Loading necessary packages
packages = c('spData','sp','spdep','rgdal', 'tmap', 'sf', 'tidyverse','geobr','leaflet','dplyr','heatmaply','psych')
for (p in packages){
if(!require(p, character.only = T)){
install.packages(p)
}
library(p,character.only = T)
}## Loading required package: spData
## To access larger datasets in this package, install the spDataLarge
## package with: `install.packages('spDataLarge',
## repos='https://nowosad.github.io/drat/', type='source')`
## Loading required package: sp
## Loading required package: spdep
## Loading required package: sf
## Linking to GEOS 3.8.0, GDAL 3.0.4, PROJ 6.3.1
## Loading required package: rgdal
## rgdal: version: 1.5-17, (SVN revision 1070)
## Geospatial Data Abstraction Library extensions to R successfully loaded
## Loaded GDAL runtime: GDAL 3.0.4, released 2020/01/28
## Path to GDAL shared files: C:/Users/ahhli/OneDrive/Documents/R/win-library/4.0/rgdal/gdal
## GDAL binary built with GEOS: TRUE
## Loaded PROJ runtime: Rel. 6.3.1, February 10th, 2020, [PJ_VERSION: 631]
## Path to PROJ shared files: C:/Users/ahhli/OneDrive/Documents/R/win-library/4.0/rgdal/proj
## Linking to sp version:1.4-4
## To mute warnings of possible GDAL/OSR exportToProj4() degradation,
## use options("rgdal_show_exportToProj4_warnings"="none") before loading rgdal.
## Loading required package: tmap
## Loading required package: tidyverse
## -- Attaching packages --------------------------------------- tidyverse 1.3.0 --
## v ggplot2 3.3.2 v purrr 0.3.4
## v tibble 3.0.3 v dplyr 1.0.2
## v tidyr 1.1.2 v stringr 1.4.0
## v readr 1.4.0 v forcats 0.5.0
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
## Loading required package: geobr
## Warning: package 'geobr' was built under R version 4.0.3
## Loading required package: leaflet
## Loading required package: heatmaply
## Loading required package: plotly
##
## Attaching package: 'plotly'
## The following object is masked from 'package:ggplot2':
##
## last_plot
## The following object is masked from 'package:stats':
##
## filter
## The following object is masked from 'package:graphics':
##
## layout
## Loading required package: viridis
## Loading required package: viridisLite
##
## ======================
## Welcome to heatmaply version 1.1.1
##
## Type citation('heatmaply') for how to cite the package.
## Type ?heatmaply for the main documentation.
##
## The github page is: https://github.com/talgalili/heatmaply/
## Please submit your suggestions and bug-reports at: https://github.com/talgalili/heatmaply/issues
## Or contact: <tal.galili@gmail.com>
## ======================
## Loading required package: psych
##
## Attaching package: 'psych'
## The following objects are masked from 'package:ggplot2':
##
## %+%, alpha
Load all datasets
brazil_munis <- read.csv("data/BRAZIL_CITIES.csv",sep=";")
# brazil_munis <- st_as_sf(brazil_munis,coords = c("LONG", "LAT"))
list_geobr()## # A tibble: 23 x 4
## `function` geography years source
## <chr> <chr> <chr> <chr>
## 1 `read_country` Country 1872, 1900, 1911, 1920, 1933, ~ IBGE
## 2 `read_region` Region 2000, 2001, 2010, 2013, 2014, ~ IBGE
## 3 `read_state` States 1872, 1900, 1911, 1920, 1933, ~ IBGE
## 4 `read_meso_regi~ Meso region 2000, 2001, 2010, 2013, 2014, ~ IBGE
## 5 `read_micro_reg~ Micro region 2000, 2001, 2010, 2013, 2014, ~ IBGE
## 6 `read_intermedi~ Intermediate region 2017, 2019 IBGE
## 7 `read_immediate~ Immediate region 2017, 2019 IBGE
## 8 `read_weighting~ Census weighting are~ 2010 IBGE
## 9 `read_census_tr~ Census tract (setor ~ 2000, 2010 IBGE
## 10 `read_municipal~ Municipality seats (~ 1872, 1900, 1911, 1920, 1933, ~ IBGE
## # ... with 13 more rows
## Using year 2016
##
|
| | 0%
|
|======================================================================| 100%
##
Downloading: 770 B
Downloading: 770 B
Downloading: 2.8 kB
Downloading: 2.8 kB
Downloading: 2.8 kB
Downloading: 2.8 kB
Downloading: 9 kB
Downloading: 9 kB
Downloading: 9 kB
Downloading: 9 kB
Downloading: 17 kB
Downloading: 17 kB
Downloading: 33 kB
Downloading: 33 kB
Downloading: 33 kB
Downloading: 33 kB
Downloading: 33 kB
Downloading: 33 kB
Downloading: 41 kB
Downloading: 41 kB
Downloading: 41 kB
Downloading: 41 kB
Downloading: 49 kB
Downloading: 49 kB
Downloading: 49 kB
Downloading: 49 kB
Downloading: 66 kB
Downloading: 66 kB
Downloading: 66 kB
Downloading: 66 kB
Downloading: 82 kB
Downloading: 82 kB
Downloading: 82 kB
Downloading: 82 kB
Downloading: 98 kB
Downloading: 98 kB
Downloading: 98 kB
Downloading: 98 kB
Downloading: 110 kB
Downloading: 110 kB
Downloading: 110 kB
Downloading: 110 kB
Downloading: 120 kB
Downloading: 120 kB
Downloading: 130 kB
Downloading: 130 kB
Downloading: 140 kB
Downloading: 140 kB
Downloading: 140 kB
Downloading: 140 kB
Downloading: 140 kB
Downloading: 140 kB
Downloading: 150 kB
Downloading: 150 kB
Downloading: 160 kB
Downloading: 160 kB
Downloading: 160 kB
Downloading: 160 kB
Downloading: 180 kB
Downloading: 180 kB
Downloading: 180 kB
Downloading: 180 kB
Downloading: 200 kB
Downloading: 200 kB
Downloading: 200 kB
Downloading: 200 kB
Downloading: 210 kB
Downloading: 210 kB
Downloading: 210 kB
Downloading: 210 kB
Downloading: 230 kB
Downloading: 230 kB
Downloading: 230 kB
Downloading: 230 kB
Downloading: 230 kB
Downloading: 230 kB
Downloading: 240 kB
Downloading: 240 kB
Downloading: 240 kB
Downloading: 240 kB
Downloading: 240 kB
Downloading: 240 kB
Downloading: 240 kB
Downloading: 240 kB
Downloading: 250 kB
Downloading: 250 kB
Downloading: 260 kB
Downloading: 260 kB
Downloading: 270 kB
Downloading: 270 kB
Downloading: 270 kB
Downloading: 270 kB
Downloading: 280 kB
Downloading: 280 kB
Downloading: 290 kB
Downloading: 290 kB
Downloading: 290 kB
Downloading: 290 kB
Downloading: 310 kB
Downloading: 310 kB
Downloading: 310 kB
Downloading: 310 kB
Downloading: 320 kB
Downloading: 320 kB
Downloading: 320 kB
Downloading: 320 kB
Downloading: 330 kB
Downloading: 330 kB
Downloading: 340 kB
Downloading: 340 kB
Downloading: 340 kB
Downloading: 340 kB
Downloading: 340 kB
Downloading: 340 kB
Downloading: 350 kB
Downloading: 350 kB
Downloading: 360 kB
Downloading: 360 kB
Downloading: 370 kB
Downloading: 370 kB
Downloading: 370 kB
Downloading: 370 kB
Downloading: 370 kB
Downloading: 370 kB
Downloading: 370 kB
Downloading: 370 kB
Downloading: 370 kB
Downloading: 370 kB
Downloading: 380 kB
Downloading: 380 kB
Downloading: 380 kB
Downloading: 380 kB
Downloading: 390 kB
Downloading: 390 kB
Downloading: 400 kB
Downloading: 400 kB
Downloading: 410 kB
Downloading: 410 kB
Downloading: 410 kB
Downloading: 410 kB
Downloading: 410 kB
Downloading: 410 kB
Downloading: 410 kB
Downloading: 410 kB
Downloading: 420 kB
Downloading: 420 kB
Downloading: 420 kB
Downloading: 420 kB
Downloading: 430 kB
Downloading: 430 kB
Downloading: 430 kB
Downloading: 430 kB
Downloading: 430 kB
Downloading: 430 kB
Downloading: 440 kB
Downloading: 440 kB
Downloading: 440 kB
Downloading: 440 kB
Downloading: 450 kB
Downloading: 450 kB
Downloading: 450 kB
Downloading: 450 kB
Downloading: 450 kB
Downloading: 450 kB
Downloading: 460 kB
Downloading: 460 kB
Downloading: 460 kB
Downloading: 460 kB
Downloading: 470 kB
Downloading: 470 kB
Downloading: 470 kB
Downloading: 470 kB
Downloading: 470 kB
Downloading: 470 kB
Downloading: 480 kB
Downloading: 480 kB
Downloading: 480 kB
Downloading: 480 kB
Downloading: 490 kB
Downloading: 490 kB
Downloading: 490 kB
Downloading: 490 kB
Downloading: 490 kB
Downloading: 490 kB
Downloading: 490 kB
Downloading: 490 kB
Downloading: 490 kB
Downloading: 490 kB
Downloading: 500 kB
Downloading: 500 kB
Downloading: 500 kB
Downloading: 500 kB
Downloading: 510 kB
Downloading: 510 kB
Downloading: 510 kB
Downloading: 510 kB
Downloading: 520 kB
Downloading: 520 kB
Downloading: 520 kB
Downloading: 520 kB
Downloading: 530 kB
Downloading: 530 kB
Downloading: 530 kB
Downloading: 530 kB
Downloading: 540 kB
Downloading: 540 kB
Downloading: 540 kB
Downloading: 540 kB
Downloading: 540 kB
Downloading: 540 kB
Downloading: 540 kB
Downloading: 540 kB
Downloading: 540 kB
Downloading: 540 kB
Downloading: 550 kB
Downloading: 550 kB
Downloading: 560 kB
Downloading: 560 kB
Downloading: 570 kB
Downloading: 570 kB
Downloading: 570 kB
Downloading: 570 kB
Downloading: 570 kB
Downloading: 570 kB
Downloading: 580 kB
Downloading: 580 kB
Downloading: 580 kB
Downloading: 580 kB
Downloading: 580 kB
Downloading: 580 kB
Downloading: 580 kB
Downloading: 580 kB
Downloading: 590 kB
Downloading: 590 kB
Downloading: 590 kB
Downloading: 590 kB
Downloading: 600 kB
Downloading: 600 kB
Downloading: 610 kB
Downloading: 610 kB
Downloading: 620 kB
Downloading: 620 kB
Downloading: 620 kB
Downloading: 620 kB
Downloading: 630 kB
Downloading: 630 kB
Downloading: 640 kB
Downloading: 640 kB
Downloading: 650 kB
Downloading: 650 kB
Downloading: 660 kB
Downloading: 660 kB
Downloading: 660 kB
Downloading: 660 kB
Downloading: 660 kB
Downloading: 660 kB
Downloading: 670 kB
Downloading: 670 kB
Downloading: 670 kB
Downloading: 670 kB
Downloading: 670 kB
Downloading: 670 kB
Downloading: 680 kB
Downloading: 680 kB
Downloading: 680 kB
Downloading: 680 kB
Downloading: 680 kB
Downloading: 680 kB
Downloading: 700 kB
Downloading: 700 kB
Downloading: 710 kB
Downloading: 710 kB
Downloading: 730 kB
Downloading: 730 kB
Downloading: 750 kB
Downloading: 750 kB
Downloading: 760 kB
Downloading: 760 kB
Downloading: 780 kB
Downloading: 780 kB
Downloading: 790 kB
Downloading: 790 kB
Downloading: 790 kB
Downloading: 790 kB
Downloading: 800 kB
Downloading: 800 kB
Downloading: 800 kB
Downloading: 800 kB
Downloading: 810 kB
Downloading: 810 kB
Downloading: 820 kB
Downloading: 820 kB
Downloading: 830 kB
Downloading: 830 kB
Downloading: 830 kB
Downloading: 830 kB
Downloading: 830 kB
Downloading: 830 kB
Downloading: 840 kB
Downloading: 840 kB
Downloading: 850 kB
Downloading: 850 kB
Downloading: 860 kB
Downloading: 860 kB
Downloading: 870 kB
Downloading: 870 kB
Downloading: 870 kB
Downloading: 870 kB
Downloading: 880 kB
Downloading: 880 kB
Downloading: 880 kB
Downloading: 880 kB
Downloading: 880 kB
Downloading: 880 kB
Downloading: 880 kB
Downloading: 880 kB
Downloading: 880 kB
Downloading: 880 kB
Downloading: 890 kB
Downloading: 890 kB
Downloading: 890 kB
Downloading: 890 kB
Downloading: 890 kB
Downloading: 890 kB
Downloading: 900 kB
Downloading: 900 kB
Downloading: 910 kB
Downloading: 910 kB
Downloading: 910 kB
Downloading: 910 kB
Downloading: 910 kB
Downloading: 910 kB
Downloading: 920 kB
Downloading: 920 kB
Downloading: 920 kB
Downloading: 920 kB
Downloading: 930 kB
Downloading: 930 kB
Downloading: 940 kB
Downloading: 940 kB
Downloading: 950 kB
Downloading: 950 kB
Downloading: 960 kB
Downloading: 960 kB
Downloading: 960 kB
Downloading: 960 kB
Downloading: 970 kB
Downloading: 970 kB
Downloading: 970 kB
Downloading: 970 kB
Downloading: 970 kB
Downloading: 970 kB
Downloading: 980 kB
Downloading: 980 kB
Downloading: 980 kB
Downloading: 980 kB
Downloading: 990 kB
Downloading: 990 kB
Downloading: 990 kB
Downloading: 990 kB
Downloading: 1,000 kB
Downloading: 1,000 kB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
## Using year 2016
##
|
| | 0%
|
|======================================================================| 100%
##
Downloading: 1.2 kB
Downloading: 1.2 kB
Downloading: 1.9 kB
Downloading: 1.9 kB
Downloading: 1.9 kB
Downloading: 1.9 kB
Downloading: 10 kB
Downloading: 10 kB
Downloading: 18 kB
Downloading: 18 kB
Downloading: 26 kB
Downloading: 26 kB
Downloading: 34 kB
Downloading: 34 kB
Downloading: 34 kB
Downloading: 34 kB
Downloading: 42 kB
Downloading: 42 kB
Downloading: 51 kB
Downloading: 51 kB
Downloading: 59 kB
Downloading: 59 kB
Downloading: 59 kB
Downloading: 59 kB
Downloading: 67 kB
Downloading: 67 kB
Downloading: 67 kB
Downloading: 67 kB
Downloading: 67 kB
Downloading: 67 kB
Downloading: 75 kB
Downloading: 75 kB
Downloading: 83 kB
Downloading: 83 kB
Downloading: 83 kB
Downloading: 83 kB
Downloading: 91 kB
Downloading: 91 kB
Downloading: 99 kB
Downloading: 99 kB
Downloading: 110 kB
Downloading: 110 kB
Downloading: 120 kB
Downloading: 120 kB
Downloading: 120 kB
Downloading: 120 kB
Downloading: 140 kB
Downloading: 140 kB
Downloading: 150 kB
Downloading: 150 kB
Downloading: 160 kB
Downloading: 160 kB
Downloading: 160 kB
Downloading: 160 kB
Downloading: 160 kB
Downloading: 160 kB
Downloading: 160 kB
Downloading: 160 kB
Downloading: 170 kB
Downloading: 170 kB
Downloading: 180 kB
Downloading: 180 kB
Downloading: 180 kB
Downloading: 180 kB
Downloading: 190 kB
Downloading: 190 kB
Downloading: 190 kB
Downloading: 190 kB
Downloading: 190 kB
Downloading: 190 kB
Downloading: 200 kB
Downloading: 200 kB
Downloading: 200 kB
Downloading: 200 kB
Downloading: 210 kB
Downloading: 210 kB
Downloading: 220 kB
Downloading: 220 kB
Downloading: 230 kB
Downloading: 230 kB
Downloading: 240 kB
Downloading: 240 kB
Downloading: 240 kB
Downloading: 240 kB
Downloading: 250 kB
Downloading: 250 kB
Downloading: 260 kB
Downloading: 260 kB
Downloading: 270 kB
Downloading: 270 kB
Downloading: 280 kB
Downloading: 280 kB
Downloading: 280 kB
Downloading: 280 kB
Downloading: 290 kB
Downloading: 290 kB
Downloading: 290 kB
Downloading: 290 kB
Downloading: 290 kB
Downloading: 290 kB
Downloading: 300 kB
Downloading: 300 kB
Downloading: 310 kB
Downloading: 310 kB
Downloading: 310 kB
Downloading: 310 kB
Downloading: 310 kB
Downloading: 310 kB
Downloading: 310 kB
Downloading: 310 kB
Downloading: 320 kB
Downloading: 320 kB
Downloading: 330 kB
Downloading: 330 kB
Downloading: 330 kB
Downloading: 330 kB
Downloading: 340 kB
Downloading: 340 kB
Downloading: 340 kB
Downloading: 340 kB
Downloading: 350 kB
Downloading: 350 kB
Downloading: 360 kB
Downloading: 360 kB
Downloading: 370 kB
Downloading: 370 kB
Downloading: 370 kB
Downloading: 370 kB
Downloading: 380 kB
Downloading: 380 kB
Downloading: 390 kB
Downloading: 390 kB
Downloading: 400 kB
Downloading: 400 kB
Downloading: 400 kB
Downloading: 400 kB
Downloading: 410 kB
Downloading: 410 kB
Downloading: 410 kB
Downloading: 410 kB
Downloading: 420 kB
Downloading: 420 kB
Downloading: 420 kB
Downloading: 420 kB
Downloading: 430 kB
Downloading: 430 kB
Downloading: 430 kB
Downloading: 430 kB
Downloading: 440 kB
Downloading: 440 kB
Downloading: 440 kB
Downloading: 440 kB
Downloading: 440 kB
Downloading: 440 kB
Downloading: 450 kB
Downloading: 450 kB
Downloading: 460 kB
Downloading: 460 kB
Downloading: 470 kB
Downloading: 470 kB
Downloading: 480 kB
Downloading: 480 kB
Downloading: 480 kB
Downloading: 480 kB
Downloading: 480 kB
Downloading: 480 kB
Downloading: 490 kB
Downloading: 490 kB
Downloading: 500 kB
Downloading: 500 kB
Downloading: 510 kB
Downloading: 510 kB
Downloading: 520 kB
Downloading: 520 kB
Downloading: 530 kB
Downloading: 530 kB
Downloading: 530 kB
Downloading: 530 kB
Downloading: 540 kB
Downloading: 540 kB
Downloading: 540 kB
Downloading: 540 kB
Downloading: 540 kB
Downloading: 540 kB
Downloading: 550 kB
Downloading: 550 kB
Downloading: 560 kB
Downloading: 560 kB
Downloading: 560 kB
Downloading: 560 kB
Downloading: 570 kB
Downloading: 570 kB
Downloading: 580 kB
Downloading: 580 kB
Downloading: 580 kB
Downloading: 580 kB
Downloading: 580 kB
Downloading: 580 kB
Downloading: 590 kB
Downloading: 590 kB
Downloading: 600 kB
Downloading: 600 kB
Downloading: 610 kB
Downloading: 610 kB
Downloading: 610 kB
Downloading: 610 kB
Downloading: 620 kB
Downloading: 620 kB
Downloading: 630 kB
Downloading: 630 kB
Downloading: 630 kB
Downloading: 630 kB
Downloading: 650 kB
Downloading: 650 kB
Downloading: 660 kB
Downloading: 660 kB
Downloading: 660 kB
Downloading: 660 kB
Downloading: 670 kB
Downloading: 670 kB
Downloading: 670 kB
Downloading: 670 kB
Downloading: 670 kB
Downloading: 670 kB
Downloading: 680 kB
Downloading: 680 kB
Downloading: 680 kB
Downloading: 680 kB
Downloading: 690 kB
Downloading: 690 kB
Downloading: 690 kB
Downloading: 690 kB
Downloading: 700 kB
Downloading: 700 kB
Downloading: 710 kB
Downloading: 710 kB
Downloading: 710 kB
Downloading: 710 kB
Downloading: 730 kB
Downloading: 730 kB
Downloading: 740 kB
Downloading: 740 kB
Downloading: 740 kB
Downloading: 740 kB
Downloading: 750 kB
Downloading: 750 kB
Downloading: 750 kB
Downloading: 750 kB
Downloading: 770 kB
Downloading: 770 kB
Downloading: 770 kB
Downloading: 770 kB
Downloading: 780 kB
Downloading: 780 kB
Downloading: 790 kB
Downloading: 790 kB
Downloading: 790 kB
Downloading: 790 kB
Downloading: 800 kB
Downloading: 800 kB
Downloading: 800 kB
Downloading: 800 kB
Downloading: 800 kB
Downloading: 800 kB
Downloading: 800 kB
Downloading: 800 kB
Downloading: 810 kB
Downloading: 810 kB
Downloading: 810 kB
Downloading: 810 kB
Downloading: 820 kB
Downloading: 820 kB
Downloading: 820 kB
Downloading: 820 kB
Downloading: 830 kB
Downloading: 830 kB
Downloading: 830 kB
Downloading: 830 kB
Downloading: 840 kB
Downloading: 840 kB
Downloading: 840 kB
Downloading: 840 kB
Downloading: 850 kB
Downloading: 850 kB
Downloading: 860 kB
Downloading: 860 kB
Downloading: 860 kB
Downloading: 860 kB
Downloading: 860 kB
Downloading: 860 kB
Downloading: 870 kB
Downloading: 870 kB
Downloading: 880 kB
Downloading: 880 kB
Downloading: 880 kB
Downloading: 880 kB
Downloading: 880 kB
Downloading: 880 kB
Downloading: 890 kB
Downloading: 890 kB
Downloading: 890 kB
Downloading: 890 kB
Downloading: 890 kB
Downloading: 890 kB
Downloading: 910 kB
Downloading: 910 kB
Downloading: 910 kB
Downloading: 910 kB
Downloading: 920 kB
Downloading: 920 kB
Downloading: 920 kB
Downloading: 920 kB
Downloading: 920 kB
Downloading: 920 kB
Downloading: 920 kB
Downloading: 920 kB
Downloading: 920 kB
Downloading: 920 kB
Downloading: 930 kB
Downloading: 930 kB
Downloading: 940 kB
Downloading: 940 kB
Downloading: 940 kB
Downloading: 940 kB
Downloading: 940 kB
Downloading: 940 kB
Downloading: 950 kB
Downloading: 950 kB
Downloading: 950 kB
Downloading: 950 kB
Downloading: 950 kB
Downloading: 950 kB
Downloading: 960 kB
Downloading: 960 kB
Downloading: 960 kB
Downloading: 960 kB
Downloading: 970 kB
Downloading: 970 kB
Downloading: 970 kB
Downloading: 970 kB
Downloading: 970 kB
Downloading: 970 kB
Downloading: 980 kB
Downloading: 980 kB
Downloading: 980 kB
Downloading: 980 kB
Downloading: 1,000 kB
Downloading: 1,000 kB
Downloading: 1,000 kB
Downloading: 1,000 kB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.9 MB
Downloading: 1.9 MB
Downloading: 1.9 MB
Downloading: 1.9 MB
Downloading: 1.9 MB
Downloading: 1.9 MB
Downloading: 1.9 MB
Downloading: 1.9 MB
Downloading: 1.9 MB
Downloading: 1.9 MB
Downloading: 1.9 MB
Downloading: 1.9 MB
Downloading: 1.9 MB
Downloading: 1.9 MB
Downloading: 1.9 MB
Downloading: 1.9 MB
Downloading: 1.9 MB
Downloading: 1.9 MB
Downloading: 1.9 MB
Downloading: 1.9 MB
Downloading: 1.9 MB
Downloading: 1.9 MB
Downloading: 1.9 MB
Downloading: 1.9 MB
Downloading: 1.9 MB
Downloading: 1.9 MB
Downloading: 1.9 MB
Downloading: 1.9 MB
Downloading: 1.9 MB
Downloading: 1.9 MB
Downloading: 1.9 MB
Downloading: 1.9 MB
Downloading: 1.9 MB
Downloading: 1.9 MB
Downloading: 2 MB
Downloading: 2 MB
Downloading: 2 MB
Downloading: 2 MB
Downloading: 2 MB
Downloading: 2 MB
Downloading: 2 MB
Downloading: 2 MB
Downloading: 2 MB
Downloading: 2 MB
Downloading: 2 MB
Downloading: 2 MB
Downloading: 2 MB
Downloading: 2 MB
Downloading: 2 MB
Downloading: 2 MB
Downloading: 2 MB
Downloading: 2 MB
Downloading: 2 MB
Downloading: 2 MB
Downloading: 2 MB
Downloading: 2 MB
Downloading: 2 MB
Downloading: 2 MB
Downloading: 2 MB
Downloading: 2 MB
Downloading: 2 MB
Downloading: 2 MB
Downloading: 2 MB
Downloading: 2 MB
Downloading: 2 MB
Downloading: 2 MB
Downloading: 2 MB
Downloading: 2 MB
Downloading: 2.1 MB
Downloading: 2.1 MB
Downloading: 2.1 MB
Downloading: 2.1 MB
Downloading: 2.1 MB
Downloading: 2.1 MB
Downloading: 2.1 MB
Downloading: 2.1 MB
Downloading: 2.1 MB
Downloading: 2.1 MB
Downloading: 2.1 MB
Downloading: 2.1 MB
Downloading: 2.1 MB
Downloading: 2.1 MB
Downloading: 2.1 MB
Downloading: 2.1 MB
Downloading: 2.2 MB
Downloading: 2.2 MB
Downloading: 2.2 MB
Downloading: 2.2 MB
Downloading: 2.2 MB
Downloading: 2.2 MB
Downloading: 2.2 MB
Downloading: 2.2 MB
Downloading: 2.2 MB
Downloading: 2.2 MB
Downloading: 2.2 MB
Downloading: 2.2 MB
Downloading: 2.2 MB
Downloading: 2.2 MB
Downloading: 2.2 MB
Downloading: 2.2 MB
Downloading: 2.2 MB
Downloading: 2.2 MB
Downloading: 2.2 MB
Downloading: 2.2 MB
Downloading: 2.3 MB
Downloading: 2.3 MB
Downloading: 2.3 MB
Downloading: 2.3 MB
Downloading: 2.3 MB
Downloading: 2.3 MB
Downloading: 2.3 MB
Downloading: 2.3 MB
Downloading: 2.3 MB
Downloading: 2.3 MB
Downloading: 2.3 MB
Downloading: 2.3 MB
Downloading: 2.3 MB
Downloading: 2.3 MB
Downloading: 2.3 MB
Downloading: 2.3 MB
Downloading: 2.3 MB
Downloading: 2.3 MB
Downloading: 2.3 MB
Downloading: 2.3 MB
Downloading: 2.3 MB
Downloading: 2.3 MB
Downloading: 2.3 MB
Downloading: 2.3 MB
Downloading: 2.3 MB
Downloading: 2.3 MB
Downloading: 2.3 MB
Downloading: 2.3 MB
Downloading: 2.3 MB
Downloading: 2.3 MB
Downloading: 2.3 MB
Downloading: 2.3 MB
Downloading: 2.3 MB
Downloading: 2.3 MB
Downloading: 2.3 MB
Downloading: 2.3 MB
Downloading: 2.4 MB
Downloading: 2.4 MB
Downloading: 2.4 MB
Downloading: 2.4 MB
Downloading: 2.4 MB
Downloading: 2.4 MB
Downloading: 2.4 MB
Downloading: 2.4 MB
Downloading: 2.4 MB
Downloading: 2.4 MB
Downloading: 2.4 MB
Downloading: 2.4 MB
Downloading: 2.4 MB
Downloading: 2.4 MB
Downloading: 2.4 MB
Downloading: 2.4 MB
Downloading: 2.4 MB
Downloading: 2.4 MB
Downloading: 2.4 MB
Downloading: 2.4 MB
Downloading: 2.4 MB
Downloading: 2.4 MB
Downloading: 2.4 MB
Downloading: 2.4 MB
Downloading: 2.4 MB
Downloading: 2.4 MB
Downloading: 2.4 MB
Downloading: 2.4 MB
Downloading: 2.4 MB
Downloading: 2.4 MB
Downloading: 2.5 MB
Downloading: 2.5 MB
Downloading: 2.5 MB
Downloading: 2.5 MB
Downloading: 2.5 MB
Downloading: 2.5 MB
Downloading: 2.5 MB
Downloading: 2.5 MB
Downloading: 2.5 MB
Downloading: 2.5 MB
Downloading: 2.5 MB
Downloading: 2.5 MB
Downloading: 2.5 MB
Downloading: 2.5 MB
Downloading: 2.5 MB
Downloading: 2.5 MB
Downloading: 2.5 MB
Downloading: 2.5 MB
Downloading: 2.5 MB
Downloading: 2.5 MB
Downloading: 2.5 MB
Downloading: 2.5 MB
Downloading: 2.5 MB
Downloading: 2.5 MB
Downloading: 2.5 MB
Downloading: 2.5 MB
Downloading: 2.5 MB
Downloading: 2.5 MB
Downloading: 2.6 MB
Downloading: 2.6 MB
Downloading: 2.6 MB
Downloading: 2.6 MB
Downloading: 2.6 MB
Downloading: 2.6 MB
Downloading: 2.6 MB
Downloading: 2.6 MB
Downloading: 2.6 MB
Downloading: 2.6 MB
Downloading: 2.6 MB
Downloading: 2.6 MB
Downloading: 2.6 MB
Downloading: 2.6 MB
Downloading: 2.6 MB
Downloading: 2.6 MB
Downloading: 2.6 MB
Downloading: 2.6 MB
Downloading: 2.6 MB
Downloading: 2.6 MB
Downloading: 2.6 MB
Downloading: 2.6 MB
Downloading: 2.6 MB
Downloading: 2.6 MB
Downloading: 2.6 MB
Downloading: 2.6 MB
Downloading: 2.6 MB
Downloading: 2.6 MB
Downloading: 2.6 MB
Downloading: 2.6 MB
Downloading: 2.7 MB
Downloading: 2.7 MB
Downloading: 2.7 MB
Downloading: 2.7 MB
Downloading: 2.7 MB
Downloading: 2.7 MB
Downloading: 2.7 MB
Downloading: 2.7 MB
Downloading: 2.7 MB
Downloading: 2.7 MB
Downloading: 2.7 MB
Downloading: 2.7 MB
Downloading: 2.7 MB
Downloading: 2.7 MB
Downloading: 2.7 MB
Downloading: 2.7 MB
Downloading: 2.7 MB
Downloading: 2.7 MB
Downloading: 2.7 MB
Downloading: 2.7 MB
Downloading: 2.7 MB
Downloading: 2.7 MB
Downloading: 2.7 MB
Downloading: 2.7 MB
Downloading: 2.7 MB
Downloading: 2.7 MB
Downloading: 2.7 MB
Downloading: 2.7 MB
Downloading: 2.7 MB
Downloading: 2.7 MB
Downloading: 2.7 MB
Downloading: 2.7 MB
Downloading: 2.7 MB
Downloading: 2.7 MB
Downloading: 2.7 MB
Downloading: 2.7 MB
Downloading: 2.7 MB
Downloading: 2.7 MB
Downloading: 2.7 MB
Downloading: 2.7 MB
Downloading: 2.8 MB
Downloading: 2.8 MB
Downloading: 2.8 MB
Downloading: 2.8 MB
Downloading: 2.8 MB
Downloading: 2.8 MB
Part 0: Data preparation
Metropolitan Regions under São Paulo Macrometropolis: 1. Metropolitan Region of São Paulo 2. Metropolitan Region of Campinas 3. Metropolitan Region of Vale do Paraíba e Litoral Norte 4. Metropolitan Region of Sorocaba 5. Metropolitan Region of Baixada Santista 6. Piracicaba Urban Agglomeration 7. Jundiaí Urban Agglomeration 8. Regional Unit of Bragança Paulista city
According to Wikipedia, there are 174 municipalities.
# Extract munis under all metropolitan regions belonging to São Paulo Macrometropolis
SP_munis <- metro %>%
select(code_muni,name_muni,abbrev_state, geom) %>%
filter(abbrev_state == "SP")
additional_munis <- muni %>%
select(code_muni,name_muni,abbrev_state, geom) %>%
filter(code_muni %in% c(3504107,3507100,3532405,3538600,3525508,3556354,3507605,3554953,3538204,3536802))
final_munis <- rbind(SP_munis,additional_munis)
# Join with all municipalities for more columns
muni_2016 <- left_join(final_munis, brazil_munis,by=c("name_muni"="CITY"))
# Remove duplicates
muni_2016<-muni_2016[!duplicated(muni_2016$name_muni), ]After removing the duplicates, we can see from the rstudio environment that there are in total 174 municipalities, which is aligned with the information from wikipedia.
Below is the plot of São Paulo Macrometropolis
Proportion of total number of companies under each industry type that is contributed by each municipality level is calculated as shown below.
muni_2016_derived <- muni_2016 %>%
mutate('INDUSTRY_A' = muni_2016$COMP_A/sum(muni_2016$COMP_A, na.rm = TRUE)) %>%
mutate('INDUSTRY_B' = muni_2016$COMP_B/sum(muni_2016$COMP_B, na.rm = TRUE)) %>%
mutate('INDUSTRY_C' = muni_2016$COMP_C/sum(muni_2016$COMP_C, na.rm = TRUE)) %>%
mutate('INDUSTRY_D' = muni_2016$COMP_D/sum(muni_2016$COMP_D, na.rm = TRUE)) %>%
mutate('INDUSTRY_E' = muni_2016$COMP_E/sum(muni_2016$COMP_E, na.rm = TRUE)) %>%
mutate('INDUSTRY_F' = muni_2016$COMP_F/sum(muni_2016$COMP_F, na.rm = TRUE)) %>%
mutate('INDUSTRY_G' = muni_2016$COMP_G/sum(muni_2016$COMP_G, na.rm = TRUE)) %>%
mutate('INDUSTRY_H' = muni_2016$COMP_H/sum(muni_2016$COMP_H, na.rm = TRUE)) %>%
mutate('INDUSTRY_I' = muni_2016$COMP_I/sum(muni_2016$COMP_I, na.rm = TRUE)) %>%
mutate('INDUSTRY_J' = muni_2016$COMP_J/sum(muni_2016$COMP_J, na.rm = TRUE)) %>%
mutate('INDUSTRY_K' = muni_2016$COMP_K/sum(muni_2016$COMP_K, na.rm = TRUE)) %>%
mutate('INDUSTRY_L' = muni_2016$COMP_L/sum(muni_2016$COMP_L, na.rm = TRUE)) %>%
mutate('INDUSTRY_M' = muni_2016$COMP_M/sum(muni_2016$COMP_M, na.rm = TRUE)) %>%
mutate('INDUSTRY_N' = muni_2016$COMP_N/sum(muni_2016$COMP_N, na.rm = TRUE)) %>%
mutate('INDUSTRY_O' = muni_2016$COMP_O/sum(muni_2016$COMP_O, na.rm = TRUE)) %>%
mutate('INDUSTRY_P' = muni_2016$COMP_P/sum(muni_2016$COMP_P, na.rm = TRUE)) %>%
mutate('INDUSTRY_Q' = muni_2016$COMP_Q/sum(muni_2016$COMP_Q, na.rm = TRUE)) %>%
mutate('INDUSTRY_R' = muni_2016$COMP_R/sum(muni_2016$COMP_R, na.rm = TRUE)) %>%
mutate('INDUSTRY_S' = muni_2016$COMP_S/sum(muni_2016$COMP_S, na.rm = TRUE)) %>%
mutate('INDUSTRY_T' = muni_2016$COMP_T/sum(muni_2016$COMP_T, na.rm = TRUE)) %>%
mutate('INDUSTRY_U' = muni_2016$COMP_U/sum(muni_2016$COMP_U, na.rm = TRUE)) %>%
select(name_muni,INDUSTRY_A,INDUSTRY_B,INDUSTRY_C,INDUSTRY_D,INDUSTRY_E,INDUSTRY_F,INDUSTRY_G,INDUSTRY_H,INDUSTRY_I,INDUSTRY_J,INDUSTRY_K,INDUSTRY_L,INDUSTRY_M,INDUSTRY_N,INDUSTRY_O,INDUSTRY_P,INDUSTRY_Q,INDUSTRY_R,INDUSTRY_S,INDUSTRY_T,INDUSTRY_U)Part1: Plotting of choropleth maps showing the distribution of spatial specialisation by industry type, 2016 at municipality level.
muni_2016_derived[is.na(muni_2016_derived)] <- 0
A.map <- tm_shape(muni_2016_derived) +
tm_fill(col = "INDUSTRY_A",
n = 5,
style = "jenks",
title = "Proportion of Industry A for each municipality") +
tm_borders(alpha = 0.5)
B.map <- tm_shape(muni_2016_derived) +
tm_fill(col = "INDUSTRY_B",
n = 5,
style = "jenks",
title = "Proportion of Industry B for each municipality") +
tm_borders(alpha = 0.5)
C.map <- tm_shape(muni_2016_derived) +
tm_fill(col = "INDUSTRY_C",
n = 5,
style = "jenks",
title = "Proportion of Industry C for each municipality") +
tm_borders(alpha = 0.5)
D.map <- tm_shape(muni_2016_derived) +
tm_fill(col = "INDUSTRY_D",
n = 5,
style = "jenks",
title = "Proportion of Industry D for each municipality") +
tm_borders(alpha = 0.5)
E.map <- tm_shape(muni_2016_derived) +
tm_fill(col = "INDUSTRY_E",
n = 5,
style = "jenks",
title = "Proportion of Industry E for each municipality") +
tm_borders(alpha = 0.5)
F.map <- tm_shape(muni_2016_derived) +
tm_fill(col = "INDUSTRY_F",
n = 5,
style = "jenks",
title = "Proportion of Industry F for each municipality") +
tm_borders(alpha = 0.5)
G.map <- tm_shape(muni_2016_derived) +
tm_fill(col = "INDUSTRY_G",
n = 5,
style = "jenks",
title = "Proportion of Industry G for each municipality") +
tm_borders(alpha = 0.5)
H.map <- tm_shape(muni_2016_derived) +
tm_fill(col = "INDUSTRY_H",
n = 5,
style = "jenks",
title = "Proportion of Industry H for each municipality") +
tm_borders(alpha = 0.5)
I.map <- tm_shape(muni_2016_derived) +
tm_fill(col = "INDUSTRY_I",
n = 5,
style = "jenks",
title = "Proportion of Industry I for each municipality") +
tm_borders(alpha = 0.5)
J.map <- tm_shape(muni_2016_derived) +
tm_fill(col = "INDUSTRY_J",
n = 5,
style = "jenks",
title = "Proportion of Industry J for each municipality") +
tm_borders(alpha = 0.5)
K.map <- tm_shape(muni_2016_derived) +
tm_fill(col = "INDUSTRY_K",
n = 5,
style = "jenks",
title = "Proportion of Industry K for each municipality") +
tm_borders(alpha = 0.5)
L.map <- tm_shape(muni_2016_derived) +
tm_fill(col = "INDUSTRY_L",
n = 5,
style = "jenks",
title = "Proportion of Industry L for each municipality") +
tm_borders(alpha = 0.5)
M.map <- tm_shape(muni_2016_derived) +
tm_fill(col = "INDUSTRY_M",
n = 5,
style = "jenks",
title = "Proportion of Industry M for each municipality") +
tm_borders(alpha = 0.5)
N.map <- tm_shape(muni_2016_derived) +
tm_fill(col = "INDUSTRY_N",
n = 5,
style = "jenks",
title = "Proportion of Industry N for each municipality") +
tm_borders(alpha = 0.5)
O.map <- tm_shape(muni_2016_derived) +
tm_fill(col = "INDUSTRY_O",
n = 5,
style = "jenks",
title = "Proportion of Industry O for each municipality") +
tm_borders(alpha = 0.5)
P.map <- tm_shape(muni_2016_derived) +
tm_fill(col = "INDUSTRY_P",
n = 5,
style = "jenks",
title = "Proportion of Industry P for each municipality") +
tm_borders(alpha = 0.5)
Q.map <- tm_shape(muni_2016_derived) +
tm_fill(col = "INDUSTRY_Q",
n = 5,
style = "jenks",
title = "Proportion of Industry Q for each municipality") +
tm_borders(alpha = 0.5)
R.map <- tm_shape(muni_2016_derived) +
tm_fill(col = "INDUSTRY_R",
n = 5,
style = "jenks",
title = "Proportion of Industry R for each municipality") +
tm_borders(alpha = 0.5)
S.map <- tm_shape(muni_2016_derived) +
tm_fill(col = "INDUSTRY_S",
n = 5,
style = "jenks",
title = "Proportion of Industry S for each municipality") +
tm_borders(alpha = 0.5)
T.map <- tm_shape(muni_2016_derived) +
tm_fill(col = "INDUSTRY_T",
n = 5,
style = "jenks",
title = "Proportion of Industry T for each municipality") +
tm_borders(alpha = 0.5)
U.map <- tm_shape(muni_2016_derived) +
tm_fill(col = "INDUSTRY_U",
n = 5,
style = "jenks",
title = "Proportion of Industry U for each municipality") +
tm_borders(alpha = 0.5) Tmaps of Industry A,B,C,D:
## tmap mode set to plotting
Tmaps of Industry E,F,G,H:
## tmap mode set to plotting
Tmaps of Industry I,J,K,L:
## tmap mode set to plotting
Tmaps of Industry M,N,O,P:
## tmap mode set to plotting
Tmaps of Industry Q,R,S,T:
## tmap mode set to plotting
Tmap of Industry U:
Based on the choropleth plots above, Industry T is not found in any of the municipalities. Thus, we will remove column “INDUSTRY_T”.
Part 2: Delineating industry specialisation clusters by using hierarchical clustering method
2.1. Extracting clustering variables
## name_muni INDUSTRY_A INDUSTRY_B INDUSTRY_C INDUSTRY_D
## 1 Cabreúva 0.000000000 0.000000000 0.000000000 0.00000000
## 2 Campo Limpo Paulista 0.001685275 0.000000000 0.005041400 0.00000000
## 3 Itupeva 0.004107858 0.009933775 0.009147970 0.02040816
## 4 Jarinu 0.003054561 0.006622517 0.002437233 0.00000000
## 5 Jundiaí 0.000000000 0.000000000 0.000000000 0.00000000
## 6 Louveira 0.003581209 0.000000000 0.004841079 0.00000000
## 7 Várzea Paulista 0.000000000 0.000000000 0.000000000 0.00000000
## 8 Águas De São Pedro 0.000000000 0.000000000 0.000000000 0.00000000
## 9 Analândia 0.000000000 0.000000000 0.000000000 0.00000000
## 10 Araras 0.036128081 0.016556291 0.016059028 0.02040816
## INDUSTRY_E INDUSTRY_F INDUSTRY_G INDUSTRY_H INDUSTRY_I INDUSTRY_J
## 1 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000
## 2 0.001978239 0.004087560 0.003426166 0.002809444 0.003014514 0.003735745
## 3 0.008902077 0.005109450 0.004359217 0.005456805 0.004986974 0.003244200
## 4 0.001978239 0.002205131 0.002224395 0.002809444 0.002642352 0.002654345
## 5 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000
## 6 0.005934718 0.003764858 0.003672491 0.005726944 0.003796055 0.002064491
## 7 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000
## 8 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000
## 9 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000
## 10 0.014836795 0.012531598 0.013555375 0.014533470 0.011164868 0.008454581
## INDUSTRY_K INDUSTRY_L INDUSTRY_M INDUSTRY_N INDUSTRY_O INDUSTRY_P
## 1 0.0000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000
## 2 0.0014478764 0.002501737 0.002869587 0.001840924 0.005813953 0.007145895
## 3 0.0040218790 0.008895066 0.004048168 0.003782721 0.011627907 0.005189281
## 4 0.0008043758 0.001111883 0.001793492 0.001916578 0.005813953 0.003147597
## 5 0.0000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000
## 6 0.0012870013 0.003335650 0.001998463 0.001639179 0.011627907 0.003317737
## 7 0.0000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000
## 8 0.0000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000
## 9 0.0000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000
## 10 0.0098133848 0.009589993 0.009223674 0.007918495 0.011627907 0.009527860
## INDUSTRY_Q INDUSTRY_R INDUSTRY_S INDUSTRY_U
## 1 0.000000000 0.000000000 0.000000000 0
## 2 0.002731518 0.002280502 0.002393776 0
## 3 0.001850383 0.005017104 0.004428486 0
## 4 0.001321702 0.002508552 0.001077199 0
## 5 0.000000000 0.000000000 0.000000000 0
## 6 0.001674156 0.002964652 0.002573309 0
## 7 0.000000000 0.000000000 0.000000000 0
## 8 0.000000000 0.000000000 0.000000000 0
## 9 0.000000000 0.000000000 0.000000000 0
## 10 0.015243634 0.010034208 0.009335727 0
2.1 Data Standardisation
2.1.1 Min-Max standardisation
## INDUSTRY_A INDUSTRY_B INDUSTRY_C INDUSTRY_D INDUSTRY_E INDUSTRY_F
## 1 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000 0.000000000
## 2 0.001685275 0.000000000 0.005041400 0.00000000 0.001978239 0.004087560
## 3 0.004107858 0.009933775 0.009147970 0.02040816 0.008902077 0.005109450
## 4 0.003054561 0.006622517 0.002437233 0.00000000 0.001978239 0.002205131
## 5 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000 0.000000000
## 6 0.003581209 0.000000000 0.004841079 0.00000000 0.005934718 0.003764858
## 7 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000 0.000000000
## 8 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000 0.000000000
## 9 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000 0.000000000
## 10 0.036128081 0.016556291 0.016059028 0.02040816 0.014836795 0.012531598
## INDUSTRY_G INDUSTRY_H INDUSTRY_I INDUSTRY_J INDUSTRY_K INDUSTRY_L
## 1 0.000000000 0.000000000 0.000000000 0.000000000 0.0000000000 0.000000000
## 2 0.003426166 0.002809444 0.003014514 0.003735745 0.0014478764 0.002501737
## 3 0.004359217 0.005456805 0.004986974 0.003244200 0.0040218790 0.008895066
## 4 0.002224395 0.002809444 0.002642352 0.002654345 0.0008043758 0.001111883
## 5 0.000000000 0.000000000 0.000000000 0.000000000 0.0000000000 0.000000000
## 6 0.003672491 0.005726944 0.003796055 0.002064491 0.0012870013 0.003335650
## 7 0.000000000 0.000000000 0.000000000 0.000000000 0.0000000000 0.000000000
## 8 0.000000000 0.000000000 0.000000000 0.000000000 0.0000000000 0.000000000
## 9 0.000000000 0.000000000 0.000000000 0.000000000 0.0000000000 0.000000000
## 10 0.013555375 0.014533470 0.011164868 0.008454581 0.0098133848 0.009589993
## INDUSTRY_M INDUSTRY_N INDUSTRY_O INDUSTRY_P INDUSTRY_Q INDUSTRY_R
## 1 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000
## 2 0.002869587 0.001840924 0.005813953 0.007145895 0.002731518 0.002280502
## 3 0.004048168 0.003782721 0.011627907 0.005189281 0.001850383 0.005017104
## 4 0.001793492 0.001916578 0.005813953 0.003147597 0.001321702 0.002508552
## 5 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000
## 6 0.001998463 0.001639179 0.011627907 0.003317737 0.001674156 0.002964652
## 7 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000
## 8 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000
## 9 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000
## 10 0.009223674 0.007918495 0.011627907 0.009527860 0.015243634 0.010034208
## INDUSTRY_S INDUSTRY_U
## 1 0.000000000 0
## 2 0.002393776 0
## 3 0.004428486 0
## 4 0.001077199 0
## 5 0.000000000 0
## 6 0.002573309 0
## 7 0.000000000 0
## 8 0.000000000 0
## 9 0.000000000 0
## 10 0.009335727 0
## INDUSTRY_A INDUSTRY_B INDUSTRY_C INDUSTRY_D INDUSTRY_E
## Cabreúva 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
## Campo Limpo Paulista 0.001685275 0.000000000 0.005041400 0.00000000 0.001978239
## Itupeva 0.004107858 0.009933775 0.009147970 0.02040816 0.008902077
## Jarinu 0.003054561 0.006622517 0.002437233 0.00000000 0.001978239
## Jundiaí 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
## Louveira 0.003581209 0.000000000 0.004841079 0.00000000 0.005934718
## Várzea Paulista 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
## Águas De São Pedro 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
## Analândia 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
## Araras 0.036128081 0.016556291 0.016059028 0.02040816 0.014836795
## INDUSTRY_F INDUSTRY_G INDUSTRY_H INDUSTRY_I
## Cabreúva 0.000000000 0.000000000 0.000000000 0.000000000
## Campo Limpo Paulista 0.004087560 0.003426166 0.002809444 0.003014514
## Itupeva 0.005109450 0.004359217 0.005456805 0.004986974
## Jarinu 0.002205131 0.002224395 0.002809444 0.002642352
## Jundiaí 0.000000000 0.000000000 0.000000000 0.000000000
## Louveira 0.003764858 0.003672491 0.005726944 0.003796055
## Várzea Paulista 0.000000000 0.000000000 0.000000000 0.000000000
## Águas De São Pedro 0.000000000 0.000000000 0.000000000 0.000000000
## Analândia 0.000000000 0.000000000 0.000000000 0.000000000
## Araras 0.012531598 0.013555375 0.014533470 0.011164868
## INDUSTRY_J INDUSTRY_K INDUSTRY_L INDUSTRY_M
## Cabreúva 0.000000000 0.0000000000 0.000000000 0.000000000
## Campo Limpo Paulista 0.003735745 0.0014478764 0.002501737 0.002869587
## Itupeva 0.003244200 0.0040218790 0.008895066 0.004048168
## Jarinu 0.002654345 0.0008043758 0.001111883 0.001793492
## Jundiaí 0.000000000 0.0000000000 0.000000000 0.000000000
## Louveira 0.002064491 0.0012870013 0.003335650 0.001998463
## Várzea Paulista 0.000000000 0.0000000000 0.000000000 0.000000000
## Águas De São Pedro 0.000000000 0.0000000000 0.000000000 0.000000000
## Analândia 0.000000000 0.0000000000 0.000000000 0.000000000
## Araras 0.008454581 0.0098133848 0.009589993 0.009223674
## INDUSTRY_N INDUSTRY_O INDUSTRY_P INDUSTRY_Q
## Cabreúva 0.000000000 0.000000000 0.000000000 0.000000000
## Campo Limpo Paulista 0.001840924 0.005813953 0.007145895 0.002731518
## Itupeva 0.003782721 0.011627907 0.005189281 0.001850383
## Jarinu 0.001916578 0.005813953 0.003147597 0.001321702
## Jundiaí 0.000000000 0.000000000 0.000000000 0.000000000
## Louveira 0.001639179 0.011627907 0.003317737 0.001674156
## Várzea Paulista 0.000000000 0.000000000 0.000000000 0.000000000
## Águas De São Pedro 0.000000000 0.000000000 0.000000000 0.000000000
## Analândia 0.000000000 0.000000000 0.000000000 0.000000000
## Araras 0.007918495 0.011627907 0.009527860 0.015243634
## INDUSTRY_R INDUSTRY_S INDUSTRY_U
## Cabreúva 0.000000000 0.000000000 0
## Campo Limpo Paulista 0.002280502 0.002393776 0
## Itupeva 0.005017104 0.004428486 0
## Jarinu 0.002508552 0.001077199 0
## Jundiaí 0.000000000 0.000000000 0
## Louveira 0.002964652 0.002573309 0
## Várzea Paulista 0.000000000 0.000000000 0
## Águas De São Pedro 0.000000000 0.000000000 0
## Analândia 0.000000000 0.000000000 0
## Araras 0.010034208 0.009335727 0
## INDUSTRY_A INDUSTRY_B INDUSTRY_C INDUSTRY_D
## Min. :0.000000 Min. :0.00000 Min. :0.000000 Min. :0.00000
## 1st Qu.:0.000000 1st Qu.:0.00000 1st Qu.:0.000000 1st Qu.:0.00000
## Median :0.005333 Median :0.00000 Median :0.007727 Median :0.00000
## Mean :0.048501 Mean :0.06676 Mean :0.060463 Mean :0.03129
## 3rd Qu.:0.036000 3rd Qu.:0.07692 3rd Qu.:0.052072 3rd Qu.:0.00000
## Max. :1.000000 Max. :1.00000 Max. :1.000000 Max. :1.00000
## INDUSTRY_E INDUSTRY_F INDUSTRY_G INDUSTRY_H
## Min. :0.00000 Min. :0.000000 Min. :0.000000 Min. :0.00000
## 1st Qu.:0.00000 1st Qu.:0.000000 1st Qu.:0.000000 1st Qu.:0.00000
## Median :0.00000 Median :0.003922 Median :0.006185 Median :0.00462
## Mean :0.05235 Mean :0.046560 Mean :0.049603 Mean :0.04468
## 3rd Qu.:0.05180 3rd Qu.:0.043355 3rd Qu.:0.042456 3rd Qu.:0.03349
## Max. :1.00000 Max. :1.000000 Max. :1.000000 Max. :1.00000
## INDUSTRY_I INDUSTRY_J INDUSTRY_K INDUSTRY_L
## Min. :0.000000 Min. :0.00000 Min. :0.0000000 Min. :0.0000000
## 1st Qu.:0.000000 1st Qu.:0.00000 1st Qu.:0.0000000 1st Qu.:0.0000000
## Median :0.005657 Median :0.00142 Median :0.0009852 Median :0.0008475
## Mean :0.051389 Mean :0.03320 Mean :0.0351962 Mean :0.0350429
## 3rd Qu.:0.037604 3rd Qu.:0.01931 3rd Qu.:0.0174877 3rd Qu.:0.0177966
## Max. :1.000000 Max. :1.00000 Max. :1.0000000 Max. :1.0000000
## INDUSTRY_M INDUSTRY_N INDUSTRY_O INDUSTRY_P
## Min. :0.00000 Min. :0.000000 Min. :0.0000 Min. :0.000000
## 1st Qu.:0.00000 1st Qu.:0.000000 1st Qu.:0.0000 1st Qu.:0.000000
## Median :0.00250 Median :0.001948 Median :0.1429 Median :0.003647
## Mean :0.03115 Mean :0.036990 Mean :0.1412 Mean :0.044799
## 3rd Qu.:0.01465 3rd Qu.:0.015338 3rd Qu.:0.2143 3rd Qu.:0.036141
## Max. :1.00000 Max. :1.000000 Max. :1.0000 Max. :1.000000
## INDUSTRY_Q INDUSTRY_R INDUSTRY_S INDUSTRY_U
## Min. :0.000000 Min. :0.000000 Min. :0.000000 Min. :0.000000
## 1st Qu.:0.000000 1st Qu.:0.000000 1st Qu.:0.000000 1st Qu.:0.000000
## Median :0.001449 Median :0.003067 Median :0.004407 Median :0.000000
## Mean :0.031494 Mean :0.038652 Mean :0.042325 Mean :0.008621
## 3rd Qu.:0.015331 3rd Qu.:0.029141 3rd Qu.:0.031952 3rd Qu.:0.000000
## Max. :1.000000 Max. :1.000000 Max. :1.000000 Max. :1.000000
2.2.2 Z-score standardisation
## vars n mean sd median trimmed mad min max range skew
## INDUSTRY_A 1 174 0 1 -0.36 -0.25 0.07 -0.41 7.96 8.37 4.77
## INDUSTRY_B 2 174 0 1 -0.52 -0.21 0.00 -0.52 7.29 7.81 3.71
## INDUSTRY_C 3 174 0 1 -0.38 -0.25 0.08 -0.44 6.80 7.23 3.86
## INDUSTRY_D 4 174 0 1 -0.25 -0.22 0.00 -0.25 7.78 8.03 6.08
## INDUSTRY_E 5 174 0 1 -0.42 -0.24 0.00 -0.42 7.68 8.11 4.59
## INDUSTRY_F 6 174 0 1 -0.36 -0.24 0.05 -0.40 8.13 8.53 4.83
## INDUSTRY_G 7 174 0 1 -0.36 -0.23 0.08 -0.42 7.95 8.37 4.81
## INDUSTRY_H 8 174 0 1 -0.31 -0.22 0.05 -0.35 7.48 7.84 5.52
## INDUSTRY_I 9 174 0 1 -0.38 -0.24 0.07 -0.42 7.81 8.23 4.48
## INDUSTRY_J 10 174 0 1 -0.30 -0.23 0.02 -0.32 9.22 9.53 5.94
## INDUSTRY_K 11 174 0 1 -0.30 -0.23 0.01 -0.30 8.32 8.62 5.76
## INDUSTRY_L 12 174 0 1 -0.32 -0.24 0.01 -0.33 9.12 9.45 5.74
## INDUSTRY_M 13 174 0 1 -0.29 -0.23 0.04 -0.32 9.82 10.13 6.49
## INDUSTRY_N 14 174 0 1 -0.29 -0.22 0.02 -0.31 8.06 8.37 5.80
## INDUSTRY_O 15 174 0 1 0.01 -0.15 1.32 -0.88 5.37 6.25 1.95
## INDUSTRY_P 16 174 0 1 -0.36 -0.23 0.05 -0.40 8.45 8.85 5.16
## INDUSTRY_Q 17 174 0 1 -0.30 -0.22 0.02 -0.31 9.55 9.86 6.45
## INDUSTRY_R 18 174 0 1 -0.35 -0.23 0.04 -0.38 9.35 9.72 5.81
## INDUSTRY_S 19 174 0 1 -0.33 -0.23 0.06 -0.37 8.45 8.82 5.32
## INDUSTRY_U 20 174 0 1 -0.10 -0.10 0.00 -0.10 11.72 11.83 10.39
## kurtosis se
## INDUSTRY_A 28.67 0.08
## INDUSTRY_B 19.72 0.08
## INDUSTRY_C 17.40 0.08
## INDUSTRY_D 41.45 0.08
## INDUSTRY_E 26.82 0.08
## INDUSTRY_F 29.47 0.08
## INDUSTRY_G 28.80 0.08
## INDUSTRY_H 34.62 0.08
## INDUSTRY_I 25.27 0.08
## INDUSTRY_J 43.76 0.08
## INDUSTRY_K 38.29 0.08
## INDUSTRY_L 41.79 0.08
## INDUSTRY_M 53.77 0.08
## INDUSTRY_N 38.67 0.08
## INDUSTRY_O 6.44 0.08
## INDUSTRY_P 33.78 0.08
## INDUSTRY_Q 50.80 0.08
## INDUSTRY_R 44.59 0.08
## INDUSTRY_S 34.64 0.08
## INDUSTRY_U 112.12 0.08
2.3.Computing proximity matrix using euclidean distance
2.4. Computing hierarchical clustering
Hierarchical cluster analysis using ward.D method
hclust_ward <- hclust(proxmat, method = 'ward.D')
plot(hclust_ward, cex = 0.6)
rect.hclust(hclust_ward, k = 6)groups <- as.factor(cutree(hclust_ward, k=6))
muni_2016_cluster <- cbind(muni_2016_derived, as.matrix(groups)) %>%
rename('CLUSTER'='as.matrix.groups.')
qtm(muni_2016_cluster, "CLUSTER")Part 3: Spatially Constrained Clustering
Convert muni_2016_derived sf into a SpatialPolygonDataFrame, muni_2016_sp
## Warning in showSRID(uprojargs, format = "PROJ", multiline = "NO", prefer_proj =
## prefer_proj): Discarded datum Unknown based on GRS80 ellipsoid in CRS definition
## Warning in showSRID(SRS_string, format = "PROJ", multiline = "NO", prefer_proj
## = prefer_proj): Discarded datum Sistema de Referencia Geocentrico para las
## AmericaS 2000 in CRS definition
## class : SpatialPolygonsDataFrame
## features : 174
## extent : -48.40857, -44.16137, -24.492, -22.01305 (xmin, xmax, ymin, ymax)
## crs : +proj=longlat +ellps=GRS80 +no_defs
## variables : 21
## names : name_muni, INDUSTRY_A, INDUSTRY_B, INDUSTRY_C, INDUSTRY_D, INDUSTRY_E, INDUSTRY_F, INDUSTRY_G, INDUSTRY_H, INDUSTRY_I, INDUSTRY_J, INDUSTRY_K, INDUSTRY_L, INDUSTRY_M, INDUSTRY_N, ...
## min values : Águas De São Pedro, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
## max values : Votorantim, 0.118495892142406, 0.0860927152317881, 0.0950520833333333, 0.183673469387755, 0.109792284866469, 0.123433550260851, 0.115862624935619, 0.128640121022205, 0.111834759955341, 0.173122296500197, 0.163288288288288, 0.164002779708131, 0.184473481936972, 0.155368941342614, ...
Compute the neighbours list from polygon list using poly2nd() of spdep package
## Neighbour list object:
## Number of regions: 174
## Number of nonzero links: 882
## Percentage nonzero weights: 2.913199
## Average number of links: 5.068966
## 1 region with no links:
## 100
## Link number distribution:
##
## 0 1 2 3 4 5 6 7 8 9 10 22
## 1 4 13 23 36 31 29 16 9 6 5 1
## 4 least connected regions:
## 8 9 29 36 with 1 link
## 1 most connected region:
## 161 with 22 links
By using the boundary map, we plot the neighbours list. The neighbour list contains coordinates which are used to extract the centroids of each polygon.
plot(muni_2016_sp, border=grey(.5))
plot(muni_2016.nb, coordinates(muni_2016_sp), col="blue", add=TRUE)Using the SKATER method, the new clusters are plotted as shown below: As you can observe from the new clusters, the clusters gained from SKATER method are relatively fragmented.
muni2016_sf_spatialcluster <- cbind(muni_2016_cluster, as.factor(groups))
qtm(muni2016_sf_spatialcluster,'CLUSTER')