQoNCg0KDQpgYGB7cn0NCmdncGxvdChkZiwgYWVzKHggPSBBdmdfWF9NQ0IsIHk9QXZnX1lfTUNFLCBjb2xvdXI9QXZnX0NFYV8xNSkpKw0KICAgZ2VvbV9wb2ludChzaXplID0gNCkrDQogICBzY2FsZV9jb2xvcl9jb250aW51b3VzKHR5cGUgPSAndmlyaWRpcycpDQpgYGANCmBgYHtyfQ0KZ2dwbG90KGRmLCBhZXMoeCA9IEF2Z19YX01DQiwgeT1BdmdfWV9NQ0UsIGNvbG91cj1ORFZJKSkrDQogICBnZW9tX3BvaW50KHNpemUgPSA0LCBzaGFwZSA9IDE1KSsNCiAgIHNjYWxlX2NvbG9yX2NvbnRpbnVvdXModHlwZSA9ICd2aXJpZGlzJykNCmBgYA0KIyAyIElORElDRSBERSBNT1JBTg0KDQpgYGB7cn0NCmxpYnJhcnkoYXBlKQ0KdC5kaXN0czwtYXMubWF0cml4KGRpc3QoY2JpbmQoZGYkQXZnX1hfTUNCLCBkZiRBdmdfWV9NQ0UpKSkNCmRpbSh0LmRpc3RzKQ0KYGBgDQoNCg0KYGBge3J9DQp0LmRpc3RzLmludjwtMS90LmRpc3RzDQp0LmRpc3RzLmludltpcy5pbmZpbml0ZSh0LmRpc3RzLmludildIDwtIDANCmRpYWcodC5kaXN0cy5pbnYpPC0wDQp0LmRpc3RzLmludlsxOjUsIDE6NV0NCmBgYA0KDQojIDIuMSBJbmRpY2UgbW9yYW4gZGUgY29uZHVjdGl2aWRhZCBlbGVjdHJpY2EgYSA3MCBjbSBkZSBwcm9mdW5kaWRhZA0KYGBge3J9DQpJLk1vcmFuXzcwPC1Nb3Jhbi5JKGRmJEF2Z19DRWFfMDcsIHQuZGlzdHMuaW52KTsgSS5Nb3Jhbl83MA0KDQpgYGANCiMyLjIgSW5kaWNlIG1vcmFuIGRlIGNvbmR1Y3RpdmlkYWQgZWxlY3RyaWNhIGEgMTUwIGNtIGRlIHByb2Z1bmRpZGFkDQpgYGB7cn0NCkkuTW9yYW5fMTUwPC1Nb3Jhbi5JKGRmJEF2Z19DRWFfMTUsIHQuZGlzdHMuaW52KTsgSS5Nb3Jhbl8xNTANCg0KYGBgDQojIDIuMyBJbmRpY2UgbW9yYW4gTlZESQ0KYGBge3J9DQpJLk1vcmFuX05EVkk8LU1vcmFuLkkoZGYkTkRWSSwgdC5kaXN0cy5pbnYpOyBJLk1vcmFuX05EVkkNCg0KYGBgDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0K