The Maximum Likelihood Estimate (MLE) is a method for estimating parameters for a probability distribution by maximizing the likelihood function.
- The likelihood function is the density function of \(\theta\): \[ \textbf{L}(\theta | x) = \textbf{f}(x|\theta) \]
- Where the maximum likelihood estimator (MLE) is: \[ \hat \theta (x) = \text{arg } \underset{\theta}{\text{max}} \textbf{L}(\theta | x) \]