Load data
vignette("ordinal-knee1")
data(knee, package = "catdata")
dtaK<-knee
head(knee)
## N Th Age Sex R1 R2 R3 R4
## 1 1 1 28 1 4 4 4 4
## 2 2 1 32 1 4 4 4 4
## 3 3 1 41 1 3 3 3 3
## 4 4 2 21 1 4 3 3 2
## 5 5 2 34 1 4 3 3 2
## 6 6 1 24 1 3 3 3 2
資料應該分割為Th=1, Th=2(治療前後),以Th=1(治療前)進行poisson分析。
但試分割資料失敗,所以暫將全部資料一起分析 結果顯示,治療前後資料一起分析時,性別年齡無法顯著預測R4(疼痛程度)
library(base)
knee$Th <- as.factor(knee$Th)
knee$Sex <- as.factor(knee$Sex)
head(knee)
## N Th Age Sex R1 R2 R3 R4
## 1 1 1 28 1 4 4 4 4
## 2 2 1 32 1 4 4 4 4
## 3 3 1 41 1 3 3 3 3
## 4 4 2 21 1 4 3 3 2
## 5 5 2 34 1 4 3 3 2
## 6 6 1 24 1 3 3 3 2
m3<-glm(R4~Sex+Age, family = poisson, data=knee)
summary(m3)
##
## Call:
## glm(formula = R4 ~ Sex + Age, family = poisson, data = knee)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.1126 -0.9955 -0.2662 0.6255 1.4507
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.975656 0.208788 4.673 2.97e-06 ***
## Sex1 0.003780 0.124446 0.030 0.976
## Age -0.002594 0.005857 -0.443 0.658
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 79.313 on 126 degrees of freedom
## Residual deviance: 79.110 on 124 degrees of freedom
## AIC: 426.57
##
## Number of Fisher Scoring iterations: 4