rm(list = ls())

1. Se van a comprarar dos softwares para la autocorrelación espacial al calcular Indice de Moran

library(readxl)
df <- read_excel("d:/Users/Janus/Documents/Computacion estadistica/BD_MODELADO.xlsx")
library(DT)
Registered S3 method overwritten by 'htmlwidgets':
  method           from         
  print.htmlwidget tools:rstudio

Importamos datos de modelado

datatable(df, class='cell-border stripe', filter='top', options = list(pageLength=10,autoWidth=T))

NA

1.1 Parte I. Muestreo Espacial (Datos reales)

Profundidad de 75 cm

A continuación se presentan el calculo del Indice de Moran de los datos modelados de Conductividad Electrica Aparente (CEA) a 75 y 150 cm de profundidad, así como de NDVI. Los datos originales se encuentran disponibles en la entrada “E5. CE” de Rpubs.

Todas las variables analizadas presentan un p valor de 0, con lo cual se rechaza la hipotesis nula de que los datos presentan autocorrelación espacial cero.

Se adjuntan los mapas de las diferentes variables

1.2 Mapa CEA 75 cm

library(ggplot2)

ggplot(df, aes(x = Avg_X_MCB, y=Avg_Y_MCE, colour=Avg_CEa_07))+
   geom_point(size = 4)+
   scale_color_continuous(type = 'viridis')

1.3 Mapa CEA 150 cm

ggplot(df, aes(x = Avg_X_MCB, y=Avg_Y_MCE, colour=Avg_CEa_15))+
   geom_point(size = 4)+
   scale_color_continuous(type = 'viridis')

ggplot(df, aes(x = Avg_X_MCB, y=Avg_Y_MCE, colour=NDVI))+
   geom_point(size = 4, shape = 15)+
   scale_color_continuous(type = 'viridis')

2 INDICE DE MORAN

library(ape)
t.dists<-as.matrix(dist(cbind(df$Avg_X_MCB, df$Avg_Y_MCE)))
dim(t.dists)
[1] 313 313
t.dists.inv<-1/t.dists
t.dists.inv[is.infinite(t.dists.inv)] <- 0
diag(t.dists.inv)<-0
t.dists.inv[1:5, 1:5]
           1          2          3          4          5
1 0.00000000 0.19320482 0.02207833 0.05403989 0.04558763
2 0.19320482 0.00000000 0.02476496 0.04650837 0.05738726
3 0.02207833 0.02476496 0.00000000 0.01665161 0.03039597
4 0.05403989 0.04650837 0.01665161 0.00000000 0.03392139
5 0.04558763 0.05738726 0.03039597 0.03392139 0.00000000

2.1 Indice moran de conductividad electrica a 70 cm de profundidad

I.Moran_70<-Moran.I(df$Avg_CEa_07, t.dists.inv); I.Moran_70
$observed
[1] 0.2687468

$expected
[1] -0.003205128

$sd
[1] 0.004665906

$p.value
[1] 0

#2.2 Indice moran de conductividad electrica a 150 cm de profundidad

I.Moran_150<-Moran.I(df$Avg_CEa_15, t.dists.inv); I.Moran_150
$observed
[1] 0.160951

$expected
[1] -0.003205128

$sd
[1] 0.00465455

$p.value
[1] 0

2.3 Indice moran NVDI

I.Moran_NDVI<-Moran.I(df$NDVI, t.dists.inv); I.Moran_NDVI
$observed
[1] 0.09750403

$expected
[1] -0.003205128

$sd
[1] 0.004644979

$p.value
[1] 0
LS0tDQp0aXRsZTogIlRhcmVhIE1vZGVsYWNpb24gQl9Nb2RlbGFkb3MiDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQoNCmBgYHtyfQ0Kcm0obGlzdCA9IGxzKCkpDQoNCmBgYA0KIyAxLiBTZSB2YW4gYSBjb21wcmFyYXIgZG9zIHNvZnR3YXJlcyBwYXJhIGxhIGF1dG9jb3JyZWxhY2nDs24gZXNwYWNpYWwgYWwgY2FsY3VsYXIgSW5kaWNlIGRlIE1vcmFuDQoNCg0KDQpgYGB7cn0NCmxpYnJhcnkocmVhZHhsKQ0KZGYgPC0gcmVhZF9leGNlbCgiZDovVXNlcnMvSmFudXMvRG9jdW1lbnRzL0NvbXB1dGFjaW9uIGVzdGFkaXN0aWNhL0JEX01PREVMQURPLnhsc3giKQ0KbGlicmFyeShEVCkNCmBgYA0KSW1wb3J0YW1vcyBkYXRvcyBkZSBtb2RlbGFkbw0KDQpgYGB7cn0NCmRhdGF0YWJsZShkZiwgY2xhc3M9J2NlbGwtYm9yZGVyIHN0cmlwZScsIGZpbHRlcj0ndG9wJywgb3B0aW9ucyA9IGxpc3QocGFnZUxlbmd0aD0xMCxhdXRvV2lkdGg9VCkpDQoNCmBgYA0KIyAxLjEgUGFydGUgSS4gTXVlc3RyZW8gRXNwYWNpYWwgKERhdG9zIHJlYWxlcykNCg0KUHJvZnVuZGlkYWQgZGUgNzUgY20NCg0KQSBjb250aW51YWNpw7NuIHNlIHByZXNlbnRhbiBlbCBjYWxjdWxvIGRlbCBJbmRpY2UgZGUgTW9yYW4gZGUgbG9zIGRhdG9zIG1vZGVsYWRvcyBkZSBDb25kdWN0aXZpZGFkIEVsZWN0cmljYSBBcGFyZW50ZSAoQ0VBKSBhIDc1IHkgMTUwIGNtIGRlIHByb2Z1bmRpZGFkLCBhc8OtIGNvbW8gZGUgTkRWSS4gTG9zIGRhdG9zIG9yaWdpbmFsZXMgc2UgZW5jdWVudHJhbiBkaXNwb25pYmxlcyBlbiBsYSBlbnRyYWRhIOKAnEU1LiBDReKAnSBkZSBScHVicy4NCg0KVG9kYXMgbGFzIHZhcmlhYmxlcyBhbmFsaXphZGFzIHByZXNlbnRhbiB1biBwIHZhbG9yIGRlIDAsIGNvbiBsbyBjdWFsIHNlIHJlY2hhemEgbGEgaGlwb3Rlc2lzIG51bGEgZGUgcXVlIGxvcyBkYXRvcyBwcmVzZW50YW4gYXV0b2NvcnJlbGFjacOzbiBlc3BhY2lhbCBjZXJvLg0KDQpTZSBhZGp1bnRhbiBsb3MgbWFwYXMgZGUgbGFzIGRpZmVyZW50ZXMgdmFyaWFibGVzDQoNCiMgMS4yIE1hcGEgQ0VBIDc1IGNtDQoNCmBgYHtyfQ0KbGlicmFyeShnZ3Bsb3QyKQ0KDQpnZ3Bsb3QoZGYsIGFlcyh4ID0gQXZnX1hfTUNCLCB5PUF2Z19ZX01DRSwgY29sb3VyPUF2Z19DRWFfMDcpKSsNCiAgIGdlb21fcG9pbnQoc2l6ZSA9IDQpKw0KICAgc2NhbGVfY29sb3JfY29udGludW91cyh0eXBlID0gJ3ZpcmlkaXMnKQ0KDQpgYGANCiMgMS4zIE1hcGEgQ0VBIDE1MCBjbQ0KDQoNCg0KDQpgYGB7cn0NCmdncGxvdChkZiwgYWVzKHggPSBBdmdfWF9NQ0IsIHk9QXZnX1lfTUNFLCBjb2xvdXI9QXZnX0NFYV8xNSkpKw0KICAgZ2VvbV9wb2ludChzaXplID0gNCkrDQogICBzY2FsZV9jb2xvcl9jb250aW51b3VzKHR5cGUgPSAndmlyaWRpcycpDQpgYGANCmBgYHtyfQ0KZ2dwbG90KGRmLCBhZXMoeCA9IEF2Z19YX01DQiwgeT1BdmdfWV9NQ0UsIGNvbG91cj1ORFZJKSkrDQogICBnZW9tX3BvaW50KHNpemUgPSA0LCBzaGFwZSA9IDE1KSsNCiAgIHNjYWxlX2NvbG9yX2NvbnRpbnVvdXModHlwZSA9ICd2aXJpZGlzJykNCmBgYA0KIyAyIElORElDRSBERSBNT1JBTg0KDQpgYGB7cn0NCmxpYnJhcnkoYXBlKQ0KdC5kaXN0czwtYXMubWF0cml4KGRpc3QoY2JpbmQoZGYkQXZnX1hfTUNCLCBkZiRBdmdfWV9NQ0UpKSkNCmRpbSh0LmRpc3RzKQ0KYGBgDQoNCg0KYGBge3J9DQp0LmRpc3RzLmludjwtMS90LmRpc3RzDQp0LmRpc3RzLmludltpcy5pbmZpbml0ZSh0LmRpc3RzLmludildIDwtIDANCmRpYWcodC5kaXN0cy5pbnYpPC0wDQp0LmRpc3RzLmludlsxOjUsIDE6NV0NCmBgYA0KDQojIDIuMSBJbmRpY2UgbW9yYW4gZGUgY29uZHVjdGl2aWRhZCBlbGVjdHJpY2EgYSA3MCBjbSBkZSBwcm9mdW5kaWRhZA0KYGBge3J9DQpJLk1vcmFuXzcwPC1Nb3Jhbi5JKGRmJEF2Z19DRWFfMDcsIHQuZGlzdHMuaW52KTsgSS5Nb3Jhbl83MA0KDQpgYGANCiMyLjIgSW5kaWNlIG1vcmFuIGRlIGNvbmR1Y3RpdmlkYWQgZWxlY3RyaWNhIGEgMTUwIGNtIGRlIHByb2Z1bmRpZGFkDQpgYGB7cn0NCkkuTW9yYW5fMTUwPC1Nb3Jhbi5JKGRmJEF2Z19DRWFfMTUsIHQuZGlzdHMuaW52KTsgSS5Nb3Jhbl8xNTANCg0KYGBgDQojIDIuMyBJbmRpY2UgbW9yYW4gTlZESQ0KYGBge3J9DQpJLk1vcmFuX05EVkk8LU1vcmFuLkkoZGYkTkRWSSwgdC5kaXN0cy5pbnYpOyBJLk1vcmFuX05EVkkNCg0KYGBgDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0K