#####################Read and Pre-Clean the Data#######################
require(Amelia)
## Loading required package: Amelia
## Loading required package: Rcpp
## ##
## ## Amelia II: Multiple Imputation
## ## (Version 1.7.6, built: 2019-11-24)
## ## Copyright (C) 2005-2020 James Honaker, Gary King and Matthew Blackwell
## ## Refer to http://gking.harvard.edu/amelia/ for more information
## ##
library(car)
## Loading required package: carData
library(corrplot)
## corrplot 0.84 loaded
library(ggcorrplot)
## Loading required package: ggplot2
library(heplots)
library(kableExtra)
library(MANOVA.RM)
## Warning: package 'MANOVA.RM' was built under R version 4.0.3
library(MASS)
library(MVN)
## Warning: package 'MVN' was built under R version 4.0.3
## Registered S3 method overwritten by 'GGally':
## method from
## +.gg ggplot2
## sROC 0.1-2 loaded
library(mvtnorm)
require(psych) #to describe
## Loading required package: psych
##
## Attaching package: 'psych'
## The following objects are masked from 'package:ggplot2':
##
## %+%, alpha
## The following object is masked from 'package:car':
##
## logit
require(ggplot2)
library(ggcorrplot)
library(qcc)
## Warning: package 'qcc' was built under R version 4.0.3
## Package 'qcc' version 2.7
## Type 'citation("qcc")' for citing this R package in publications.
require(reticulate) #to use Python in R as well
## Loading required package: reticulate
require(ResourceSelection)
## Loading required package: ResourceSelection
## ResourceSelection 0.3-5 2019-07-22
library(rstatix)
## Warning: package 'rstatix' was built under R version 4.0.3
##
## Attaching package: 'rstatix'
## The following object is masked from 'package:MASS':
##
## select
## The following object is masked from 'package:ggcorrplot':
##
## cor_pmat
## The following object is masked from 'package:stats':
##
## filter
library(tidyverse)
## -- Attaching packages ------------------------------------------------ tidyverse 1.3.0 --
## v tibble 3.0.3 v dplyr 1.0.2
## v tidyr 1.1.2 v stringr 1.4.0
## v readr 1.3.1 v forcats 0.5.0
## v purrr 0.3.4
## -- Conflicts --------------------------------------------------- tidyverse_conflicts() --
## x psych::%+%() masks ggplot2::%+%()
## x psych::alpha() masks ggplot2::alpha()
## x dplyr::filter() masks rstatix::filter(), stats::filter()
## x dplyr::group_rows() masks kableExtra::group_rows()
## x dplyr::lag() masks stats::lag()
## x dplyr::recode() masks car::recode()
## x dplyr::select() masks rstatix::select(), MASS::select()
## x purrr::some() masks car::some()
corfunction=function(d){
mycorr=cor(d[, 1:ncol(d)]); p.mat=ggcorrplot::cor_pmat(d[,1:ncol(d)])
myplot=ggcorrplot(mycorr, hc.order=TRUE,type="lower",colors=c("red", "white","green"),tl.cex = 8, tl.col = "black", lab=TRUE, lab_size=2, p.mat=p.mat, insig="pch", pch=4)
print(myplot)}
mydata=read.csv("C:/Users/lfult/Desktop/Education/2020FALL.csv", stringsAsFactors = TRUE)
colnames(mydata)
## [1] "Subject" "Gender" "Ethnicity" "Age" "Yr"
## [6] "DaysBetween" "GPA" "T_GPA" "PrePost" "Fin"
## [11] "Mgt" "HR" "Sys" "HIM" "Ldr"
## [16] "Chg" "Cli" "QI" "QM" "Strat"
## [21] "Com" "Lgl" "Score" "Rank" "Time"
#########################################################################
We have true missing for Quantitative Methods, as that section was recently added.
#########################################################################
missmap(mydata)
#########################################################################
#########################################################################
as.data.frame(100*round(table(mydata$Gender)/length(mydata$Gender),4))%>%
kbl(col.names = c("Gender", "%"))%>%kable_classic(full_width=F)
| Gender | % |
|---|---|
| F | 80.95 |
| M | 19.05 |
#########################################################################
#########################################################################
as.data.frame(100*round(table(mydata$Ethnicity)/length(mydata$Ethnicity),4))%>%
kbl(col.names = c("Ethnicity", "%"))%>%kable_classic(full_width=F)
| Ethnicity | % |
|---|---|
| A | 5.95 |
| B | 16.67 |
| C | 41.07 |
| H | 36.31 |
#########################################################################
#########################################################################
par(mfrow=c(1,3))
boxplot(mydata$Age, horizontal=TRUE, main="Age", col="blue")
boxplot(mydata$Age~mydata$Gender, horizontal=TRUE, main="Age~Gender", col="red")
boxplot(mydata$Age~mydata$Ethnicity, horizontal=TRUE, main="Age~Ethnicity", col="orange")
kable(t(round(describe(mydata$Age),3)), col.names="GPA")%>%kable_classic(full_width=F)
| GPA | |
|---|---|
| vars | 1.000 |
| n | 168.000 |
| mean | 22.679 |
| sd | 3.016 |
| median | 22.000 |
| trimmed | 22.074 |
| mad | 1.483 |
| min | 20.000 |
| max | 42.000 |
| range | 22.000 |
| skew | 3.720 |
| kurtosis | 18.561 |
| se | 0.233 |
#########################################################################
#########################################################################
par(mfrow=c(1,3))
boxplot(mydata$GPA, horizontal=TRUE, main="GPA", col="blue")
boxplot(mydata$GPA~mydata$Gender, horizontal=TRUE, main="GPA~Gender", col="red")
boxplot(mydata$GPA~mydata$Ethnicity, horizontal=TRUE, main="GPA~Ethnicity", col="orange")
kable(t(round(describe(mydata$GPA),3)), col.names="GPA")%>%kable_classic(full_width=F)
| GPA | |
|---|---|
| vars | 1.000 |
| n | 168.000 |
| mean | 3.238 |
| sd | 0.254 |
| median | 3.200 |
| trimmed | 3.223 |
| mad | 0.289 |
| min | 2.850 |
| max | 3.790 |
| range | 0.940 |
| skew | 0.444 |
| kurtosis | -0.864 |
| se | 0.020 |
#########################################################################
#########################################################################
par(mfrow=c(1,3))
boxplot(mydata$DaysBetween, horizontal=TRUE, main="Days Between Test", col="blue")
boxplot(mydata$DaysBetween~mydata$Gender, horizontal=TRUE, main="Days Between Tests~Gender", col="red")
boxplot(mydata$DaysBetween~mydata$Ethnicity, horizontal=TRUE, main="Days Between Tests~Ethnicity", col="orange")
kable(t(round(describe(mydata$DaysBetween),3)), col.names="Days Between Tests")%>%kable_classic(full_width=F)
| Days Between Tests | |
|---|---|
| vars | 1.000 |
| n | 168.000 |
| mean | 443.786 |
| sd | 71.626 |
| median | 418.000 |
| trimmed | 428.456 |
| mad | 25.204 |
| min | 333.000 |
| max | 654.000 |
| range | 321.000 |
| skew | 1.957 |
| kurtosis | 2.989 |
| se | 5.526 |
#########################################################################
We look at hierarchically-clustered correlations to see which competency evaluations are related and in what directions. An “X” indicates no statistically significant correlation. Obviously “score” (the final score) and “rank” (the percentile rank) must be colinear. Interestingly, the student scores on the strategy area are highly correlated to their overall performance. This reinforces the use of strategy as a capstone course.
#########################################################################
mycorr=cor(mydata[, -c(1:3,5,9, 19)])
corfunction(mycorr)
#########################################################################
#########################################################################
mysub=subset(mydata, select=c(Age, GPA, Score)) #get a subset for plotting
colnames(mysub)=c("Age", "GPA", "Score") #set column names
kdepairs(mysub) #plot
as.data.frame(cor(mydata$Score[1:84], mydata$Score[85:168]))%>%kbl(col.names="Pre-Post Test Score Correlation")%>%kable_classic()
| Pre-Post Test Score Correlation |
|---|
| 0.2187299 |
#########################################################################
We would expect poor performance on the pre-test scores. Students are likely to have only 3308 as the basis for knowledge.
#########################################################################
pre=round(describe(mydata[1:84,10:25]),3)
post=round(describe(mydata[85:168, 10:25]),3)
mydelta=mydata[85:168, 10:25]-mydata[1:84, 10:25]
delta=round(describe(mydelta),3)
mynames=c("Financial Management", "General Management", "Healthcare Personnel", "Healthcare Systems & Organizations", "Information Management", "Leadership Skills and Behavior", "Managing Change", "Organizational Climate and Culture", "Quality Improvement", "Quantitative Management", "Strategic Planning and Marketing", "Community and the Environment", "Legal Environment of Healthcare Administration", "Final Score", "Percentile Rank", "Time" )
row.names(pre)=row.names(post)=row.names(delta)=mynames
pre%>%kbl(caption="Pre-Test")%>%kable_classic(full_width = F, html_font = "Cambria")
| vars | n | mean | sd | median | trimmed | mad | min | max | range | skew | kurtosis | se | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Financial Management | 1 | 84 | 54.762 | 18.068 | 50.000 | 54.706 | 14.826 | 10.00 | 100.00 | 90.00 | 0.044 | 0.011 | 1.971 |
| General Management | 2 | 84 | 59.643 | 16.894 | 60.000 | 59.412 | 14.826 | 30.00 | 100.00 | 70.00 | 0.100 | -0.631 | 1.843 |
| Healthcare Personnel | 3 | 84 | 65.119 | 15.010 | 60.000 | 65.294 | 14.826 | 30.00 | 100.00 | 70.00 | -0.097 | -0.210 | 1.638 |
| Healthcare Systems & Organizations | 4 | 84 | 54.405 | 19.160 | 50.000 | 54.118 | 14.826 | 10.00 | 100.00 | 90.00 | 0.131 | -0.450 | 2.091 |
| Information Management | 5 | 84 | 56.905 | 17.697 | 60.000 | 57.500 | 14.826 | 10.00 | 90.00 | 80.00 | -0.267 | -0.757 | 1.931 |
| Leadership Skills and Behavior | 6 | 84 | 60.952 | 15.953 | 60.000 | 61.912 | 14.826 | 20.00 | 90.00 | 70.00 | -0.435 | -0.234 | 1.741 |
| Managing Change | 7 | 84 | 62.024 | 14.626 | 60.000 | 62.647 | 14.826 | 20.00 | 90.00 | 70.00 | -0.417 | -0.009 | 1.596 |
| Organizational Climate and Culture | 8 | 84 | 65.476 | 16.531 | 70.000 | 66.029 | 14.826 | 30.00 | 100.00 | 70.00 | -0.233 | -0.350 | 1.804 |
| Quality Improvement | 9 | 84 | 58.214 | 16.218 | 60.000 | 58.824 | 14.826 | 20.00 | 90.00 | 70.00 | -0.300 | -0.408 | 1.770 |
| Quantitative Management | 10 | 24 | 48.333 | 16.061 | 50.000 | 49.000 | 14.826 | 20.00 | 70.00 | 50.00 | -0.103 | -1.226 | 3.279 |
| Strategic Planning and Marketing | 11 | 84 | 56.905 | 18.496 | 60.000 | 57.353 | 14.826 | 10.00 | 90.00 | 80.00 | -0.225 | -0.653 | 2.018 |
| Community and the Environment | 12 | 84 | 55.000 | 16.827 | 60.000 | 54.853 | 14.826 | 20.00 | 100.00 | 80.00 | 0.097 | -0.273 | 1.836 |
| Legal Environment of Healthcare Administration | 13 | 84 | 60.238 | 16.353 | 60.000 | 59.853 | 14.826 | 30.00 | 100.00 | 70.00 | 0.175 | -0.544 | 1.784 |
| Final Score | 14 | 84 | 58.863 | 7.849 | 60.000 | 59.043 | 7.976 | 39.16 | 78.33 | 39.17 | -0.134 | -0.125 | 0.856 |
| Percentile Rank | 15 | 84 | 56.214 | 23.138 | 58.000 | 57.191 | 22.239 | 6.00 | 98.00 | 92.00 | -0.289 | -0.762 | 2.525 |
| Time | 16 | 84 | 49.089 | 23.322 | 44.075 | 46.158 | 20.334 | 13.75 | 134.30 | 120.55 | 1.329 | 2.002 | 2.545 |
We would hope that our work teaching the students resulted in better scores. These are the raw descriptives. We will look at pre-post later.
post[order(-post$mean),]%>%kbl(caption="Post-Test")%>%kable_classic(full_width = F, html_font = "Cambria")
| vars | n | mean | sd | median | trimmed | mad | min | max | range | skew | kurtosis | se | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Time | 16 | 84 | 79.362 | 22.091 | 76.135 | 78.713 | 20.527 | 34.77 | 146.1 | 111.33 | 0.376 | -0.157 | 2.410 |
| Percentile Rank | 15 | 84 | 77.310 | 16.067 | 82.000 | 79.515 | 10.378 | 0.00 | 97.0 | 97.00 | -1.944 | 5.608 | 1.753 |
| Healthcare Personnel | 3 | 84 | 76.786 | 14.740 | 80.000 | 78.382 | 14.826 | 30.00 | 100.0 | 70.00 | -0.849 | 0.417 | 1.608 |
| Organizational Climate and Culture | 8 | 84 | 75.952 | 15.532 | 80.000 | 76.471 | 14.826 | 30.00 | 100.0 | 70.00 | -0.404 | -0.372 | 1.695 |
| Legal Environment of Healthcare Administration | 13 | 84 | 75.595 | 16.454 | 80.000 | 76.324 | 14.826 | 30.00 | 100.0 | 70.00 | -0.409 | -0.474 | 1.795 |
| General Management | 2 | 84 | 75.476 | 12.650 | 80.000 | 76.176 | 14.826 | 50.00 | 100.0 | 50.00 | -0.317 | -0.518 | 1.380 |
| Strategic Planning and Marketing | 11 | 84 | 75.357 | 14.009 | 80.000 | 75.882 | 14.826 | 30.00 | 100.0 | 70.00 | -0.475 | 0.235 | 1.529 |
| Leadership Skills and Behavior | 6 | 84 | 74.762 | 16.093 | 80.000 | 75.294 | 14.826 | 40.00 | 100.0 | 60.00 | -0.292 | -0.657 | 1.756 |
| Financial Management | 1 | 84 | 73.095 | 14.055 | 70.000 | 73.529 | 14.826 | 40.00 | 100.0 | 60.00 | -0.243 | -0.208 | 1.533 |
| Quality Improvement | 9 | 84 | 72.738 | 14.172 | 70.000 | 73.382 | 14.826 | 40.00 | 100.0 | 60.00 | -0.308 | -0.455 | 1.546 |
| Final Score | 14 | 84 | 70.801 | 5.297 | 71.530 | 71.002 | 4.566 | 54.61 | 82.3 | 27.69 | -0.418 | -0.003 | 0.578 |
| Healthcare Systems & Organizations | 4 | 84 | 69.524 | 16.640 | 70.000 | 70.000 | 14.826 | 30.00 | 100.0 | 70.00 | -0.174 | -0.767 | 1.816 |
| Managing Change | 7 | 84 | 69.524 | 15.042 | 70.000 | 70.441 | 14.826 | 20.00 | 100.0 | 80.00 | -0.592 | 0.202 | 1.641 |
| Community and the Environment | 12 | 84 | 67.619 | 15.415 | 70.000 | 68.235 | 14.826 | 0.00 | 90.0 | 90.00 | -1.027 | 2.797 | 1.682 |
| Information Management | 5 | 84 | 65.000 | 13.928 | 70.000 | 65.147 | 14.826 | 30.00 | 90.0 | 60.00 | -0.238 | -0.433 | 1.520 |
| Quantitative Management | 10 | 30 | 50.333 | 19.025 | 50.000 | 50.000 | 22.239 | 20.00 | 90.0 | 70.00 | 0.157 | -0.944 | 3.473 |
And here is the punchline. All areas improved overall. But the post-test counts, so the time is longer by 30 minutes. In other words, the improvement might be directly attributed to the level of effort on the examination (caring). I see no way of incentivizing students to do their best on the pre-test. Any help here would be appreciated.
delta[order(-delta$mean),]%>%kbl(caption="Difference, Post Minus Pre")%>%kable_classic(full_width = F, html_font = "Cambria")
| vars | n | mean | sd | median | trimmed | mad | min | max | range | skew | kurtosis | se | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Time | 16 | 84 | 30.273 | 20.349 | 30.615 | 30.216 | 20.512 | -32.88 | 77.88 | 110.76 | -0.143 | 0.356 | 2.220 |
| Percentile Rank | 15 | 84 | 21.095 | 25.069 | 22.000 | 20.515 | 25.204 | -52.00 | 82.00 | 134.00 | -0.025 | 0.294 | 2.735 |
| Strategic Planning and Marketing | 11 | 84 | 18.452 | 22.681 | 20.000 | 17.647 | 29.652 | -30.00 | 80.00 | 110.00 | 0.330 | -0.148 | 2.475 |
| Financial Management | 1 | 84 | 18.333 | 22.217 | 20.000 | 18.529 | 29.652 | -30.00 | 60.00 | 90.00 | -0.072 | -0.796 | 2.424 |
| General Management | 2 | 84 | 15.833 | 22.345 | 20.000 | 16.029 | 29.652 | -40.00 | 70.00 | 110.00 | -0.048 | -0.488 | 2.438 |
| Legal Environment of Healthcare Administration | 13 | 84 | 15.357 | 22.732 | 10.000 | 15.000 | 22.239 | -40.00 | 70.00 | 110.00 | 0.124 | -0.434 | 2.480 |
| Healthcare Systems & Organizations | 4 | 84 | 15.119 | 26.090 | 20.000 | 16.029 | 29.652 | -40.00 | 70.00 | 110.00 | -0.243 | -0.499 | 2.847 |
| Quality Improvement | 9 | 84 | 14.524 | 19.843 | 20.000 | 14.706 | 14.826 | -40.00 | 60.00 | 100.00 | -0.191 | 0.002 | 2.165 |
| Leadership Skills and Behavior | 6 | 84 | 13.810 | 21.222 | 10.000 | 13.676 | 14.826 | -40.00 | 70.00 | 110.00 | 0.062 | 0.180 | 2.316 |
| Community and the Environment | 12 | 84 | 12.619 | 22.178 | 10.000 | 12.941 | 14.826 | -40.00 | 70.00 | 110.00 | -0.072 | -0.335 | 2.420 |
| Final Score | 14 | 84 | 11.938 | 8.455 | 12.210 | 11.640 | 8.888 | -12.31 | 35.45 | 47.76 | 0.207 | 0.104 | 0.922 |
| Healthcare Personnel | 3 | 84 | 11.667 | 20.874 | 10.000 | 12.059 | 14.826 | -40.00 | 60.00 | 100.00 | -0.109 | -0.217 | 2.278 |
| Organizational Climate and Culture | 8 | 84 | 10.476 | 19.506 | 10.000 | 10.294 | 14.826 | -30.00 | 60.00 | 90.00 | 0.184 | -0.472 | 2.128 |
| Information Management | 5 | 84 | 8.095 | 22.467 | 10.000 | 8.235 | 29.652 | -40.00 | 50.00 | 90.00 | 0.027 | -0.655 | 2.451 |
| Managing Change | 7 | 84 | 7.500 | 20.877 | 10.000 | 7.794 | 14.826 | -60.00 | 60.00 | 120.00 | -0.267 | 0.702 | 2.278 |
| Quantitative Management | 10 | 24 | 2.500 | 26.251 | 0.000 | 3.000 | 29.652 | -40.00 | 40.00 | 80.00 | 0.043 | -1.265 | 5.359 |
#########################################################################
For the most recent cohort, the problematic areas are Quantitative Methods, Change Management, and Leadership. We need to do better in these areas at improving our students. I recommend the following.
Require Healthcare Statistics as a pre-requisite. Remove any other statistics option. It’s hard. I get it. But we need these students to have the skills of business students at a minimum.
Add an LO regarding managing change to the supervisory management course and use a secondary review of this skill. There is a great set of resources from Kotter and HBR on this.
Change supervisory management to be Leadership & Management, similar to the courses offered by business schools.
The best improvements we see are in finance, healthcare law, healthcare systems (all classes post 3308), quality, strategy, and general management. These areas are seeing a 10%+ jump on average with se ~= +/- 4. Kudos to the Team.
I want to specifically point out that HIM (Ms. Brooks) has moved our students’ performance from the bottom up FOUR notches, and not all of our students took her. I am impressed.
mydelta2=-mydata[55:84,10:22]+mydata[139:168, 10:22]
delta2=describe(mydelta2)
delta2=delta2[order(-delta2$mean),]
delta2%>%kbl(caption="Difference, Post Minus Pre, Fall 2020 Only")%>%kable_classic(full_width = F, html_font = "Cambria")
| vars | n | mean | sd | median | trimmed | mad | min | max | range | skew | kurtosis | se | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Fin | 1 | 30 | 19.666667 | 21.89053 | 20 | 20.416667 | 14.826 | -30 | 60 | 90 | -0.3022042 | 0.0039762 | 3.996646 |
| Lgl | 13 | 30 | 18.666667 | 20.63364 | 15 | 17.500000 | 22.239 | -10 | 70 | 80 | 0.4912237 | -0.5066014 | 3.767170 |
| Sys | 4 | 30 | 16.000000 | 26.07681 | 20 | 17.083333 | 29.652 | -40 | 70 | 110 | -0.3523527 | -0.3442791 | 4.760952 |
| QI | 9 | 30 | 13.666667 | 19.02509 | 20 | 15.833333 | 14.826 | -40 | 40 | 80 | -0.9775203 | 0.6230282 | 3.473490 |
| Strat | 11 | 30 | 13.333333 | 26.69539 | 10 | 11.250000 | 14.826 | -30 | 80 | 110 | 0.6942389 | 0.0792910 | 4.873888 |
| Mgt | 2 | 30 | 12.000000 | 24.83046 | 10 | 12.916667 | 29.652 | -40 | 60 | 100 | -0.1687867 | -0.9313931 | 4.533401 |
| Com | 12 | 30 | 8.333333 | 20.52473 | 5 | 7.916667 | 22.239 | -30 | 50 | 80 | 0.0779607 | -0.9336668 | 3.747285 |
| Cli | 8 | 30 | 8.000000 | 19.72221 | 10 | 7.916667 | 22.239 | -30 | 50 | 80 | 0.0865568 | -0.8434596 | 3.600766 |
| HIM | 5 | 30 | 7.666667 | 23.73464 | 10 | 8.333333 | 29.652 | -40 | 50 | 90 | -0.1203200 | -0.5856939 | 4.333333 |
| HR | 3 | 30 | 6.000000 | 19.40494 | 10 | 6.666667 | 22.239 | -40 | 40 | 80 | -0.3514456 | -0.7592968 | 3.542841 |
| Ldr | 6 | 30 | 5.666667 | 19.41974 | 10 | 7.083333 | 14.826 | -40 | 40 | 80 | -0.6025290 | -0.0720909 | 3.545544 |
| Chg | 7 | 30 | 4.666667 | 23.15366 | 10 | 5.000000 | 29.652 | -60 | 50 | 110 | -0.3617384 | 0.3599314 | 4.227261 |
| QM | 10 | 24 | 2.500000 | 26.25129 | 0 | 3.000000 | 29.652 | -40 | 40 | 80 | 0.0431855 | -1.2647964 | 5.358523 |
This is the “money” table, as it provides the mean pre-test scores by area (PreXbar), the mean post-test scores by area (PostXbar), and the mean differences scores by area (DeltaXbar). We would expect that our curriculum would result in improved performance (DeltaXbar >0). Medians and standard deviations are shown as well.
a=pre[1:14,3]; b=post[1:14,3]; g=delta[1:14,3]
m1=pre[1:14,5 ]; m2=post[1:14,5]; m3=delta[1:14,5]
s1=pre[1:14,4 ]; s2=post[1:14,4]; s3=delta[1:14,4]
mydf=data.frame(PreXbar=a, PostXbar=b, DeltaXbar=g,
PreMed=m1, PostMed=m2, DeltaMed=m3,
PreSD=s1, PostSD=s2, DeltaSD=s3)
row.names(mydf)=mynames[1:14]
mydf%>%kbl()%>%kable_classic(full_width=F, html_font="Calibri")
| PreXbar | PostXbar | DeltaXbar | PreMed | PostMed | DeltaMed | PreSD | PostSD | DeltaSD | |
|---|---|---|---|---|---|---|---|---|---|
| Financial Management | 54.762 | 73.095 | 18.333 | 50 | 70.00 | 20.00 | 18.068 | 14.055 | 22.217 |
| General Management | 59.643 | 75.476 | 15.833 | 60 | 80.00 | 20.00 | 16.894 | 12.650 | 22.345 |
| Healthcare Personnel | 65.119 | 76.786 | 11.667 | 60 | 80.00 | 10.00 | 15.010 | 14.740 | 20.874 |
| Healthcare Systems & Organizations | 54.405 | 69.524 | 15.119 | 50 | 70.00 | 20.00 | 19.160 | 16.640 | 26.090 |
| Information Management | 56.905 | 65.000 | 8.095 | 60 | 70.00 | 10.00 | 17.697 | 13.928 | 22.467 |
| Leadership Skills and Behavior | 60.952 | 74.762 | 13.810 | 60 | 80.00 | 10.00 | 15.953 | 16.093 | 21.222 |
| Managing Change | 62.024 | 69.524 | 7.500 | 60 | 70.00 | 10.00 | 14.626 | 15.042 | 20.877 |
| Organizational Climate and Culture | 65.476 | 75.952 | 10.476 | 70 | 80.00 | 10.00 | 16.531 | 15.532 | 19.506 |
| Quality Improvement | 58.214 | 72.738 | 14.524 | 60 | 70.00 | 20.00 | 16.218 | 14.172 | 19.843 |
| Quantitative Management | 48.333 | 50.333 | 2.500 | 50 | 50.00 | 0.00 | 16.061 | 19.025 | 26.251 |
| Strategic Planning and Marketing | 56.905 | 75.357 | 18.452 | 60 | 80.00 | 20.00 | 18.496 | 14.009 | 22.681 |
| Community and the Environment | 55.000 | 67.619 | 12.619 | 60 | 70.00 | 10.00 | 16.827 | 15.415 | 22.178 |
| Legal Environment of Healthcare Administration | 60.238 | 75.595 | 15.357 | 60 | 80.00 | 10.00 | 16.353 | 16.454 | 22.732 |
| Final Score | 58.863 | 70.801 | 11.938 | 60 | 71.53 | 12.21 | 7.849 | 5.297 | 8.455 |
#########################################################################
levels(mydata$Ethnicity)=c("Asian", "African American", "Caucasian", "Any Hispanic") #Assign new names to factor levels
ethtable=as.data.frame(table(mydata$Ethnicity[1:84],mydata$Gender[1:84])/length(mydata$Ethnicity[1:84])) #get a cross-tabs table for race and gender
colnames(ethtable)=c("Race","Gender", "Percentage")#set the colum names for the table
mylab=paste0(round(ethtable$Percentage,2)*100,"%, ", ethtable$Percentage*84, " students") #Get the labels for the graph
ggplot(data=ethtable, aes(x=Race,y=Percentage, fill=Gender))+
geom_bar(stat="identity")+
geom_text(aes( label = mylab, vjust = 1))
#########################################################################
Analyze age as a function of race and gender
#########################################################################
describe(mydata$Age[1:84]) #get the descriptive statistics
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 84 22.69 3.03 22 22.09 1.48 20 42 22 3.67 18.21 0.33
ggplot(data=mydata[1:84,], aes(x=Age,color=Gender))+
geom_histogram(fill="white", binwidth=1)+
ylab("Frequency") #plot Age ~Gender
ggplot(data=mydata[1:84,], aes(x=Age,color=Ethnicity))+
geom_histogram(fill="white", binwidth=1)+
ylab("Frequency") #plot Age~ Race
#########################################################################
#########################################################################
describe(mydata$GPA[1:84]) #Get descriptives
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 84 3.24 0.26 3.2 3.22 0.28 2.85 3.79 0.94 0.45 -0.9 0.03
ggplot(mydata[1:84, ], aes(x = Ethnicity, y = GPA, fill=Ethnicity))+
geom_boxplot(aes(color=Gender))+
coord_flip() #plot based on ethnicity and gender
#########################################################################
Evaluating GPA as a function of race and gender
#########################################################################
newdata1=aggregate(mydata$GPA[1:84], b=list(mydata$Ethnicity[1:84],mydata$Gender[1:84]), FUN=mean) #aggregate the data based on race and gender, get the means by those groups
newdata2=aggregate(mydata$GPA[1:84],b=list(mydata$Ethnicity[1:84],mydata$Gender[1:84]),function(x){qnorm(.975)*sd(x)/sqrt(length(x))}) #get the CI adjustment
newdata=cbind(newdata1,newdata2$x) #bind the data together by columns
colnames(newdata)=c("Race", "Gender", "GPA", "SD") #name the columns
newdata$RaceGender=as.factor(paste0(newdata$Race,", ",newdata$Gender)) #make a new variable that has both race and gender
ggplot( #plot
newdata,
aes(x = GPA, y = RaceGender, xmin = GPA-SD, xmax = GPA+SD)
) +
geom_point(aes(color = Gender)) +
geom_errorbarh(aes(color = Gender), height=.2)+
theme_light()+
xlab("95% Confidence Interval for GPA")
## Warning: Removed 1 rows containing missing values (geom_errorbarh).
#########################################################################
Analyze the time between pretests and posttests
#########################################################################
describe(mydata$DaysBetween[1:84]) #describe the days between
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 84 442.31 70.01 417 427.32 25.2 333 654 321 2 3.24 7.64
ggplot(data=mydata[1:84,], aes(x=DaysBetween,color=Gender))+ #plot it
geom_histogram(fill="white", binwidth=30)+
ylab("Frequency")
#########################################################################
Plot the Delta scores.
#########################################################################
par(mfrow=c(1,1))
myscores=as.data.frame(mydelta[1:13]) #Variables for plotting
mybars=error.bars(myscores)
plot(error.bars(myscores),ylab="Variable", xlab="Delta Score",
xlim=c(.5, 13.5), ylim=c(0,length(myscores)),lty="dashed", las=2)
#########################################################################
#########################################################################
myf=function(x){
myt=t.test(x)
newp=round(p.adjust(myt$p.value),3)
a=c(round(myt$estimate,3),round(myt$conf.int[1],3),
round(myt$conf.int[2],3),round(myt$statistic,3), round(myt$parameter,3),
round(newp,3))
return(a)
}
a=matrix(rep(NA, 6*16), 16)
for (i in 1:16){a[i,1:6]=myf(mydelta[i])}
a=as.data.frame(a)
for (i in 1:6){a[,i]=as.numeric(a[,i])}
rownames(a)=c("Financial Management", "General Management", "Healthcare Personnel", "Healthcare Systems and Organizations", "Information Management", "Leadership Skills and Behavior", "Managing Change","Organizational Climate and Culture", "Quality Improvement", "Quantitative Methods","Strategic Planning and Marketing","The Community and the Environment","The Legal Environment", "Total Score", "Percentile Rank", "Test Time")
colnames(a)=c("Estimate","Lower 95% CI", "Upper 95% CI", "t-Value", "df", "Holm-Adjusted p")
a%>%kbl()%>%kable_classic()
| Estimate | Lower 95% CI | Upper 95% CI | t-Value | df | Holm-Adjusted p | |
|---|---|---|---|---|---|---|
| Financial Management | 18.333 | 13.512 | 23.155 | 7.563 | 83 | 0.000 |
| General Management | 15.833 | 10.984 | 20.682 | 6.494 | 83 | 0.000 |
| Healthcare Personnel | 11.667 | 7.137 | 16.197 | 5.122 | 83 | 0.000 |
| Healthcare Systems and Organizations | 15.119 | 9.457 | 20.781 | 5.311 | 83 | 0.000 |
| Information Management | 8.095 | 3.220 | 12.971 | 3.302 | 83 | 0.001 |
| Leadership Skills and Behavior | 13.810 | 9.204 | 18.415 | 5.964 | 83 | 0.000 |
| Managing Change | 7.500 | 2.969 | 12.031 | 3.293 | 83 | 0.001 |
| Organizational Climate and Culture | 10.476 | 6.243 | 14.709 | 4.922 | 83 | 0.000 |
| Quality Improvement | 14.524 | 10.218 | 18.830 | 6.708 | 83 | 0.000 |
| Quantitative Methods | 2.500 | -8.585 | 13.585 | 0.467 | 23 | 0.645 |
| Strategic Planning and Marketing | 18.452 | 13.530 | 23.375 | 7.456 | 83 | 0.000 |
| The Community and the Environment | 12.619 | 7.806 | 17.432 | 5.215 | 83 | 0.000 |
| The Legal Environment | 15.357 | 10.424 | 20.290 | 6.192 | 83 | 0.000 |
| Total Score | 11.938 | 10.103 | 13.772 | 12.941 | 83 | 0.000 |
| Percentile Rank | 21.095 | 15.655 | 26.536 | 7.712 | 83 | 0.000 |
| Test Time | 30.273 | 25.857 | 34.689 | 13.635 | 83 | 0.000 |
#########################################################################
#########################################################################
myf=function(x,y){
myt=t.test(x, y)
newp=round(p.adjust(myt$p.value),3)
a=c(round(myt$estimate[1],3),round(myt$estimate[2],3),
round(myt$conf.int[1],3),
round(myt$conf.int[2],3),round(myt$statistic,3),
round(myt$parameter,3),round(newp,3))
return(a)
}
a=matrix(rep(NA, 7*16), 16)
for (i in 1:16){a[i,1:7]=myf(mydata[1:84,i+9], mydata[85:168,i+9])}
a=as.data.frame(a)
for (i in 1:6){a[,i]=as.numeric(a[,i])}
rownames(a)=c("Financial Management", "General Management", "Healthcare Personnel", "Healthcare Systems and Organizations", "Information Management", "Leadership Skills and Behavior", "Managing Change","Organizational Climate and Culture", "Quality Improvement", "Quantitative Methods","Strategic Planning and Marketing","The Community and the Environment","The Legal Environment", "Total Score", "Percentile Rank", "Test Time")
colnames(a)=c("Mean Pre","Mean Post","Lower 95% CI", "Upper 95% CI", "t-Value", "df", "Holm-Adjusted p")
a%>%kbl()%>%kable_classic()
| Mean Pre | Mean Post | Lower 95% CI | Upper 95% CI | t-Value | df | Holm-Adjusted p | |
|---|---|---|---|---|---|---|---|
| Financial Management | 54.762 | 73.095 | -23.267 | -13.400 | -7.340 | 156.525 | 0.000 |
| General Management | 59.643 | 75.476 | -20.382 | -11.284 | -6.876 | 153.809 | 0.000 |
| Healthcare Personnel | 65.119 | 76.786 | -16.198 | -7.135 | -5.083 | 165.945 | 0.000 |
| Healthcare Systems and Organizations | 54.405 | 69.524 | -20.587 | -9.652 | -5.460 | 162.804 | 0.000 |
| Information Management | 56.905 | 65.000 | -12.949 | -3.242 | -3.295 | 157.308 | 0.001 |
| Leadership Skills and Behavior | 60.952 | 74.762 | -18.691 | -8.928 | -5.585 | 165.987 | 0.000 |
| Managing Change | 62.024 | 69.524 | -12.020 | -2.980 | -3.276 | 165.869 | 0.001 |
| Organizational Climate and Culture | 65.476 | 75.952 | -15.363 | -5.590 | -4.233 | 165.360 | 0.000 |
| Quality Improvement | 58.214 | 72.738 | -19.164 | -9.883 | -6.180 | 163.069 | 0.000 |
| Quantitative Methods | 48.333 | 50.333 | -11.585 | 7.585 | -0.419 | 51.825 | 0.677 |
| Strategic Planning and Marketing | 56.905 | 75.357 | -23.453 | -13.451 | -7.289 | 154.649 | 0.000 |
| The Community and the Environment | 55.000 | 67.619 | -17.535 | -7.703 | -5.068 | 164.743 | 0.000 |
| The Legal Environment | 60.238 | 75.595 | -20.354 | -10.360 | -6.067 | 165.994 | 0.000 |
| Total Score | 58.863 | 70.801 | -13.980 | -9.896 | -11.554 | 145.613 | 0.000 |
| Percentile Rank | 56.214 | 77.310 | -27.169 | -15.022 | -6.863 | 147.942 | 0.000 |
| Test Time | 49.089 | 79.362 | -37.193 | -23.353 | -8.637 | 165.514 | 0.000 |
#########################################################################
#########################################################################
Fin=-mydata$Fin[1:84]+mydata$Fin[85:168]
Mgt=-mydata$Mgt[1:84]+mydata$Mgt[85:168]
HR=-mydata$HR[1:84]+mydata$HR[85:168]
Sys=-mydata$Sys[1:84]+mydata$Sys[85:168]
HIM=-mydata$HIM[1:84]+mydata$HIM[85:168]
Ldr=-mydata$Ldr[1:84]+mydata$Ldr[85:168]
Chg=-mydata$Chg[1:84]+mydata$Chg[85:168]
Cli=-mydata$Cli[1:84]+mydata$Cli[85:168]
QI=-mydata$QI[1:84]+mydata$QI[85:168]
Strat=-mydata$Strat[1:84]+mydata$Strat[85:168]
Com=-mydata$Com[1:84]+mydata$Com[85:168]
Lgl=-mydata$Lgl[1:84]+mydata$Lgl[85:168]
newdata=mydata[1:84,]
newdata$Fin=Fin;newdata$Mgt=Mgt;newdata$HR=HR;newdata$Sys=Sys
newdata$HIM=HIM;newdata$Ldr=Ldr;newdata$Chg=Chg;newdata$Cli=Cli
newdata$QI=QI;newdata$Strat=Strat;newdata$Com=Com;newdata$Lgl=Lgl
corcheck=cor(cbind(Fin, Mgt, HR, Sys, HIM, Ldr,
Chg, Cli, QI, Strat, Com, Lgl)) #no significant correlations
mvn(newdata[, 10:22])$multivariateNormality #multivariate normal, Mardia
## Test Statistic p value Result
## 1 Mardia Skewness 391.067558137444 0.986281965831057 YES
## 2 Mardia Kurtosis -2.03197441794094 0.0421562458328015 NO
## 3 MVN <NA> <NA> NO
myt=powerTransform(as.matrix(newdata[, 10:22]+100)~1)#Likelihood after location shift
testTransform(myt)%>%kbl()%>%kable_classic(full_width = F, html_font = "Cambria")
| LRT | df | pval | |
|---|---|---|---|
| LR test, lambda = (1 1 1 1 1 1 1 1 1 1 1 1 1) | 15.12201 | 13 | 0.2998 |
corfunction(corcheck)
#########################################################################
#########################################################################
temp=matrix(rep(NA, 12*3), nrow=12)
mynames=colnames(newdata[, 10:21])
newdata$GPA2=newdata$GPA
newdata$GPA2[newdata$GPA2<3]=0
newdata$GPA2[newdata$GPA2>=3.0]=1
newdata$GPA2=as.factor(newdata$GPA2)
for (i in 1:12){temp[i,1]=leveneTest(newdata[,i+9], newdata$Gender)$`Pr(>F)`[1]
temp[i,2]=leveneTest(newdata[,i+9], newdata$Ethnicity)$`Pr(>F)`[1]
temp[i,3]=leveneTest(newdata[,i+9], newdata$GPA2)$`Pr(>F)`[1]}
row.names(temp)=mynames
colnames(temp)=c("Gender", "Ethnicity", "GPA>=3.0")
temp%>%kbl(caption="Levene's Test p-values")%>%kable_classic()
| Gender | Ethnicity | GPA>=3.0 | |
|---|---|---|---|
| Fin | 0.3958432 | 0.6950813 | 0.5854971 |
| Mgt | 0.1657677 | 0.2148585 | 0.5584298 |
| HR | 0.1160341 | 0.4572789 | 0.9223638 |
| Sys | 0.2748534 | 0.9758254 | 0.0727096 |
| HIM | 0.5796980 | 0.6842153 | 0.9080817 |
| Ldr | 0.0317125 | 0.8891262 | 0.2531923 |
| Chg | 0.7254359 | 0.0920259 | 0.9530268 |
| Cli | 0.1203360 | 0.8907364 | 0.2904372 |
| QI | 0.6465339 | 0.7577285 | 0.2227968 |
| QM | 0.2969722 | 0.9211924 | 0.2177867 |
| Strat | 0.8080935 | 0.0142457 | 0.9453991 |
| Com | 0.7137436 | 0.4234616 | 0.0161944 |
#########################################################################
The MANOVA simultaneously tests all delta variables against the intercept (representing the pre-post change), gender, ethnicity, and discrete-coded GPA above 3.0. Only the pre-post delta makes a difference for all test categories. By fitting to the delta scores, we need not do a repeated measures analysis.
#########################################################################
res.man <- manova(cbind(Fin, Mgt, HR, Sys, HIM, Ldr,
Chg, Cli, QI, Strat, Com, Lgl) ~
1+Gender+Ethnicity+GPA2, data = newdata)
summary(res.man, intercept=TRUE)
## Df Pillai approx F num Df den Df Pr(>F)
## (Intercept) 1 0.78698 20.6268 12 67 <2e-16 ***
## Gender 1 0.09669 0.5976 12 67 0.8365
## Ethnicity 3 0.47675 1.0864 36 207 0.3495
## GPA2 1 0.11668 0.7375 12 67 0.7101
## Residuals 78
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary.aov(res.man, intercept = TRUE)
## Response Fin :
## Df Sum Sq Mean Sq F value Pr(>F)
## (Intercept) 1 28233 28233.3 60.1534 2.792e-11 ***
## Gender 1 248 247.9 0.5282 0.4695
## Ethnicity 3 3006 1002.0 2.1349 0.1025
## GPA2 1 1103 1102.9 2.3497 0.1293
## Residuals 78 36610 469.4
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Response Mgt :
## Df Sum Sq Mean Sq F value Pr(>F)
## (Intercept) 1 21058 21058.3 44.1410 3.719e-09 ***
## Gender 1 580 579.9 1.2155 0.27363
## Ethnicity 3 3567 1189.1 2.4925 0.06621 .
## GPA2 1 83 83.1 0.1741 0.67760
## Residuals 78 37211 477.1
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Response HR :
## Df Sum Sq Mean Sq F value Pr(>F)
## (Intercept) 1 11433 11433.3 26.2056 2.154e-06 ***
## Gender 1 248 247.9 0.5682 0.4532
## Ethnicity 3 1770 589.9 1.3521 0.2637
## GPA2 1 118 118.0 0.2705 0.6045
## Residuals 78 34031 436.3
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Response Sys :
## Df Sum Sq Mean Sq F value Pr(>F)
## (Intercept) 1 19201 19201.2 27.2250 1.455e-06 ***
## Gender 1 25 25.3 0.0358 0.8503
## Ethnicity 3 1309 436.3 0.6187 0.6050
## GPA2 1 153 152.9 0.2168 0.6428
## Residuals 78 55012 705.3
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Response HIM :
## Df Sum Sq Mean Sq F value Pr(>F)
## (Intercept) 1 5505 5504.8 10.8306 0.001501 **
## Gender 1 488 488.3 0.9606 0.330057
## Ethnicity 3 1664 554.8 1.0916 0.357751
## GPA2 1 98 98.2 0.1933 0.661438
## Residuals 78 39644 508.3
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Response Ldr :
## Df Sum Sq Mean Sq F value Pr(>F)
## (Intercept) 1 16019 16019.0 35.8938 6.058e-08 ***
## Gender 1 74 74.0 0.1657 0.6850
## Ethnicity 3 1647 548.9 1.2300 0.3045
## GPA2 1 850 849.6 1.9037 0.1716
## Residuals 78 34811 446.3
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Response Chg :
## Df Sum Sq Mean Sq F value Pr(>F)
## (Intercept) 1 4725 4725.0 10.8485 0.001488 **
## Gender 1 124 123.5 0.2836 0.595851
## Ethnicity 3 1623 541.2 1.2425 0.300066
## GPA2 1 456 455.7 1.0462 0.309542
## Residuals 78 33972 435.5
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Response Cli :
## Df Sum Sq Mean Sq F value Pr(>F)
## (Intercept) 1 9219.0 9219.0 23.5596 6.094e-06 ***
## Gender 1 735.7 735.7 1.8802 0.1742
## Ethnicity 3 316.7 105.6 0.2698 0.8470
## GPA2 1 6.6 6.6 0.0168 0.8971
## Residuals 78 30522.0 391.3
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Response QI :
## Df Sum Sq Mean Sq F value Pr(>F)
## (Intercept) 1 17719.0 17719.0 45.1342 2.694e-09 ***
## Gender 1 38.7 38.7 0.0985 0.7545
## Ethnicity 3 1987.8 662.6 1.6877 0.1765
## GPA2 1 32.8 32.8 0.0836 0.7732
## Residuals 78 30621.7 392.6
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Response Strat :
## Df Sum Sq Mean Sq F value Pr(>F)
## (Intercept) 1 28601 28601.2 55.7052 1.021e-10 ***
## Gender 1 2 1.8 0.0034 0.9536
## Ethnicity 3 2515 838.4 1.6330 0.1885
## GPA2 1 134 133.6 0.2602 0.6114
## Residuals 78 40048 513.4
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Response Com :
## Df Sum Sq Mean Sq F value Pr(>F)
## (Intercept) 1 13376 13376.2 26.8564 1.676e-06 ***
## Gender 1 0 0.3 0.0006 0.9811
## Ethnicity 3 1565 521.7 1.0474 0.3765
## GPA2 1 410 409.7 0.8226 0.3672
## Residuals 78 38849 498.1
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Response Lgl :
## Df Sum Sq Mean Sq F value Pr(>F)
## (Intercept) 1 19811 19810.7 38.2416 2.679e-08 ***
## Gender 1 686 686.3 1.3249 0.2532
## Ethnicity 3 560 186.8 0.3605 0.7816
## GPA2 1 1235 1235.4 2.3848 0.1266
## Residuals 78 40407 518.0
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#########################################################################
A second test models continuous covariates of age, GPA, gender and qualitative covariate ethnicity to explain differences. These models explain nothing, further indicating that the delta is based solely on the curriculum intervention.
#########################################################################
newdata$Gender=as.integer(newdata$Gender)
mymancova=jmv::mancova(
data=newdata,
deps=vars(Fin, Mgt, HR, Sys, HIM, Ldr,
Chg, Cli, QI, Strat, Com, Lgl),
factors=c(Ethnicity),
covs=c(Age, GPA, Gender),
multivar = list("pillai", "wilks", "hotel", "roy"),
)
options(digits=3)
a=mymancova$multivar
a
##
## Multivariate Tests
## -----------------------------------------------------------------------------
## value F df1 df2 p
## -----------------------------------------------------------------------------
## Ethnicity Pillai's Trace 0.5009 1.136 36 204 0.287
## Wilks' Lambda 0.563 1.165 36 196 0.254
## Hotelling's Trace 0.6642 1.193 36 194 0.224
## Roy's Largest Root 0.4406 2.497 12 68 0.009
##
## Age Pillai's Trace 0.1245 0.782 12 66 0.666
## Wilks' Lambda 0.875 0.782 12 66 0.666
## Hotelling's Trace 0.1422 0.782 12 66 0.666
## Roy's Largest Root 0.1422 0.782 12 66 0.666
##
## GPA Pillai's Trace 0.1792 1.200 12 66 0.302
## Wilks' Lambda 0.821 1.200 12 66 0.302
## Hotelling's Trace 0.2183 1.200 12 66 0.302
## Roy's Largest Root 0.2183 1.200 12 66 0.302
##
## Gender Pillai's Trace 0.0824 0.494 12 66 0.911
## Wilks' Lambda 0.918 0.494 12 66 0.911
## Hotelling's Trace 0.0898 0.494 12 66 0.911
## Roy's Largest Root 0.0898 0.494 12 66 0.911
## -----------------------------------------------------------------------------
#########################################################################
Teaching
T1. All faculty evaluations (100%) each term have a median of 4.0 or greater out of 5.0 on the question, “Instructor provided the opportunity to learn.” {1=Strongly Disagree,…5=Strongly Agree} PO
T2. 100% of faculty members support opportunities for learning professional behavior as evidenced by in class learning activities and activities in SOHA- sponsored functions. PO
T3. BHA majors will successfully complete (with a grade of 80% or better) a case study/project in HA 3376 (Financial Management). SLO
T4. BHA majors will successfully complete (with a grade of 80% or better) a final exam in HA 3375 (Financial Accounting). SLO
T5. 100% of students will successfully complete the field experience (HA 4848) with a passing evaluation by their preceptor. A preceptor analysis will be used to determine application of the above referenced skills needing improvement. SLO
T6. 100% of students will successfully complete the final project requirements in the field experience (HA 4848) with a passing evaluation by their preceptor. SLO
T7. BHA majors will successfully complete (with a grade of 80% or better) a capstone case study in HA 4325 (strategic management) including an internal audit of strategic assessment; an external environmental assessment; and an assessment of a healthcare organization strategic plan. SLO
T8. 90% of students will demonstrate success in the writing intensive courses by scoring B’s or better on the final writing intensive (WI) assignments in HA3324. SLO
T9. 90% of students will demonstrate success in oral communication by achieving B’s or better on HA3344 group presentations. SLO
T10. 80% of our students will attain IISE Lean Six Sigma Green Belt Certification. SLO
T11. 80% of our students will attain Excel Basic MOS Certification. SLO
T12. 80% of our students will attain Excel Expert MOS Certification. SLO
T13. 80% of our students will attain QuickBooks Certification. SLO
T14. 100% of students will successfully complete the comprehensive exam with greater than median (nationwide) comparative scores. SLO
T15. 100% of students will have higher post-test scores than pre-test scores on the Peregrine exit exam. SLO
Research
R1. 100% of faculty members are engaged in research activities that support the body of knowledge in their respective fields as evidenced by at least one peer-reviewed publication each year. PO
R2. 50% of faculty acquire research funding for the University and the Department (stretch goal). PO
R3. 50% of students present a paper, poster or other research outcome at a professional conference or research symposium. SLO
R4. 10% of students are a named author on an article submitted for publication in a peer- reviewed journal. SLO
R5. 100% of faculty will collaborate either internally or externally for research purposes to build the research portfolio of our program. PO
Service
S1. 100% of faculty members will have demonstrated professional service each year as evidenced by review of CV’s. PO
S2. 100% of faculty members will have demonstrated community service each year as evidenced by review of CV’s. PO
S3. 100% of faculty provide service at the University, College, School, or Department level. PO
Student Success and Admissions
SS1. 50% of students seeking employment will have jobs within 1 month after graduation. SLO
SS2. 100% of students seeking employment will have jobs within 9 months after graduation. SLO
SS3. 80% or more of available seats will be filled with highly qualified students each term. PO
SS4. 70% of original cohort graduate together. SLO
SS5. 25% or more of admitted students will be of minority status. SLO
Program Success
P1. The program will maintain AUPHA certification (binary). PO
P2. One or more students will receive national awards. PO
P3. The BHA budget remains static or grows but does not shrink. PO
P4. 100% of vacant positions are filled. PO
P5. Alumni will serve as preceptors and speakers for the program as well as board members. PO
P6. In-building student computer facilities increase (binary). PO