# import data with tidyverse read_csv
census <- read_csv("homework3/acs_2015_county_data_revised.csv")
After importing the csv file into RStudio I see the data set has 3142 rows and 35 columns.
I chaged the census_id to a character variable because I know I will not use it for artithmetic analysis. I changed the variables that counted people (total_pop, men, women, citizen) to integers so that we would not be working with fractions of people. I considered changing state to a factor but am leaving it for now.
census$census_id <- as.character(census$census_id)
census$total_pop <- as.integer(census$total_pop)
census$men <- as.integer(census$men)
census$women <- as.integer(census$women)
census$citizen <- as.integer(census$citizen)
glimpse(census)
## Rows: 3,142
## Columns: 35
## $ census_id <chr> "1001", "1003", "1005", "1007", "1009", "1011", "101...
## $ state <chr> "Alabama", "Alabama", "Alabama", "Alabama", "Alabama...
## $ county <chr> "Autauga", "Baldwin", "Barbour", "Bibb", "Blount", "...
## $ total_pop <int> 55221, 195121, 26932, 22604, 57710, 10678, 20354, 11...
## $ men <int> 26745, 95314, 14497, 12073, 28512, 5660, 9502, 56274...
## $ women <int> 28476, 99807, 12435, 10531, 29198, 5018, 10852, 6037...
## $ hispanic <dbl> 2.6, 4.5, 4.6, 2.2, 8.6, 4.4, 1.2, 3.5, 0.4, 1.5, 7....
## $ white <dbl> 75.8, 83.1, 46.2, 74.5, 87.9, 22.2, 53.3, 73.0, 57.3...
## $ black <dbl> 18.5, 9.5, 46.7, 21.4, 1.5, 70.7, 43.8, 20.3, 40.3, ...
## $ native <dbl> 0.4, 0.6, 0.2, 0.4, 0.3, 1.2, 0.1, 0.2, 0.2, 0.6, 0....
## $ asian <dbl> 1.0, 0.7, 0.4, 0.1, 0.1, 0.2, 0.4, 0.9, 0.8, 0.3, 0....
## $ pacific <dbl> 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0....
## $ citizen <int> 40725, 147695, 20714, 17495, 42345, 8057, 15581, 886...
## $ income <dbl> 51281, 50254, 32964, 38678, 45813, 31938, 32229, 417...
## $ income_per_cap <dbl> 24974, 27317, 16824, 18431, 20532, 17580, 18390, 213...
## $ poverty <dbl> 12.9, 13.4, 26.7, 16.8, 16.7, 24.6, 25.4, 20.5, 21.6...
## $ child_poverty <dbl> 18.6, 19.2, 45.3, 27.9, 27.2, 38.4, 39.2, 31.6, 37.2...
## $ professional <dbl> 33.2, 33.1, 26.8, 21.5, 28.5, 18.8, 27.5, 27.3, 23.3...
## $ service <dbl> 17.0, 17.7, 16.1, 17.9, 14.1, 15.0, 16.6, 17.7, 14.5...
## $ office <dbl> 24.2, 27.1, 23.1, 17.8, 23.9, 19.7, 21.9, 24.2, 26.3...
## $ construction <dbl> 8.6, 10.8, 10.8, 19.0, 13.5, 20.1, 10.3, 10.5, 11.5,...
## $ production <dbl> 17.1, 11.2, 23.1, 23.7, 19.9, 26.4, 23.7, 20.4, 24.4...
## $ drive <dbl> 87.5, 84.7, 83.8, 83.2, 84.9, 74.9, 84.5, 85.3, 85.1...
## $ carpool <dbl> 8.8, 8.8, 10.9, 13.5, 11.2, 14.9, 12.4, 9.4, 11.9, 1...
## $ transit <dbl> 0.1, 0.1, 0.4, 0.5, 0.4, 0.7, 0.0, 0.2, 0.2, 0.2, 0....
## $ walk <dbl> 0.5, 1.0, 1.8, 0.6, 0.9, 5.0, 0.8, 1.2, 0.3, 0.6, 1....
## $ other_transp <dbl> 1.3, 1.4, 1.5, 1.5, 0.4, 1.7, 0.6, 1.2, 0.4, 0.7, 1....
## $ work_at_home <dbl> 1.8, 3.9, 1.6, 0.7, 2.3, 2.8, 1.7, 2.7, 2.1, 2.5, 1....
## $ mean_commute <dbl> 26.5, 26.4, 24.1, 28.8, 34.9, 27.5, 24.6, 24.1, 25.1...
## $ employed <dbl> 23986, 85953, 8597, 8294, 22189, 3865, 7813, 47401, ...
## $ private_work <dbl> 73.6, 81.5, 71.8, 76.8, 82.0, 79.5, 77.4, 74.1, 85.1...
## $ public_work <dbl> 20.9, 12.3, 20.8, 16.1, 13.5, 15.1, 16.2, 20.8, 12.1...
## $ self_employed <dbl> 5.5, 5.8, 7.3, 6.7, 4.2, 5.4, 6.2, 5.0, 2.8, 7.9, 4....
## $ family_work <dbl> 0.0, 0.4, 0.1, 0.4, 0.4, 0.0, 0.2, 0.1, 0.0, 0.5, 0....
## $ unemployment <dbl> 7.6, 7.5, 17.6, 8.3, 7.7, 18.0, 10.9, 12.3, 8.9, 7.9...
There is 1 missing value for income and 1 missing value for child_poverty. It does not make sense to impute a mean or median value for either of these rows because I lack the domain knowledge to feel comfortable doing so. The rows have valuable information in them so I do not want to remove either observation due to 1 NA. I will simply leave the NAs since I do not forsee them disrupting my analysis–R will simply leave that observation out if I use either variable for comparison purposes. Changing an NA value to “Not Available” would require the variable to be of a character type and I do not want that nor do I want to put a zero in for either NA because that will influence summary data for that variable (an NA is not the same as a zero value).
Are there unusual values?
summary(census)
## census_id state county total_pop
## Length:3142 Length:3142 Length:3142 Min. : 85
## Class :character Class :character Class :character 1st Qu.: 11028
## Mode :character Mode :character Mode :character Median : 25768
## Mean : 100737
## 3rd Qu.: 67552
## Max. :10038388
##
## men women hispanic white
## Min. : 42 Min. : 43 Min. : 0.000 Min. : 0.90
## 1st Qu.: 5546 1st Qu.: 5466 1st Qu.: 1.900 1st Qu.:65.60
## Median : 12826 Median : 12907 Median : 3.700 Median :84.60
## Mean : 49565 Mean : 51171 Mean : 8.826 Mean :77.28
## 3rd Qu.: 33319 3rd Qu.: 34122 3rd Qu.: 9.000 3rd Qu.:93.30
## Max. :4945351 Max. :5093037 Max. :98.700 Max. :99.80
##
## black native asian pacific
## Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.00000
## 1st Qu.: 0.600 1st Qu.: 0.100 1st Qu.: 0.200 1st Qu.: 0.00000
## Median : 2.100 Median : 0.300 Median : 0.500 Median : 0.00000
## Mean : 8.879 Mean : 1.766 Mean : 1.258 Mean : 0.08475
## 3rd Qu.:10.175 3rd Qu.: 0.600 3rd Qu.: 1.200 3rd Qu.: 0.00000
## Max. :85.900 Max. :92.100 Max. :41.600 Max. :35.30000
##
## citizen income income_per_cap poverty
## Min. : 80 Min. : 19328 Min. : 8292 Min. : 1.4
## 1st Qu.: 8254 1st Qu.: 38826 1st Qu.:20471 1st Qu.:12.0
## Median : 19434 Median : 45111 Median :23577 Median :16.0
## Mean : 70804 Mean : 46830 Mean :24338 Mean :16.7
## 3rd Qu.: 50728 3rd Qu.: 52250 3rd Qu.:27138 3rd Qu.:20.3
## Max. :6046749 Max. :123453 Max. :65600 Max. :53.3
## NA's :1
## child_poverty professional service office
## Min. : 0.00 Min. :13.50 Min. : 5.00 Min. : 4.10
## 1st Qu.:16.10 1st Qu.:26.70 1st Qu.:15.90 1st Qu.:20.20
## Median :22.50 Median :30.00 Median :18.00 Median :22.40
## Mean :23.29 Mean :31.04 Mean :18.26 Mean :22.13
## 3rd Qu.:29.50 3rd Qu.:34.40 3rd Qu.:20.20 3rd Qu.:24.30
## Max. :72.30 Max. :74.00 Max. :36.60 Max. :35.40
## NA's :1
## construction production drive carpool
## Min. : 1.70 Min. : 0.00 Min. : 5.20 Min. : 0.00
## 1st Qu.: 9.80 1st Qu.:11.53 1st Qu.:76.60 1st Qu.: 8.50
## Median :12.20 Median :15.40 Median :80.60 Median : 9.90
## Mean :12.74 Mean :15.82 Mean :79.08 Mean :10.33
## 3rd Qu.:15.00 3rd Qu.:19.40 3rd Qu.:83.60 3rd Qu.:11.88
## Max. :40.30 Max. :55.60 Max. :94.60 Max. :29.90
##
## transit walk other_transp work_at_home
## Min. : 0.0000 Min. : 0.000 Min. : 0.000 Min. : 0.000
## 1st Qu.: 0.1000 1st Qu.: 1.400 1st Qu.: 0.900 1st Qu.: 2.800
## Median : 0.4000 Median : 2.400 Median : 1.300 Median : 4.000
## Mean : 0.9675 Mean : 3.307 Mean : 1.614 Mean : 4.697
## 3rd Qu.: 0.8000 3rd Qu.: 4.000 3rd Qu.: 1.900 3rd Qu.: 5.700
## Max. :61.7000 Max. :71.200 Max. :39.100 Max. :37.200
##
## mean_commute employed private_work public_work
## Min. : 4.90 Min. : 62 Min. :25.00 Min. : 5.80
## 1st Qu.:19.30 1st Qu.: 4524 1st Qu.:70.90 1st Qu.:13.10
## Median :22.90 Median : 10644 Median :75.80 Median :16.10
## Mean :23.15 Mean : 46387 Mean :74.44 Mean :17.35
## 3rd Qu.:26.60 3rd Qu.: 29254 3rd Qu.:79.80 3rd Qu.:20.10
## Max. :44.00 Max. :4635465 Max. :88.30 Max. :66.20
##
## self_employed family_work unemployment
## Min. : 0.000 Min. :0.0000 Min. : 0.000
## 1st Qu.: 5.400 1st Qu.:0.1000 1st Qu.: 5.500
## Median : 6.900 Median :0.2000 Median : 7.500
## Mean : 7.921 Mean :0.2915 Mean : 7.815
## 3rd Qu.: 9.400 3rd Qu.:0.3000 3rd Qu.: 9.700
## Max. :36.600 Max. :9.8000 Max. :29.400
##
The variable “total_pop” reports an extremely high number for its Max (10,038,388). I pulled up that row and saw that that value is for Los Angeles County and that number is accurate (I researched briefly online). Discovering this allowed me to be comfortable with other high numbers for variables with people counts. Thus the rest of the variables counting people seemed within reason.
The variables that report a percentage look within reason except the “employed” variable. The “employed” variable is supposed to be a “Percentage employed…” but this number should not be over 100 and our first quantile is 4524. I can make guesses as to what this column is actually reporting but for now I will have to remove the variable from analysis.
census %>%
select(-employed) -> census
The dataset no longer includes the column “employed”.
census %>%
mutate(WtM_ratio = women/men) %>%
count(WtM_ratio > 1)
## # A tibble: 2 x 2
## `WtM_ratio > 1` n
## <lgl> <int>
## 1 FALSE 1157
## 2 TRUE 1985
census %>% tally(unemployment < 10)
## # A tibble: 1 x 1
## n
## <int>
## 1 2420
## # A tibble: 3,142 x 4
## census_id county state mean_commute
## <chr> <chr> <chr> <dbl>
## 1 42103 Pike Pennsylvania 44
## 2 36005 Bronx New York 43
## 3 24017 Charles Maryland 42.8
## 4 51187 Warren Virginia 42.7
## 5 36081 Queens New York 42.6
## 6 36085 Richmond New York 42.6
## 7 51193 Westmoreland Virginia 42.5
## 8 8093 Park Colorado 42.4
## 9 36047 Kings New York 41.7
## 10 54015 Clay West Virginia 41.4
## # ... with 3,132 more rows
census %>%
mutate(pct_women = women/total_pop) %>%
select(census_id, county, state, pct_women) %>%
arrange(pct_women) %>%
top_n(-10)
## # A tibble: 10 x 4
## census_id county state pct_women
## <chr> <chr> <chr> <dbl>
## 1 42053 Forest Pennsylvania 0.268
## 2 8011 Bent Colorado 0.314
## 3 51183 Sussex Virginia 0.315
## 4 13309 Wheeler Georgia 0.321
## 5 6035 Lassen California 0.332
## 6 48095 Concho Texas 0.333
## 7 13053 Chattahoochee Georgia 0.334
## 8 2013 Aleutians East Borough Alaska 0.335
## 9 22125 West Feliciana Louisiana 0.336
## 10 32027 Pershing Nevada 0.337
census %>%
mutate(total_races = hispanic + white + black + native + asian + pacific) -> df_races_total
9(a) The top 10 counties with the lowest sum of the race percentage variables are in this table:
## Selecting by total_races
## # A tibble: 10 x 4
## census_id county state total_races
## <chr> <chr> <chr> <dbl>
## 1 15001 Hawaii Hawaii 76.4
## 2 15009 Maui Hawaii 79.2
## 3 40097 Mayes Oklahoma 79.7
## 4 15003 Honolulu Hawaii 81.5
## 5 40123 Pontotoc Oklahoma 82.8
## 6 47061 Grundy Tennessee 83.
## 7 2282 Yakutat City and Borough Alaska 83.4
## 8 40069 Johnston Oklahoma 84
## 9 15007 Kauai Hawaii 84.1
## 10 40003 Alfalfa Oklahoma 85.1
9(b) The state, on average, that has the lowest sum of the race percentage variables is Hawaii.
## # A tibble: 51 x 2
## state avg_races
## <chr> <dbl>
## 1 Hawaii 84
## 2 Alaska 92.7
## 3 Oklahoma 92.8
## 4 Washington 96.7
## 5 California 96.9
## 6 Oregon 97.1
## 7 Delaware 97.3
## 8 Massachusetts 97.5
## 9 Maryland 97.6
## 10 District of Columbia 97.6
## # ... with 41 more rows
9(c) There are 11 counties have a total_races sum greater than 100%.
## # A tibble: 11 x 4
## census_id county state total_races
## <chr> <chr> <chr> <dbl>
## 1 28021 Claiborne Mississippi 100.
## 2 48131 Duval Texas 100.
## 3 48261 Kenedy Texas 100.
## 4 48263 Kent Texas 100.
## 5 48377 Presidio Texas 100.
## 6 49001 Beaver Utah 100.
## 7 31125 Nance Nebraska 100.
## 8 31091 Hooker Nebraska 100.
## 9 48017 Bailey Texas 100.
## 10 48137 Edwards Texas 100.
## 11 31073 Gosper Nebraska 100.
9(d) There are 13 states that have a county with a sum that equals exactly 100%.
## # A tibble: 13 x 1
## state
## <chr>
## 1 Alabama
## 2 Georgia
## 3 Kansas
## 4 Kentucky
## 5 Mississippi
## 6 Montana
## 7 Nebraska
## 8 New Mexico
## 9 North Carolina
## 10 North Dakota
## 11 South Dakota
## 12 Texas
## 13 West Virginia
df_carpool <- census %>%
mutate(carpool_rank = min_rank(desc(carpool))) %>%
arrange((carpool_rank))
10(b) The 10 highest ranked counties for carpooling are in the table below:
## # A tibble: 10 x 5
## census_id county_name state carpool_value carpool_rank
## <chr> <chr> <chr> <dbl> <int>
## 1 13061 Clay Georgia 29.9 1
## 2 18087 LaGrange Indiana 27 2
## 3 13165 Jenkins Georgia 25.3 3
## 4 5133 Sevier Arkansas 24.4 4
## 5 20175 Seward Kansas 23.4 5
## 6 48079 Cochran Texas 22.8 6
## 7 48247 Jim Hogg Texas 22.6 7
## 8 48393 Roberts Texas 22.4 8
## 9 39075 Holmes Ohio 21.8 9
## 10 21197 Powell Kentucky 21.6 10
10(c) The 10 lowest ranked counties (with ties) for carpooling are in the following table:
## # A tibble: 11 x 5
## census_id county_name state carpool_value carpool_rank
## <chr> <chr> <chr> <dbl> <int>
## 1 48261 Kenedy Texas 0 3141
## 2 48269 King Texas 0 3141
## 3 48235 Irion Texas 0.9 3140
## 4 31183 Wheeler Nebraska 1.3 3139
## 5 36061 New York New York 1.9 3138
## 6 13309 Wheeler Georgia 2.3 3136
## 7 38029 Emmons North Dakota 2.3 3136
## 8 30019 Daniels Montana 2.6 3134
## 9 31057 Dundy Nebraska 2.6 3134
## 10 46069 Hyde South Dakota 2.8 3132
## 11 51720 Norton city Virginia 2.8 3132
10(d) “On average”, the state that is best ranked for carpooling is Hawaii. I calculated this “on average” by calculating the percent of total carpooling per state using county population and carpool rates.
10(e) The top 5 states for carpooling, using the percent of total residents carpooling in the state are presented in the following table.
## # A tibble: 5 x 3
## state state_carpool_rate state_carpool_rank
## <chr> <dbl> <int>
## 1 Hawaii 14.0 1
## 2 Alaska 12.6 2
## 3 Utah 12.0 3
## 4 Wyoming 11.2 4
## 5 Arizona 11.1 5