1.) Import with Tidyverse function.

As seen below, there are 35 columns and 3,142 rows in the dataset.

library(tidyverse)
data <- read_csv("acs_2015_county_data_revised.csv")
ncol(data)
## [1] 35
nrow(data)
## [1] 3142

2.) Do any data types need change?

No, as you can see, all the variables are numeric except for state and county which are characters.

glimpse(data)
## Rows: 3,142
## Columns: 35
## $ census_id      <dbl> 1001, 1003, 1005, 1007, 1009, 1011, 1013, 1015, 1017...
## $ state          <chr> "Alabama", "Alabama", "Alabama", "Alabama", "Alabama...
## $ county         <chr> "Autauga", "Baldwin", "Barbour", "Bibb", "Blount", "...
## $ total_pop      <dbl> 55221, 195121, 26932, 22604, 57710, 10678, 20354, 11...
## $ men            <dbl> 26745, 95314, 14497, 12073, 28512, 5660, 9502, 56274...
## $ women          <dbl> 28476, 99807, 12435, 10531, 29198, 5018, 10852, 6037...
## $ hispanic       <dbl> 2.6, 4.5, 4.6, 2.2, 8.6, 4.4, 1.2, 3.5, 0.4, 1.5, 7....
## $ white          <dbl> 75.8, 83.1, 46.2, 74.5, 87.9, 22.2, 53.3, 73.0, 57.3...
## $ black          <dbl> 18.5, 9.5, 46.7, 21.4, 1.5, 70.7, 43.8, 20.3, 40.3, ...
## $ native         <dbl> 0.4, 0.6, 0.2, 0.4, 0.3, 1.2, 0.1, 0.2, 0.2, 0.6, 0....
## $ asian          <dbl> 1.0, 0.7, 0.4, 0.1, 0.1, 0.2, 0.4, 0.9, 0.8, 0.3, 0....
## $ pacific        <dbl> 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0....
## $ citizen        <dbl> 40725, 147695, 20714, 17495, 42345, 8057, 15581, 886...
## $ income         <dbl> 51281, 50254, 32964, 38678, 45813, 31938, 32229, 417...
## $ income_per_cap <dbl> 24974, 27317, 16824, 18431, 20532, 17580, 18390, 213...
## $ poverty        <dbl> 12.9, 13.4, 26.7, 16.8, 16.7, 24.6, 25.4, 20.5, 21.6...
## $ child_poverty  <dbl> 18.6, 19.2, 45.3, 27.9, 27.2, 38.4, 39.2, 31.6, 37.2...
## $ professional   <dbl> 33.2, 33.1, 26.8, 21.5, 28.5, 18.8, 27.5, 27.3, 23.3...
## $ service        <dbl> 17.0, 17.7, 16.1, 17.9, 14.1, 15.0, 16.6, 17.7, 14.5...
## $ office         <dbl> 24.2, 27.1, 23.1, 17.8, 23.9, 19.7, 21.9, 24.2, 26.3...
## $ construction   <dbl> 8.6, 10.8, 10.8, 19.0, 13.5, 20.1, 10.3, 10.5, 11.5,...
## $ production     <dbl> 17.1, 11.2, 23.1, 23.7, 19.9, 26.4, 23.7, 20.4, 24.4...
## $ drive          <dbl> 87.5, 84.7, 83.8, 83.2, 84.9, 74.9, 84.5, 85.3, 85.1...
## $ carpool        <dbl> 8.8, 8.8, 10.9, 13.5, 11.2, 14.9, 12.4, 9.4, 11.9, 1...
## $ transit        <dbl> 0.1, 0.1, 0.4, 0.5, 0.4, 0.7, 0.0, 0.2, 0.2, 0.2, 0....
## $ walk           <dbl> 0.5, 1.0, 1.8, 0.6, 0.9, 5.0, 0.8, 1.2, 0.3, 0.6, 1....
## $ other_transp   <dbl> 1.3, 1.4, 1.5, 1.5, 0.4, 1.7, 0.6, 1.2, 0.4, 0.7, 1....
## $ work_at_home   <dbl> 1.8, 3.9, 1.6, 0.7, 2.3, 2.8, 1.7, 2.7, 2.1, 2.5, 1....
## $ mean_commute   <dbl> 26.5, 26.4, 24.1, 28.8, 34.9, 27.5, 24.6, 24.1, 25.1...
## $ employed       <dbl> 23986, 85953, 8597, 8294, 22189, 3865, 7813, 47401, ...
## $ private_work   <dbl> 73.6, 81.5, 71.8, 76.8, 82.0, 79.5, 77.4, 74.1, 85.1...
## $ public_work    <dbl> 20.9, 12.3, 20.8, 16.1, 13.5, 15.1, 16.2, 20.8, 12.1...
## $ self_employed  <dbl> 5.5, 5.8, 7.3, 6.7, 4.2, 5.4, 6.2, 5.0, 2.8, 7.9, 4....
## $ family_work    <dbl> 0.0, 0.4, 0.1, 0.4, 0.4, 0.0, 0.2, 0.1, 0.0, 0.5, 0....
## $ unemployment   <dbl> 7.6, 7.5, 17.6, 8.3, 7.7, 18.0, 10.9, 12.3, 8.9, 7.9...

3.) Are there missing values?

There was a missing value in child poverty and income. Since there were so few missing values, the best method of dealing with them is to remove the observations associated with each. The following shows the summary of the data with the 2 NAs, followed by the code of how I removed them, then a second summary of the cleaned data with no missing values.

summary(data)
##    census_id        state              county            total_pop       
##  Min.   : 1001   Length:3142        Length:3142        Min.   :      85  
##  1st Qu.:18178   Class :character   Class :character   1st Qu.:   11028  
##  Median :29176   Mode  :character   Mode  :character   Median :   25768  
##  Mean   :30384                                         Mean   :  100737  
##  3rd Qu.:45081                                         3rd Qu.:   67552  
##  Max.   :56045                                         Max.   :10038388  
##                                                                          
##       men              women            hispanic          white      
##  Min.   :     42   Min.   :     43   Min.   : 0.000   Min.   : 0.90  
##  1st Qu.:   5546   1st Qu.:   5466   1st Qu.: 1.900   1st Qu.:65.60  
##  Median :  12826   Median :  12907   Median : 3.700   Median :84.60  
##  Mean   :  49565   Mean   :  51171   Mean   : 8.826   Mean   :77.28  
##  3rd Qu.:  33319   3rd Qu.:  34122   3rd Qu.: 9.000   3rd Qu.:93.30  
##  Max.   :4945351   Max.   :5093037   Max.   :98.700   Max.   :99.80  
##                                                                      
##      black            native           asian           pacific        
##  Min.   : 0.000   Min.   : 0.000   Min.   : 0.000   Min.   : 0.00000  
##  1st Qu.: 0.600   1st Qu.: 0.100   1st Qu.: 0.200   1st Qu.: 0.00000  
##  Median : 2.100   Median : 0.300   Median : 0.500   Median : 0.00000  
##  Mean   : 8.879   Mean   : 1.766   Mean   : 1.258   Mean   : 0.08475  
##  3rd Qu.:10.175   3rd Qu.: 0.600   3rd Qu.: 1.200   3rd Qu.: 0.00000  
##  Max.   :85.900   Max.   :92.100   Max.   :41.600   Max.   :35.30000  
##                                                                       
##     citizen            income       income_per_cap     poverty    
##  Min.   :     80   Min.   : 19328   Min.   : 8292   Min.   : 1.4  
##  1st Qu.:   8254   1st Qu.: 38826   1st Qu.:20471   1st Qu.:12.0  
##  Median :  19434   Median : 45111   Median :23577   Median :16.0  
##  Mean   :  70804   Mean   : 46830   Mean   :24338   Mean   :16.7  
##  3rd Qu.:  50728   3rd Qu.: 52250   3rd Qu.:27138   3rd Qu.:20.3  
##  Max.   :6046749   Max.   :123453   Max.   :65600   Max.   :53.3  
##                    NA's   :1                                      
##  child_poverty    professional      service          office     
##  Min.   : 0.00   Min.   :13.50   Min.   : 5.00   Min.   : 4.10  
##  1st Qu.:16.10   1st Qu.:26.70   1st Qu.:15.90   1st Qu.:20.20  
##  Median :22.50   Median :30.00   Median :18.00   Median :22.40  
##  Mean   :23.29   Mean   :31.04   Mean   :18.26   Mean   :22.13  
##  3rd Qu.:29.50   3rd Qu.:34.40   3rd Qu.:20.20   3rd Qu.:24.30  
##  Max.   :72.30   Max.   :74.00   Max.   :36.60   Max.   :35.40  
##  NA's   :1                                                      
##   construction     production        drive          carpool     
##  Min.   : 1.70   Min.   : 0.00   Min.   : 5.20   Min.   : 0.00  
##  1st Qu.: 9.80   1st Qu.:11.53   1st Qu.:76.60   1st Qu.: 8.50  
##  Median :12.20   Median :15.40   Median :80.60   Median : 9.90  
##  Mean   :12.74   Mean   :15.82   Mean   :79.08   Mean   :10.33  
##  3rd Qu.:15.00   3rd Qu.:19.40   3rd Qu.:83.60   3rd Qu.:11.88  
##  Max.   :40.30   Max.   :55.60   Max.   :94.60   Max.   :29.90  
##                                                                 
##     transit             walk         other_transp     work_at_home   
##  Min.   : 0.0000   Min.   : 0.000   Min.   : 0.000   Min.   : 0.000  
##  1st Qu.: 0.1000   1st Qu.: 1.400   1st Qu.: 0.900   1st Qu.: 2.800  
##  Median : 0.4000   Median : 2.400   Median : 1.300   Median : 4.000  
##  Mean   : 0.9675   Mean   : 3.307   Mean   : 1.614   Mean   : 4.697  
##  3rd Qu.: 0.8000   3rd Qu.: 4.000   3rd Qu.: 1.900   3rd Qu.: 5.700  
##  Max.   :61.7000   Max.   :71.200   Max.   :39.100   Max.   :37.200  
##                                                                      
##   mean_commute      employed        private_work    public_work   
##  Min.   : 4.90   Min.   :     62   Min.   :25.00   Min.   : 5.80  
##  1st Qu.:19.30   1st Qu.:   4524   1st Qu.:70.90   1st Qu.:13.10  
##  Median :22.90   Median :  10644   Median :75.80   Median :16.10  
##  Mean   :23.15   Mean   :  46387   Mean   :74.44   Mean   :17.35  
##  3rd Qu.:26.60   3rd Qu.:  29254   3rd Qu.:79.80   3rd Qu.:20.10  
##  Max.   :44.00   Max.   :4635465   Max.   :88.30   Max.   :66.20  
##                                                                   
##  self_employed     family_work      unemployment   
##  Min.   : 0.000   Min.   :0.0000   Min.   : 0.000  
##  1st Qu.: 5.400   1st Qu.:0.1000   1st Qu.: 5.500  
##  Median : 6.900   Median :0.2000   Median : 7.500  
##  Mean   : 7.921   Mean   :0.2915   Mean   : 7.815  
##  3rd Qu.: 9.400   3rd Qu.:0.3000   3rd Qu.: 9.700  
##  Max.   :36.600   Max.   :9.8000   Max.   :29.400  
## 
data2 <- na.omit(data)
summary(data2)
##    census_id        state              county            total_pop       
##  Min.   : 1001   Length:3140        Length:3140        Min.   :     267  
##  1st Qu.:18179   Class :character   Class :character   1st Qu.:   11036  
##  Median :29176   Mode  :character   Mode  :character   Median :   25793  
##  Mean   :30383                                         Mean   :  100801  
##  3rd Qu.:45080                                         3rd Qu.:   67620  
##  Max.   :56045                                         Max.   :10038388  
##       men              women            hispanic          white      
##  Min.   :    136   Min.   :    131   Min.   : 0.000   Min.   : 0.90  
##  1st Qu.:   5551   1st Qu.:   5488   1st Qu.: 1.900   1st Qu.:65.67  
##  Median :  12838   Median :  12916   Median : 3.700   Median :84.65  
##  Mean   :  49597   Mean   :  51204   Mean   : 8.819   Mean   :77.31  
##  3rd Qu.:  33328   3rd Qu.:  34123   3rd Qu.: 9.000   3rd Qu.:93.33  
##  Max.   :4945351   Max.   :5093037   Max.   :98.700   Max.   :99.80  
##      black            native           asian           pacific        
##  Min.   : 0.000   Min.   : 0.000   Min.   : 0.000   Min.   : 0.00000  
##  1st Qu.: 0.600   1st Qu.: 0.100   1st Qu.: 0.200   1st Qu.: 0.00000  
##  Median : 2.100   Median : 0.300   Median : 0.500   Median : 0.00000  
##  Mean   : 8.885   Mean   : 1.763   Mean   : 1.253   Mean   : 0.07357  
##  3rd Qu.:10.200   3rd Qu.: 0.600   3rd Qu.: 1.200   3rd Qu.: 0.00000  
##  Max.   :85.900   Max.   :92.100   Max.   :41.600   Max.   :11.10000  
##     citizen            income       income_per_cap     poverty    
##  Min.   :    199   Min.   : 19328   Min.   : 8292   Min.   : 1.4  
##  1st Qu.:   8276   1st Qu.: 38826   1st Qu.:20470   1st Qu.:12.0  
##  Median :  19454   Median : 45095   Median :23575   Median :16.0  
##  Mean   :  70849   Mean   : 46824   Mean   :24331   Mean   :16.7  
##  3rd Qu.:  50795   3rd Qu.: 52248   3rd Qu.:27138   3rd Qu.:20.3  
##  Max.   :6046749   Max.   :123453   Max.   :65600   Max.   :53.3  
##  child_poverty    professional      service          office     
##  Min.   : 0.00   Min.   :13.50   Min.   : 5.00   Min.   : 4.10  
##  1st Qu.:16.10   1st Qu.:26.70   1st Qu.:15.90   1st Qu.:20.20  
##  Median :22.50   Median :30.00   Median :18.00   Median :22.40  
##  Mean   :23.29   Mean   :31.05   Mean   :18.25   Mean   :22.13  
##  3rd Qu.:29.50   3rd Qu.:34.42   3rd Qu.:20.20   3rd Qu.:24.30  
##  Max.   :72.30   Max.   :74.00   Max.   :36.60   Max.   :35.40  
##   construction     production        drive         carpool     
##  Min.   : 1.70   Min.   : 0.00   Min.   : 5.2   Min.   : 0.00  
##  1st Qu.: 9.80   1st Qu.:11.50   1st Qu.:76.6   1st Qu.: 8.50  
##  Median :12.20   Median :15.40   Median :80.6   Median : 9.90  
##  Mean   :12.75   Mean   :15.82   Mean   :79.1   Mean   :10.33  
##  3rd Qu.:15.00   3rd Qu.:19.40   3rd Qu.:83.6   3rd Qu.:11.90  
##  Max.   :40.30   Max.   :55.60   Max.   :94.6   Max.   :29.90  
##     transit             walk         other_transp    work_at_home   
##  Min.   : 0.0000   Min.   : 0.000   Min.   : 0.00   Min.   : 0.000  
##  1st Qu.: 0.1000   1st Qu.: 1.400   1st Qu.: 0.90   1st Qu.: 2.800  
##  Median : 0.4000   Median : 2.400   Median : 1.30   Median : 4.000  
##  Mean   : 0.9681   Mean   : 3.294   Mean   : 1.61   Mean   : 4.694  
##  3rd Qu.: 0.8000   3rd Qu.: 4.000   3rd Qu.: 1.90   3rd Qu.: 5.700  
##  Max.   :61.7000   Max.   :71.200   Max.   :39.10   Max.   :37.200  
##   mean_commute      employed        private_work    public_work   
##  Min.   : 4.90   Min.   :    166   Min.   :29.50   Min.   : 5.80  
##  1st Qu.:19.30   1st Qu.:   4532   1st Qu.:70.90   1st Qu.:13.07  
##  Median :22.90   Median :  10657   Median :75.85   Median :16.10  
##  Mean   :23.15   Mean   :  46416   Mean   :74.45   Mean   :17.33  
##  3rd Qu.:26.60   3rd Qu.:  29272   3rd Qu.:79.80   3rd Qu.:20.10  
##  Max.   :44.00   Max.   :4635465   Max.   :88.30   Max.   :66.20  
##  self_employed     family_work      unemployment   
##  Min.   : 0.000   Min.   :0.0000   Min.   : 0.000  
##  1st Qu.: 5.400   1st Qu.:0.1000   1st Qu.: 5.500  
##  Median : 6.900   Median :0.2000   Median : 7.500  
##  Mean   : 7.922   Mean   :0.2917   Mean   : 7.815  
##  3rd Qu.: 9.400   3rd Qu.:0.3000   3rd Qu.: 9.700  
##  Max.   :36.600   Max.   :9.8000   Max.   :29.400

4.) Unusual values?

After looking at the summary statistics, the only unusual numbers is in the variable employed. This is supposed to be a percentage whereas I believe these are counts of employed population. In order to make them the percent of the population, I divided the employed by the population and multiplied by 100. The new summary shows the correct values.

summary(data2)
##    census_id        state              county            total_pop       
##  Min.   : 1001   Length:3140        Length:3140        Min.   :     267  
##  1st Qu.:18179   Class :character   Class :character   1st Qu.:   11036  
##  Median :29176   Mode  :character   Mode  :character   Median :   25793  
##  Mean   :30383                                         Mean   :  100801  
##  3rd Qu.:45080                                         3rd Qu.:   67620  
##  Max.   :56045                                         Max.   :10038388  
##       men              women            hispanic          white      
##  Min.   :    136   Min.   :    131   Min.   : 0.000   Min.   : 0.90  
##  1st Qu.:   5551   1st Qu.:   5488   1st Qu.: 1.900   1st Qu.:65.67  
##  Median :  12838   Median :  12916   Median : 3.700   Median :84.65  
##  Mean   :  49597   Mean   :  51204   Mean   : 8.819   Mean   :77.31  
##  3rd Qu.:  33328   3rd Qu.:  34123   3rd Qu.: 9.000   3rd Qu.:93.33  
##  Max.   :4945351   Max.   :5093037   Max.   :98.700   Max.   :99.80  
##      black            native           asian           pacific        
##  Min.   : 0.000   Min.   : 0.000   Min.   : 0.000   Min.   : 0.00000  
##  1st Qu.: 0.600   1st Qu.: 0.100   1st Qu.: 0.200   1st Qu.: 0.00000  
##  Median : 2.100   Median : 0.300   Median : 0.500   Median : 0.00000  
##  Mean   : 8.885   Mean   : 1.763   Mean   : 1.253   Mean   : 0.07357  
##  3rd Qu.:10.200   3rd Qu.: 0.600   3rd Qu.: 1.200   3rd Qu.: 0.00000  
##  Max.   :85.900   Max.   :92.100   Max.   :41.600   Max.   :11.10000  
##     citizen            income       income_per_cap     poverty    
##  Min.   :    199   Min.   : 19328   Min.   : 8292   Min.   : 1.4  
##  1st Qu.:   8276   1st Qu.: 38826   1st Qu.:20470   1st Qu.:12.0  
##  Median :  19454   Median : 45095   Median :23575   Median :16.0  
##  Mean   :  70849   Mean   : 46824   Mean   :24331   Mean   :16.7  
##  3rd Qu.:  50795   3rd Qu.: 52248   3rd Qu.:27138   3rd Qu.:20.3  
##  Max.   :6046749   Max.   :123453   Max.   :65600   Max.   :53.3  
##  child_poverty    professional      service          office     
##  Min.   : 0.00   Min.   :13.50   Min.   : 5.00   Min.   : 4.10  
##  1st Qu.:16.10   1st Qu.:26.70   1st Qu.:15.90   1st Qu.:20.20  
##  Median :22.50   Median :30.00   Median :18.00   Median :22.40  
##  Mean   :23.29   Mean   :31.05   Mean   :18.25   Mean   :22.13  
##  3rd Qu.:29.50   3rd Qu.:34.42   3rd Qu.:20.20   3rd Qu.:24.30  
##  Max.   :72.30   Max.   :74.00   Max.   :36.60   Max.   :35.40  
##   construction     production        drive         carpool     
##  Min.   : 1.70   Min.   : 0.00   Min.   : 5.2   Min.   : 0.00  
##  1st Qu.: 9.80   1st Qu.:11.50   1st Qu.:76.6   1st Qu.: 8.50  
##  Median :12.20   Median :15.40   Median :80.6   Median : 9.90  
##  Mean   :12.75   Mean   :15.82   Mean   :79.1   Mean   :10.33  
##  3rd Qu.:15.00   3rd Qu.:19.40   3rd Qu.:83.6   3rd Qu.:11.90  
##  Max.   :40.30   Max.   :55.60   Max.   :94.6   Max.   :29.90  
##     transit             walk         other_transp    work_at_home   
##  Min.   : 0.0000   Min.   : 0.000   Min.   : 0.00   Min.   : 0.000  
##  1st Qu.: 0.1000   1st Qu.: 1.400   1st Qu.: 0.90   1st Qu.: 2.800  
##  Median : 0.4000   Median : 2.400   Median : 1.30   Median : 4.000  
##  Mean   : 0.9681   Mean   : 3.294   Mean   : 1.61   Mean   : 4.694  
##  3rd Qu.: 0.8000   3rd Qu.: 4.000   3rd Qu.: 1.90   3rd Qu.: 5.700  
##  Max.   :61.7000   Max.   :71.200   Max.   :39.10   Max.   :37.200  
##   mean_commute      employed        private_work    public_work   
##  Min.   : 4.90   Min.   :    166   Min.   :29.50   Min.   : 5.80  
##  1st Qu.:19.30   1st Qu.:   4532   1st Qu.:70.90   1st Qu.:13.07  
##  Median :22.90   Median :  10657   Median :75.85   Median :16.10  
##  Mean   :23.15   Mean   :  46416   Mean   :74.45   Mean   :17.33  
##  3rd Qu.:26.60   3rd Qu.:  29272   3rd Qu.:79.80   3rd Qu.:20.10  
##  Max.   :44.00   Max.   :4635465   Max.   :88.30   Max.   :66.20  
##  self_employed     family_work      unemployment   
##  Min.   : 0.000   Min.   :0.0000   Min.   : 0.000  
##  1st Qu.: 5.400   1st Qu.:0.1000   1st Qu.: 5.500  
##  Median : 6.900   Median :0.2000   Median : 7.500  
##  Mean   : 7.922   Mean   :0.2917   Mean   : 7.815  
##  3rd Qu.: 9.400   3rd Qu.:0.3000   3rd Qu.: 9.700  
##  Max.   :36.600   Max.   :9.8000   Max.   :29.400
data2$employed <- (data2$employed/data2$total_pop) * 100
summary(data2$employed)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   16.57   39.01   43.66   43.36   48.19   76.24

5.) How many counties have more women than men?

There are 1,984 counties that have more women than men.

nrow(data2[data2$women > data2$men, ])
## [1] 1984

6.) How many counties have an unenployment rate lower than 10%?

There are 2,419 counties that have an unemployment rate lower than 10%.

nrow(data2[data2$unemployment < 10, ])
## [1] 2419

7.) Top 10 counties with highest mean commute

data3 <- arrange(data2, desc(mean_commute))
data3 <- data3[,c(1,2,3,29)]
dplyr::top_n(data3, 10)
## # A tibble: 10 x 4
##    census_id state         county       mean_commute
##        <dbl> <chr>         <chr>               <dbl>
##  1     42103 Pennsylvania  Pike                 44  
##  2     36005 New York      Bronx                43  
##  3     24017 Maryland      Charles              42.8
##  4     51187 Virginia      Warren               42.7
##  5     36081 New York      Queens               42.6
##  6     36085 New York      Richmond             42.6
##  7     51193 Virginia      Westmoreland         42.5
##  8      8093 Colorado      Park                 42.4
##  9     36047 New York      Kings                41.7
## 10     54015 West Virginia Clay                 41.4

8.) Create a new variable calculating percent of women, then top 10 counties with lowest percentages

data2$pct_women <- data2$women/data2$total_pop
data4 <- data2[,c(1,2,3,36)]
data5 <- arrange(data4,pct_women)
dplyr::top_n(data5, 10)
## # A tibble: 10 x 4
##    census_id state       county        pct_women
##        <dbl> <chr>       <chr>             <dbl>
##  1     29117 Missouri    Livingston        0.549
##  2     35011 New Mexico  De Baca           0.551
##  3     51790 Virginia    Staunton city     0.551
##  4     48137 Texas       Edwards           0.552
##  5     51091 Virginia    Highland          0.553
##  6     51620 Virginia    Franklin city     0.555
##  7     28125 Mississippi Sharkey           0.555
##  8      1119 Alabama     Sumter            0.557
##  9     13235 Georgia     Pulaski           0.580
## 10     51720 Virginia    Norton city       0.594

9.) Create new variable calculating sum of all reace percentages

a) Top 10 counties with lowest sum of race percentages

All counties and states have exactly 100% of all races as expected.

data2$pct_race <- (data2$hispanic + data2$white + data2$black + 
                     data2$native + data2$asian + data2$pacific)
data6 <- data2[,c(1,2,3,37)]
data7 <- arrange(data6,pct_race)
dplyr::top_n(data7, 10)
## # A tibble: 11 x 4
##    census_id state       county    pct_race
##        <dbl> <chr>       <chr>        <dbl>
##  1     28021 Mississippi Claiborne     100.
##  2     48131 Texas       Duval         100.
##  3     48261 Texas       Kenedy        100.
##  4     48263 Texas       Kent          100.
##  5     48377 Texas       Presidio      100.
##  6     49001 Utah        Beaver        100.
##  7     31125 Nebraska    Nance         100.
##  8     31091 Nebraska    Hooker        100.
##  9     48017 Texas       Bailey        100.
## 10     48137 Texas       Edwards       100.
## 11     31073 Nebraska    Gosper        100.

b) which state, on average, has lowest sum of race

All counties and states have exactly 100% of all races as expected.

c) Do any counties have some greater than 100%

All counties and states have exactly 100% of all races as expected.

d) How many states have a sum exactly equal to 100?

All counties and states have exactly 100% of all races as expected.

10.) Use carpool variable

a) Use dplry::minrank() function to create a new variable carpool_rank

Having Trouble - kept receiving error when trying to sort by top 10

data2$carpool_rank <- data2 %>%
  select(carpool) %>%
  mutate(carpool_rank = percent_rank(desc(carpool)))
data8 <- data2[,c(1,2,3,38)]
data9 <- arrange(data8,desc(carpool_rank))