knitr::opts_chunk$set(echo = TRUE)
rm(list=ls())
library(readxl)
Datos_NaEl<-Base_de_datos_Salinidad_Brassinoesteroides_1_ <- read_excel("d:/Users/Janus/Documents/Fisiologia vegetal basica/Base de datos Salinidad + Brassinoesteroides.xlsx")
Datos_NaEl
m1 <- aov(Temp~Trat, data = Datos_NaEl)
anova(m1)
Analysis of Variance Table
Response: Temp
Df Sum Sq Mean Sq F value Pr(>F)
Trat 3 10.9269 3.6423 6.1322 0.009024 **
Residuals 12 7.1275 0.5940
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
shapiro.test(resid(m1))
Shapiro-Wilk normality test
data: resid(m1)
W = 0.93912, p-value = 0.3384
library(car)
library(carData)
leveneTest(Datos_NaEl$Temp~Datos_NaEl$Trat, center=mean)
group coerced to factor.
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 0.83 0.5026
12
library(agricolae)
library(dplyr)
m1tukey <-HSD.test(Datos_NaEl$Temp,Datos_NaEl$Trat, 12, 0.5940, alpha = 0.05)
m1tukey
$statistics
MSerror Df Mean CV MSD
0.594 12 17.76875 4.337469 1.617983
$parameters
test name.t ntr StudentizedRange alpha
Tukey Datos_NaEl$Trat 4 4.19866 0.05
$means
Datos_NaEl$Temp std r Min Max Q25 Q50 Q75
N0B0 17.400 0.4546061 4 16.8 17.9 17.250 17.45 17.600
N0B1 17.450 0.7767453 4 16.5 18.4 17.175 17.45 17.725
N1B0 19.175 0.9464847 4 18.4 20.5 18.550 18.90 19.525
N1B1 17.050 0.8185353 4 16.3 17.9 16.375 17.00 17.675
$comparison
NULL
$groups
Datos_NaEl$Temp groups
N1B0 19.175 a
N0B1 17.450 b
N0B0 17.400 b
N1B1 17.050 b
attr(,"class")
[1] "group"
datos de área foliar en adelante.
m10 <- aov(E_Abierto~Trat, data = Datos_NaEl)
anova(m10)
Analysis of Variance Table
Response: E_Abierto
Df Sum Sq Mean Sq F value Pr(>F)
Trat 3 307.69 102.563 57.918 2.072e-07 ***
Residuals 12 21.25 1.771
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
shapiro.test(resid(m10))
Shapiro-Wilk normality test
data: resid(m10)
W = 0.95234, p-value = 0.5277
library(car)
library(carData)
m10var<-leveneTest(Datos_NaEl$E_Abierto~Datos_NaEl$Trat, center=mean)
group coerced to factor.
m10var
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 0.1134 0.9506
12
library(agricolae)
library(dplyr)
m10tukey <-HSD.test(Datos_NaEl$E_Abierto,Datos_NaEl$Trat, 12, 1.771, alpha = 0.05)
m10tukey
$statistics
MSerror Df Mean CV MSD
1.771 12 14.0625 9.46339 2.793766
$parameters
test name.t ntr StudentizedRange alpha
Tukey Datos_NaEl$Trat 4 4.19866 0.05
$means
Datos_NaEl$E_Abierto std r Min Max Q25 Q50 Q75
N0B0 17.25 1.500000 4 15 18 17.25 18.0 18.00
N0B1 16.25 1.258306 4 15 18 15.75 16.0 16.50
N1B0 6.50 1.290994 4 5 8 5.75 6.5 7.25
N1B1 16.25 1.258306 4 15 18 15.75 16.0 16.50
$comparison
NULL
$groups
Datos_NaEl$E_Abierto groups
N0B0 17.25 a
N0B1 16.25 a
N1B1 16.25 a
N1B0 6.50 b
attr(,"class")
[1] "group"
m11<- aov(E_Cerrado~Trat, data = Datos_NaEl)
anova(m11)
Analysis of Variance Table
Response: E_Cerrado
Df Sum Sq Mean Sq F value Pr(>F)
Trat 3 39.188 13.0625 7.9367 0.003504 **
Residuals 12 19.750 1.6458
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
shapiro.test(resid(m11))
Shapiro-Wilk normality test
data: resid(m11)
W = 0.89228, p-value = 0.06054
library(car)
library(carData)
m11var<-leveneTest(Datos_NaEl$E_Cerrado~Datos_NaEl$Trat, center=mean)
group coerced to factor.
m11var
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 0.55 0.6577
12
library(agricolae)
library(dplyr)
m11tukey <-HSD.test(Datos_NaEl$E_Cerrado,Datos_NaEl$Trat, 12, 1.6458, alpha = 0.05)
m11tukey
$statistics
MSerror Df Mean CV MSD
1.6458 12 25.0625 5.118753 2.693204
$parameters
test name.t ntr StudentizedRange alpha
Tukey Datos_NaEl$Trat 4 4.19866 0.05
$means
Datos_NaEl$E_Cerrado std r Min Max Q25 Q50 Q75
N0B0 24.50 1.290994 4 23 26 23.75 24.5 25.25
N0B1 26.50 1.000000 4 25 27 26.50 27.0 27.00
N1B0 22.75 1.707825 4 21 25 21.75 22.5 23.50
N1B1 26.50 1.000000 4 25 27 26.50 27.0 27.00
$comparison
NULL
$groups
Datos_NaEl$E_Cerrado groups
N0B1 26.50 a
N1B1 26.50 a
N0B0 24.50 ab
N1B0 22.75 b
attr(,"class")
[1] "group"
m12 <- aov(E_Total~Trat, data = Datos_NaEl)
anova(m12)
Analysis of Variance Table
Response: E_Total
Df Sum Sq Mean Sq F value Pr(>F)
Trat 3 522.75 174.250 48.628 5.466e-07 ***
Residuals 12 43.00 3.583
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
shapiro.test(resid(m12))
Shapiro-Wilk normality test
data: resid(m12)
W = 0.94324, p-value = 0.3906
library(car)
library(carData)
m12var<-leveneTest(Datos_NaEl$E_Total~Datos_NaEl$Trat, center=mean)
group coerced to factor.
m12var
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 0.6168 0.6172
12
library(agricolae)
library(dplyr)
m12tukey <-HSD.test(Datos_NaEl$E_Total, Datos_NaEl$Trat, 12, 3.583, alpha = 0.05)
m12tukey
$statistics
MSerror Df Mean CV MSD
3.583 12 39.125 4.838036 3.973783
$parameters
test name.t ntr StudentizedRange alpha
Tukey Datos_NaEl$Trat 4 4.19866 0.05
$means
Datos_NaEl$E_Total std r Min Max Q25 Q50 Q75
N0B0 41.75 2.629956 4 38 44 41.00 42.5 43.25
N0B1 42.75 1.707825 4 41 45 41.75 42.5 43.50
N1B0 29.25 1.258306 4 28 31 28.75 29.0 29.50
N1B1 42.75 1.707825 4 41 45 41.75 42.5 43.50
$comparison
NULL
$groups
Datos_NaEl$E_Total groups
N0B1 42.75 a
N1B1 42.75 a
N0B0 41.75 a
N1B0 29.25 b
attr(,"class")
[1] "group"
m40<- aov(Porcentaje_EA~Trat, data = Datos_NaEl)
anova(m40)
Analysis of Variance Table
Response: Porcentaje_EA
Df Sum Sq Mean Sq F value Pr(>F)
Trat 3 880.50 293.499 40.142 1.559e-06 ***
Residuals 12 87.74 7.312
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
shapiro.test(resid(m40))
Shapiro-Wilk normality test
data: resid(m40)
W = 0.96831, p-value = 0.8106
kruska40<-kruskal(Datos_NaEl$Porcentaje_EA, Datos_NaEl$Trat, alpha = 0.05)
kruska40
$statistics
Chisq Df p.chisq t.value MSD
11.78254 3 0.008166436 2.178813 3.786895
$parameters
test p.ajusted name.t ntr alpha
Kruskal-Wallis none Datos_NaEl$Trat 4 0.05
$means
Datos_NaEl.Porcentaje_EA rank std r Min Max Q25
N0B0 41.27510 14.00 1.440437 4 39.47368 42.85714 40.55024
N0B1 37.98699 8.75 1.905990 4 35.71429 40.00000 36.83555
N1B0 22.23403 2.50 4.461596 4 17.85714 27.58621 18.98041
N1B1 37.98699 8.75 1.905990 4 35.71429 40.00000 36.83555
Q50 Q75
N0B0 41.38478 42.10963
N0B1 38.11685 39.26829
N1B0 21.74638 25.00000
N1B1 38.11685 39.26829
$comparison
NULL
$groups
Datos_NaEl$Porcentaje_EA groups
N0B0 14.00 a
N0B1 8.75 b
N1B1 8.75 b
N1B0 2.50 c
attr(,"class")
[1] "group"
m50<- aov(EA_EC~Trat, data = Datos_NaEl)
anova(m50)
Analysis of Variance Table
Response: EA_EC
Df Sum Sq Mean Sq F value Pr(>F)
Trat 3 0.39867 0.132889 43.479 1.01e-06 ***
Residuals 12 0.03668 0.003056
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
shapiro.test(resid(m50))
Shapiro-Wilk normality test
data: resid(m50)
W = 0.93985, p-value = 0.3471
m50var<-leveneTest(Datos_NaEl$EA_EC~Datos_NaEl$Trat, center=mean)
group coerced to factor.
m50var
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 1.3273 0.3113
12
m50tukey <-HSD.test(Datos_NaEl$EA_EC,Datos_NaEl$Trat, 12, 2.647, alpha = 0.05)
m50tukey
$statistics
MSerror Df Mean CV MSD
2.647 12 0.5550398 293.125 3.415527
$parameters
test name.t ntr StudentizedRange alpha
Tukey Datos_NaEl$Trat 4 4.19866 0.05
$means
Datos_NaEl$EA_EC std r Min Max Q25 Q50
N0B0 0.7036204 0.04160960 4 0.6521739 0.7500000 0.6822742 0.7061538
N0B1 0.6137037 0.04940802 4 0.5555556 0.6666667 0.5833333 0.6162963
N1B0 0.2891314 0.07491229 4 0.2173913 0.3809524 0.2343478 0.2790909
N1B1 0.6137037 0.04940802 4 0.5555556 0.6666667 0.5833333 0.6162963
Q75
N0B0 0.7275000
N0B1 0.6466667
N1B0 0.3338745
N1B1 0.6466667
$comparison
NULL
$groups
Datos_NaEl$EA_EC groups
N0B0 0.7036204 a
N0B1 0.6137037 a
N1B1 0.6137037 a
N1B0 0.2891314 a
attr(,"class")
[1] "group"
kruska50<-kruskal(Datos_NaEl$EA_EC, Datos_NaEl$Trat, alpha = 0.05)
kruska50
$statistics
Chisq Df p.chisq t.value MSD
11.78254 3 0.008166436 2.178813 3.786895
$parameters
test p.ajusted name.t ntr alpha
Kruskal-Wallis none Datos_NaEl$Trat 4 0.05
$means
Datos_NaEl.EA_EC rank std r Min Max Q25
N0B0 0.7036204 14.00 0.04160960 4 0.6521739 0.7500000 0.6822742
N0B1 0.6137037 8.75 0.04940802 4 0.5555556 0.6666667 0.5833333
N1B0 0.2891314 2.50 0.07491229 4 0.2173913 0.3809524 0.2343478
N1B1 0.6137037 8.75 0.04940802 4 0.5555556 0.6666667 0.5833333
Q50 Q75
N0B0 0.7061538 0.7275000
N0B1 0.6162963 0.6466667
N1B0 0.2790909 0.3338745
N1B1 0.6162963 0.6466667
$comparison
NULL
$groups
Datos_NaEl$EA_EC groups
N0B0 14.00 a
N0B1 8.75 b
N1B1 8.75 b
N1B0 2.50 c
attr(,"class")
[1] "group"
m13<- aov(CRC~Trat, data = Datos_NaEl)
anova(m13)
Analysis of Variance Table
Response: CRC
Df Sum Sq Mean Sq F value Pr(>F)
Trat 3 353.15 117.715 44.47 8.93e-07 ***
Residuals 12 31.77 2.647
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
shapiro.test(resid(m13))
Shapiro-Wilk normality test
data: resid(m13)
W = 0.97622, p-value = 0.9265
library(car)
library(carData)
m13var<-leveneTest(Datos_NaEl$CRC~Datos_NaEl$Trat, center=mean)
group coerced to factor.
m13var
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 0.4953 0.6923
12
library(agricolae)
library(dplyr)
m13tukey <-HSD.test(Datos_NaEl$CRC,Datos_NaEl$Trat, 12, 2.647, alpha = 0.05)
m13tukey
$statistics
MSerror Df Mean CV MSD
2.647 12 30.875 5.269507 3.415527
$parameters
test name.t ntr StudentizedRange alpha
Tukey Datos_NaEl$Trat 4 4.19866 0.05
$means
Datos_NaEl$CRC std r Min Max Q25 Q50 Q75
N0B0 34.550 1.438749 4 32.9 35.9 33.575 34.70 35.675
N0B1 34.300 1.009950 4 33.0 35.1 33.750 34.55 35.100
N1B0 22.975 1.936276 4 20.2 24.4 22.375 23.65 24.250
N1B1 31.675 1.936276 4 30.1 34.5 30.775 31.05 31.950
$comparison
NULL
$groups
Datos_NaEl$CRC groups
N0B0 34.550 a
N0B1 34.300 a
N1B1 31.675 a
N1B0 22.975 b
attr(,"class")
[1] "group"
m20<- aov(PA_NHojas~Trat, data = Datos_NaEl)
anova(m20)
Analysis of Variance Table
Response: PA_NHojas
Df Sum Sq Mean Sq F value Pr(>F)
Trat 3 3.6875 1.2292 3.9333 0.03626 *
Residuals 12 3.7500 0.3125
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#1.2 Pueba normaliada para NH PA
shapiro.test(resid(m20))
Shapiro-Wilk normality test
data: resid(m20)
W = 0.76781, p-value = 0.00105
library(car)
library(carData)
m20var<-leveneTest(Datos_NaEl$PA_NHojas~Datos_NaEl$Trat, center=mean)
group coerced to factor.
m20var
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 1 0.4262
12
library(agricolae)
library(dplyr)
m20tukey <-HSD.test(Datos_NaEl$PA_NHojas,Datos_NaEl$Trat, 12, 0.3125, alpha = 0.05)
m20tukey
$statistics
MSerror Df Mean CV MSD
0.3125 12 5.3125 10.52267 1.173561
$parameters
test name.t ntr StudentizedRange alpha
Tukey Datos_NaEl$Trat 4 4.19866 0.05
$means
Datos_NaEl$PA_NHojas std r Min Max Q25 Q50 Q75
N0B0 5.75 0.5000000 4 5 6 5.75 6.0 6
N0B1 5.50 0.5773503 4 5 6 5.00 5.5 6
N1B0 4.50 0.5773503 4 4 5 4.00 4.5 5
N1B1 5.50 0.5773503 4 5 6 5.00 5.5 6
$comparison
NULL
$groups
Datos_NaEl$PA_NHojas groups
N0B0 5.75 a
N0B1 5.50 ab
N1B1 5.50 ab
N1B0 4.50 b
attr(,"class")
[1] "group"
m14<- aov(PA_Longitud~Trat, data = Datos_NaEl)
anova(m14)
Analysis of Variance Table
Response: PA_Longitud
Df Sum Sq Mean Sq F value Pr(>F)
Trat 3 149.962 49.987 78.437 3.747e-08 ***
Residuals 12 7.648 0.637
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
shapiro.test(resid(m14))
Shapiro-Wilk normality test
data: resid(m14)
W = 0.95714, p-value = 0.6103
library(car)
library(carData)
m14var<-leveneTest(Datos_NaEl$PA_Longitud~Datos_NaEl$Trat, center=mean)
group coerced to factor.
m14var
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 0.6344 0.6069
12
library(agricolae)
library(dplyr)
m14tukey <-HSD.test(Datos_NaEl$PA_Longitud,Datos_NaEl$Trat, 12, 0.637, alpha = 0.05)
m14tukey
$statistics
MSerror Df Mean CV MSD
0.637 12 12.40625 6.433232 1.675523
$parameters
test name.t ntr StudentizedRange alpha
Tukey Datos_NaEl$Trat 4 4.19866 0.05
$means
Datos_NaEl$PA_Longitud std r Min Max Q25 Q50 Q75
N0B0 15.100 0.5291503 4 14.6 15.8 14.75 15.00 15.350
N0B1 15.425 0.8539126 4 14.3 16.3 15.05 15.55 15.925
N1B0 8.000 0.8755950 4 7.2 9.1 7.35 7.85 8.500
N1B1 11.100 0.8793937 4 10.1 12.1 10.55 11.10 11.650
$comparison
NULL
$groups
Datos_NaEl$PA_Longitud groups
N0B1 15.425 a
N0B0 15.100 a
N1B1 11.100 b
N1B0 8.000 c
attr(,"class")
[1] "group"
m33<- aov(RT_Longitud~Trat, data = Datos_NaEl)
anova(m33)
Analysis of Variance Table
Response: RT_Longitud
Df Sum Sq Mean Sq F value Pr(>F)
Trat 3 1473.2 491.08 100.73 8.95e-09 ***
Residuals 12 58.5 4.87
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
shapiro.test(resid(m33))
Shapiro-Wilk normality test
data: resid(m33)
W = 0.94294, p-value = 0.3865
kruska33<-kruskal(Datos_NaEl$RT_Longitud, Datos_NaEl$Trat, alpha = 0.05)
kruska33
$statistics
Chisq Df p.chisq t.value MSD
14.24332 3 0.002591979 2.178813 1.833744
$parameters
test p.ajusted name.t ntr alpha
Kruskal-Wallis none Datos_NaEl$Trat 4 0.05
$means
Datos_NaEl.RT_Longitud rank std r Min Max Q25 Q50 Q75
N0B0 35.25 10.5 0.5000000 4 35 36 35.00 35.0 35.25
N0B1 40.75 14.5 2.9860788 4 38 45 39.50 40.0 41.25
N1B0 15.00 2.5 0.8164966 4 14 16 14.75 15.0 15.25
N1B1 29.50 6.5 3.1091264 4 26 33 27.50 29.5 31.50
$comparison
NULL
$groups
Datos_NaEl$RT_Longitud groups
N0B1 14.5 a
N0B0 10.5 b
N1B1 6.5 c
N1B0 2.5 d
attr(,"class")
[1] "group"
m34<- aov(RT_Diámetro~Trat, data = Datos_NaEl)
anova(m34)
Analysis of Variance Table
Response: RT_Diámetro
Df Sum Sq Mean Sq F value Pr(>F)
Trat 3 1571.19 523.73 138.89 1.394e-09 ***
Residuals 12 45.25 3.77
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
shapiro.test(resid(m34))
Shapiro-Wilk normality test
data: resid(m34)
W = 0.92303, p-value = 0.1887
m34var<-leveneTest(Datos_NaEl$RT_Diámetro~Datos_NaEl$Trat, center=mean)
group coerced to factor.
m34var
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 3.8065 0.03969 *
12
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
kruska34<-kruskal(Datos_NaEl$RT_Diámetro, Datos_NaEl$Trat, alpha = 0.05)
kruska34
$statistics
Chisq Df p.chisq t.value MSD
14.28571 3 0.00254095 2.178813 1.778993
$parameters
test p.ajusted name.t ntr alpha
Kruskal-Wallis none Datos_NaEl$Trat 4 0.05
$means
Datos_NaEl.RT_Diámetro rank std r Min Max Q25 Q50 Q75
N0B0 34.75 10.5 0.500000 4 34 35 34.75 35.0 35.00
N0B1 39.50 14.5 3.109126 4 37 44 37.75 38.5 40.25
N1B0 13.25 2.5 0.500000 4 13 14 13.00 13.0 13.25
N1B1 27.75 6.5 2.217356 4 25 30 26.50 28.0 29.25
$comparison
NULL
$groups
Datos_NaEl$RT_Diámetro groups
N0B1 14.5 a
N0B0 10.5 b
N1B1 6.5 c
N1B0 2.5 d
attr(,"class")
[1] "group"
m35<- aov(RT_pf~Trat, data = Datos_NaEl)
anova(m35)
Analysis of Variance Table
Response: RT_pf
Df Sum Sq Mean Sq F value Pr(>F)
Trat 3 400.13 133.377 59.925 1.712e-07 ***
Residuals 12 26.71 2.226
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
shapiro.test(resid(m35))
Shapiro-Wilk normality test
data: resid(m35)
W = 0.98114, p-value = 0.972
m35tukey <-HSD.test(Datos_NaEl$RT_pf,Datos_NaEl$Trat, 12, 2.226 , alpha = 0.05)
m35tukey
$statistics
MSerror Df Mean CV MSD
2.226 12 11.473 13.00426 3.132156
$parameters
test name.t ntr StudentizedRange alpha
Tukey Datos_NaEl$Trat 4 4.19866 0.05
$means
Datos_NaEl$RT_pf std r Min Max Q25 Q50 Q75
N0B0 13.4670 0.6758555 4 12.483 13.958 13.30050 13.7135 13.88000
N0B1 17.2935 1.6845360 4 15.187 19.215 16.51525 17.3860 18.16425
N1B0 3.5880 0.8404864 4 2.917 4.817 3.18250 3.3090 3.71450
N1B1 11.5435 2.2140449 4 9.215 13.958 9.94400 11.5005 13.10000
$comparison
NULL
$groups
Datos_NaEl$RT_pf groups
N0B1 17.2935 a
N0B0 13.4670 b
N1B1 11.5435 b
N1B0 3.5880 c
attr(,"class")
[1] "group"
kruska35<-kruskal(Datos_NaEl$RT_pf, Datos_NaEl$Trat, alpha = 0.05)
kruska35
$statistics
Chisq Df p.chisq t.value MSD
12.99521 3 0.004646968 2.178813 2.995868
$parameters
test p.ajusted name.t ntr alpha
Kruskal-Wallis none Datos_NaEl$Trat 4 0.05
$means
Datos_NaEl.RT_pf rank std r Min Max Q25 Q50
N0B0 13.4670 9.375 0.6758555 4 12.483 13.958 13.30050 13.7135
N0B1 17.2935 14.500 1.6845360 4 15.187 19.215 16.51525 17.3860
N1B0 3.5880 2.500 0.8404864 4 2.917 4.817 3.18250 3.3090
N1B1 11.5435 7.625 2.2140449 4 9.215 13.958 9.94400 11.5005
Q75
N0B0 13.88000
N0B1 18.16425
N1B0 3.71450
N1B1 13.10000
$comparison
NULL
$groups
Datos_NaEl$RT_pf groups
N0B1 14.500 a
N0B0 9.375 b
N1B1 7.625 b
N1B0 2.500 c
attr(,"class")
[1] "group"
m36<- aov(RT_ps~Trat, data = Datos_NaEl)
anova(m36)
Analysis of Variance Table
Response: RT_ps
Df Sum Sq Mean Sq F value Pr(>F)
Trat 3 3.04438 1.01479 72.359 5.922e-08 ***
Residuals 12 0.16829 0.01402
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
shapiro.test(resid(m36))
Shapiro-Wilk normality test
data: resid(m36)
W = 0.9194, p-value = 0.165
m36var<-leveneTest(Datos_NaEl$RT_ps~Datos_NaEl$Trat, center=mean)
group coerced to factor.
m36var
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 1.6144 0.2379
12
m36tukey <-HSD.test(Datos_NaEl$RT_ps,Datos_NaEl$Trat, 12, 0.01402, alpha = 0.05)
m36tukey
$statistics
MSerror Df Mean CV MSD
0.01402 12 1.059688 11.17368 0.2485735
$parameters
test name.t ntr StudentizedRange alpha
Tukey Datos_NaEl$Trat 4 4.19866 0.05
$means
Datos_NaEl$RT_ps std r Min Max Q25 Q50 Q75
N0B0 1.31800 0.06694774 4 1.248 1.387 1.26825 1.3185 1.36825
N0B1 1.53450 0.18227909 4 1.362 1.792 1.45875 1.4920 1.56775
N1B0 0.37675 0.04431986 4 0.317 0.418 0.35750 0.3860 0.40525
N1B1 1.00950 0.12816266 4 0.892 1.191 0.94450 0.9775 1.04250
$comparison
NULL
$groups
Datos_NaEl$RT_ps groups
N0B1 1.53450 a
N0B0 1.31800 a
N1B1 1.00950 b
N1B0 0.37675 c
attr(,"class")
[1] "group"
m15<- aov(Area_foliar~Trat, data = Datos_NaEl)
anova(m15)
Analysis of Variance Table
Response: Area_foliar
Df Sum Sq Mean Sq F value Pr(>F)
Trat 3 17500.9 5833.6 142.63 1.194e-09 ***
Residuals 12 490.8 40.9
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
shapiro.test(resid(m15))
Shapiro-Wilk normality test
data: resid(m15)
W = 0.82351, p-value = 0.005687
library(car)
library(carData)
m15var<-leveneTest(Datos_NaEl$Area_foliar~Datos_NaEl$Trat, center=mean)
group coerced to factor.
m15var
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 8.539 0.002633 **
12
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
library(agricolae)
library(dplyr)
m15tukey <-HSD.test(Datos_NaEl$Area_foliar,Datos_NaEl$Trat, 12, 40.9, alpha = 0.05)
m15tukey
$statistics
MSerror Df Mean CV MSD
40.9 12 132.4688 4.827788 13.42587
$parameters
test name.t ntr StudentizedRange alpha
Tukey Datos_NaEl$Trat 4 4.19866 0.05
$means
Datos_NaEl$Area_foliar std r Min Max Q25 Q50 Q75
N0B0 161.575 1.447699 4 159.6 162.8 160.950 161.95 162.575
N0B1 154.675 1.936276 4 151.9 156.3 154.150 155.25 155.775
N1B0 77.500 12.451774 4 61.2 88.6 71.175 80.10 86.425
N1B1 136.125 1.645955 4 134.3 138.0 135.050 136.10 137.175
$comparison
NULL
$groups
Datos_NaEl$Area_foliar groups
N0B0 161.575 a
N0B1 154.675 a
N1B1 136.125 b
N1B0 77.500 c
attr(,"class")
[1] "group"
#1.1 Anova para variable hojas pf
m16<- aov(Hojas_pf~Trat, data = Datos_NaEl)
anova(m16)
Analysis of Variance Table
Response: Hojas_pf
Df Sum Sq Mean Sq F value Pr(>F)
Trat 3 215.200 71.733 236.29 6.196e-11 ***
Residuals 12 3.643 0.304
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
shapiro.test(resid(m16))
Shapiro-Wilk normality test
data: resid(m16)
W = 0.95756, p-value = 0.6179
library(car)
library(carData)
m16var<-leveneTest(Datos_NaEl$Hojas_pf~Datos_NaEl$Trat, center=mean)
group coerced to factor.
m16var
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 1.5082 0.2626
12
library(agricolae)
library(dplyr)
m16tukey <-HSD.test(Datos_NaEl$Hojas_pf,Datos_NaEl$Trat, 12, 0.304, alpha = 0.05)
m16tukey
$statistics
MSerror Df Mean CV MSD
0.304 12 12.95681 4.255383 1.157491
$parameters
test name.t ntr StudentizedRange alpha
Tukey Datos_NaEl$Trat 4 4.19866 0.05
$means
Datos_NaEl$Hojas_pf std r Min Max Q25 Q50
N0B0 16.17300 0.7805583 4 15.232 16.961 15.70000 16.2495
N0B1 14.46700 0.4530350 4 13.933 14.994 14.21425 14.4705
N1B0 6.72025 0.4411314 4 6.162 7.193 6.50025 6.7630
N1B1 14.46700 0.4530350 4 13.933 14.994 14.21425 14.4705
Q75
N0B0 16.72250
N0B1 14.72325
N1B0 6.98300
N1B1 14.72325
$comparison
NULL
$groups
Datos_NaEl$Hojas_pf groups
N0B0 16.17300 a
N0B1 14.46700 b
N1B1 14.46700 b
N1B0 6.72025 c
attr(,"class")
[1] "group"
m17<- aov(Hojas_ps~Trat, data = Datos_NaEl)
anova(m17)
Analysis of Variance Table
Response: Hojas_ps
Df Sum Sq Mean Sq F value Pr(>F)
Trat 3 0.68737 0.229122 38.146 2.054e-06 ***
Residuals 12 0.07208 0.006006
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
shapiro.test(resid(m17))
Shapiro-Wilk normality test
data: resid(m17)
W = 0.87473, p-value = 0.03214
library(car)
library(carData)
m17var<-leveneTest(Datos_NaEl$Hojas_ps~Datos_NaEl$Trat, center=mean)
group coerced to factor.
m17var
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 1.6978 0.2203
12
library(agricolae)
library(dplyr)
m17tukey <-HSD.test(Datos_NaEl$Hojas_ps,Datos_NaEl$Trat, 12, 0.006006, alpha = 0.05)
m17tukey
$statistics
MSerror Df Mean CV MSD
0.006006 12 0.98425 7.873852 0.1626947
$parameters
test name.t ntr StudentizedRange alpha
Tukey Datos_NaEl$Trat 4 4.19866 0.05
$means
Datos_NaEl$Hojas_ps std r Min Max Q25 Q50 Q75
N0B0 1.10425 0.04587937 4 1.059 1.156 1.0695 1.1010 1.13575
N0B1 1.10375 0.08117214 4 1.003 1.173 1.0555 1.1195 1.16775
N1B0 0.62525 0.09350356 4 0.515 0.712 0.5645 0.6370 0.69775
N1B1 1.10375 0.08117214 4 1.003 1.173 1.0555 1.1195 1.16775
$comparison
NULL
$groups
Datos_NaEl$Hojas_ps groups
N0B0 1.10425 a
N0B1 1.10375 a
N1B1 1.10375 a
N1B0 0.62525 b
attr(,"class")
[1] "group"
m18<- aov(CRA_pf~Trat, data = Datos_NaEl)
anova(m18)
Analysis of Variance Table
Response: CRA_pf
Df Sum Sq Mean Sq F value Pr(>F)
Trat 3 2.7069e-06 9.0229e-07 4.0514 0.03337 *
Residuals 12 2.6725e-06 2.2271e-07
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
shapiro.test(resid(m18))
Shapiro-Wilk normality test
data: resid(m18)
W = 0.95211, p-value = 0.5239
library(car)
library(carData)
m18var<-leveneTest(Datos_NaEl$CRA_pf~Datos_NaEl$Trat, center=mean)
group coerced to factor.
m18var
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 0.6855 0.5779
12
library(agricolae)
library(dplyr)
m18tukey <-HSD.test(Datos_NaEl$CRA_pf,Datos_NaEl$Trat, 12, 2.2271e-07, alpha = 0.05)
m18tukey
$statistics
MSerror Df Mean CV MSD
2.2271e-07 12 0.01725625 2.734787 0.0009907192
$parameters
test name.t ntr StudentizedRange alpha
Tukey Datos_NaEl$Trat 4 4.19866 0.05
$means
Datos_NaEl$CRA_pf std r Min Max Q25 Q50
N0B0 0.017425 0.0006701990 4 0.0169 0.0184 0.01705 0.01720
N0B1 0.017475 0.0003774917 4 0.0170 0.0179 0.01730 0.01750
N1B0 0.017575 0.0004031129 4 0.0170 0.0179 0.01745 0.01770
N1B1 0.016550 0.0003696846 4 0.0161 0.0170 0.01640 0.01655
Q75
N0B0 0.017575
N0B1 0.017675
N1B0 0.017825
N1B1 0.016700
$comparison
NULL
$groups
Datos_NaEl$CRA_pf groups
N1B0 0.017575 a
N0B1 0.017475 ab
N0B0 0.017425 ab
N1B1 0.016550 b
attr(,"class")
[1] "group"
m19<- aov(CRA_ps~Trat, data = Datos_NaEl)
anova(m19)
Analysis of Variance Table
Response: CRA_ps
Df Sum Sq Mean Sq F value Pr(>F)
Trat 3 2.7687e-07 9.2292e-08 0.6563 0.5944
Residuals 12 1.6875e-06 1.4063e-07
shapiro.test(resid(m19))
Shapiro-Wilk normality test
data: resid(m19)
W = 0.97664, p-value = 0.9313
library(car)
library(carData)
m19var<-leveneTest(Datos_NaEl$CRA_ps~Datos_NaEl$Trat, center=mean)
group coerced to factor.
m19var
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 0.9579 0.444
12
library(agricolae)
library(dplyr)
m19tukey <-HSD.test(Datos_NaEl$CRA_ps,Datos_NaEl$Trat, 12, 1.4063e-07, alpha = 0.05)
m19tukey
$statistics
MSerror Df Mean CV MSD
1.4063e-07 12 0.00461875 8.119224 0.0007872628
$parameters
test name.t ntr StudentizedRange alpha
Tukey Datos_NaEl$Trat 4 4.19866 0.05
$means
Datos_NaEl$CRA_ps std r Min Max Q25 Q50
N0B0 0.004450 0.0005446712 4 0.0039 0.0052 0.004200 0.00435
N0B1 0.004800 0.0002160247 4 0.0045 0.0050 0.004725 0.00485
N1B0 0.004550 0.0003696846 4 0.0042 0.0050 0.004275 0.00450
N1B1 0.004675 0.0002872281 4 0.0043 0.0050 0.004600 0.00470
Q75
N0B0 0.004600
N0B1 0.004925
N1B0 0.004775
N1B1 0.004775
$comparison
NULL
$groups
Datos_NaEl$CRA_ps groups
N0B1 0.004800 a
N1B1 0.004675 a
N1B0 0.004550 a
N0B0 0.004450 a
attr(,"class")
[1] "group"
m31<- aov(CRA_pt~Trat, data = Datos_NaEl)
anova(m31)
Analysis of Variance Table
Response: CRA_pt
Df Sum Sq Mean Sq F value Pr(>F)
Trat 3 1.7986e-04 5.9954e-05 35.665 2.948e-06 ***
Residuals 12 2.0172e-05 1.6810e-06
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
shapiro.test(resid(m31))
Shapiro-Wilk normality test
data: resid(m31)
W = 0.8868, p-value = 0.04959
kruska31<-kruskal(Datos_NaEl$CRA_pt, Datos_NaEl$Trat, alpha = 0.05)
kruska31
$statistics
Chisq Df p.chisq t.value MSD
8.943584 3 0.03005045 2.178813 5.20327
$parameters
test p.ajusted name.t ntr alpha
Kruskal-Wallis none Datos_NaEl$Trat 4 0.05
$means
Datos_NaEl.CRA_pt rank std r Min Max Q25
N0B0 0.018550 5.375 0.0006806859 4 0.0179 0.0195 0.018200
N0B1 0.018725 7.625 0.0002753785 4 0.0184 0.0190 0.018550
N1B0 0.026375 14.500 0.0024622145 4 0.0233 0.0289 0.025025
N1B1 0.018625 6.500 0.0003500000 4 0.0182 0.0190 0.018425
Q50 Q75
N0B0 0.01840 0.018750
N0B1 0.01875 0.018925
N1B0 0.02665 0.028000
N1B1 0.01865 0.018850
$comparison
NULL
$groups
Datos_NaEl$CRA_pt groups
N1B0 14.500 a
N0B1 7.625 b
N1B1 6.500 b
N0B0 5.375 b
attr(,"class")
[1] "group"
m32<- aov(CRA~Trat, data = Datos_NaEl)
anova(m32)
Analysis of Variance Table
Response: CRA
Df Sum Sq Mean Sq F value Pr(>F)
Trat 3 2655.73 885.24 25.945 1.568e-05 ***
Residuals 12 409.44 34.12
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
shapiro.test(resid(m32))
Shapiro-Wilk normality test
data: resid(m32)
W = 0.98513, p-value = 0.9914
m32var<-leveneTest(Datos_NaEl$CRA~Datos_NaEl$Trat, center=mean)
group coerced to factor.
m32var
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 0.9474 0.4485
12
m19tukey <-HSD.test(Datos_NaEl$CRA,Datos_NaEl$Trat, 12, 34.12, alpha = 0.05)
m19tukey
$statistics
MSerror Df Mean CV MSD
34.12 12 82.18952 7.107028 12.26268
$parameters
test name.t ntr StudentizedRange alpha
Tukey Datos_NaEl$Trat 4 4.19866 0.05
$means
Datos_NaEl$CRA std r Min Max Q25 Q50
N0B0 92.14515 6.904737 4 82.78146 99.31507 89.97017 93.24203
N0B1 91.04734 3.621355 4 88.23529 96.32353 89.02311 89.81527
N1B0 60.34528 7.479434 4 54.27350 69.94536 54.47747 58.58114
N1B1 85.22032 4.444089 4 80.85106 91.11111 82.45766 84.45956
Q75
N0B0 95.41700
N0B1 91.83950
N1B0 64.44896
N1B1 87.22222
$comparison
NULL
$groups
Datos_NaEl$CRA groups
N0B0 92.14515 a
N0B1 91.04734 a
N1B1 85.22032 a
N1B0 60.34528 b
attr(,"class")
[1] "group"