Note This is an R markdown document and refers to the manuscript entitled as “It is better an approximate answer to the right question than the exact answer to the wrong question : the case of the psychometric analysis of the ASQ:SE”, by Luis Anunciação, Jane Squires, and J. Landeira-Fernandez. The data and all coded used here are availabe at https://osf.io/z6gwv/ . To get the same results, one needs to load the Rdata and run all chunks below.

Thank you.
Feel free to contact me at Last update: July 5, 2021

#Packages
pacman::p_load(tidyverse, #enrironment
               mirt, #multidimensional IRT
               psych) #classical test

1 Data processing

1.1 package versions

packageVersion("psych")
## [1] '2.1.6'
packageVersion("EGANet")
## [1] '0.9.8'

1.2 Get the raw r data

Always load the main dataset

load("C:/Users/luisf/Dropbox/Puc-Rio/Tese e papers/R/base em R (todas as faixas etarias).RData")

1.3 Change vector labels

For this specific paper, change labels

ds_60 <- original_60
ds_48 <- original_48
ds_36 <- original_36
ds_30 <- original_30
ds_24 <- original_24
ds_18 <- original_18
ds_12 <- original_12

backup_60 <- ds_60
backup_48 <- ds_48
backup_36 <- ds_36
backup_30 <- ds_30
backup_24 <- ds_24
backup_18 <- ds_18
backup_12 <- ds_12

Than I’ll remove all the other things

to.remove <- ls()
to.remove <- c(to.remove[!grepl(pattern = "^ds|^backup", to.remove)], "to.remove")
rm(list=to.remove)
#rm(list=setdiff(ls(), c("ds")))

Certify that items are the main variables in the dataset. In this project, we are using the 2011 data only.

1.4 Data set 60 months

ds_60 <- ds_60 %>% 
  select(-c(sum_emo, sum_soc)) %>% 
  filter(year == "2011") %>%
  mutate(score = rowSums(select(., starts_with("q")), na.rm=T))
ds_60 %>% count(year)
##   year     n
## 1 2011 22331

1.5 Data set 48 months

ds_48 <- ds_48 %>% 
  select(-c(sum_emo, sum_soc)) %>% 
  filter(year == "2011") %>% 
  mutate(score = rowSums(select(., starts_with("q")), na.rm=T))
ds_48 %>% count(year)
##   year     n
## 1 2011 12473

1.6 Visual check: Original data (48 months)

ds_48 %>% 
  select(starts_with("q_")) %>% 
  mutate_all(factor) %>% 
  DataExplorer::plot_bar()

## Visual check: Original data (60 months)

ds_60 %>% 
  select(starts_with("q_")) %>% 
  mutate_all(factor) %>% 
  DataExplorer::plot_bar()

1.7 Tabular check (48 months)

ds_48 %>% 
  select(starts_with("q_")) %>% summarytools::freq()
## Registered S3 method overwritten by 'pryr':
##   method      from
##   print.bytes Rcpp
## Frequencies  
## ds_48$q_1  
## Type: Numeric  
## 
##                Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## ----------- ------- --------- -------------- --------- --------------
##           0   11073     88.78          88.78     88.78          88.78
##           5    1249     10.01          98.79     10.01          98.79
##          10     151      1.21         100.00      1.21         100.00
##        <NA>       0                               0.00         100.00
##       Total   12473    100.00         100.00    100.00         100.00
## 
## ds_48$q_2  
## Type: Numeric  
## 
##                Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## ----------- ------- --------- -------------- --------- --------------
##           0    8386     67.23          67.23     67.23          67.23
##           5    2720     21.81          89.04     21.81          89.04
##          10    1367     10.96         100.00     10.96         100.00
##        <NA>       0                               0.00         100.00
##       Total   12473    100.00         100.00    100.00         100.00
## 
## ds_48$q_3  
## Type: Numeric  
## 
##                Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## ----------- ------- --------- -------------- --------- --------------
##           0   10222     81.95          81.95     81.95          81.95
##           5    1745     13.99          95.94     13.99          95.94
##          10     506      4.06         100.00      4.06         100.00
##        <NA>       0                               0.00         100.00
##       Total   12473    100.00         100.00    100.00         100.00
## 
## ds_48$q_4  
## Type: Numeric  
## 
##                Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## ----------- ------- --------- -------------- --------- --------------
##           0   10489     84.09          84.09     84.09          84.09
##           5    1476     11.83          95.93     11.83          95.93
##          10     508      4.07         100.00      4.07         100.00
##        <NA>       0                               0.00         100.00
##       Total   12473    100.00         100.00    100.00         100.00
## 
## ds_48$q_5  
## Type: Numeric  
## 
##                Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## ----------- ------- --------- -------------- --------- --------------
##           0   10441     83.71          83.71     83.71          83.71
##           5    1685     13.51          97.22     13.51          97.22
##          10     347      2.78         100.00      2.78         100.00
##        <NA>       0                               0.00         100.00
##       Total   12473    100.00         100.00    100.00         100.00
## 
## ds_48$q_6  
## Type: Numeric  
## 
##                Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## ----------- ------- --------- -------------- --------- --------------
##           0    9901     79.38          79.38     79.38          79.38
##           5    1653     13.25          92.63     13.25          92.63
##          10     919      7.37         100.00      7.37         100.00
##        <NA>       0                               0.00         100.00
##       Total   12473    100.00         100.00    100.00         100.00
## 
## ds_48$q_7  
## Type: Numeric  
## 
##                Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## ----------- ------- --------- -------------- --------- --------------
##           0    9452     75.78          75.78     75.78          75.78
##           5    2380     19.08          94.86     19.08          94.86
##          10     641      5.14         100.00      5.14         100.00
##        <NA>       0                               0.00         100.00
##       Total   12473    100.00         100.00    100.00         100.00
## 
## ds_48$q_8  
## Type: Numeric  
## 
##                Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## ----------- ------- --------- -------------- --------- --------------
##           0    9286     74.45          74.45     74.45          74.45
##           5    2180     17.48          91.93     17.48          91.93
##          10    1007      8.07         100.00      8.07         100.00
##        <NA>       0                               0.00         100.00
##       Total   12473    100.00         100.00    100.00         100.00
## 
## ds_48$q_9  
## Type: Numeric  
## 
##                Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## ----------- ------- --------- -------------- --------- --------------
##           0   11417     91.53          91.53     91.53          91.53
##           5     903      7.24          98.77      7.24          98.77
##          10     153      1.23         100.00      1.23         100.00
##        <NA>       0                               0.00         100.00
##       Total   12473    100.00         100.00    100.00         100.00
## 
## ds_48$q_10  
## Type: Numeric  
## 
##                Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## ----------- ------- --------- -------------- --------- --------------
##           0   11711     93.89          93.89     93.89          93.89
##           5     553      4.43          98.32      4.43          98.32
##          10     209      1.68         100.00      1.68         100.00
##        <NA>       0                               0.00         100.00
##       Total   12473    100.00         100.00    100.00         100.00
## 
## ds_48$q_11  
## Type: Numeric  
## 
##                Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## ----------- ------- --------- -------------- --------- --------------
##           0   11355     91.04          91.04     91.04          91.04
##           5     477      3.82          94.86      3.82          94.86
##          10     641      5.14         100.00      5.14         100.00
##        <NA>       0                               0.00         100.00
##       Total   12473    100.00         100.00    100.00         100.00
## 
## ds_48$q_12  
## Type: Numeric  
## 
##                Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## ----------- ------- --------- -------------- --------- --------------
##           0    9672     77.54          77.54     77.54          77.54
##           5    2391     19.17          96.71     19.17          96.71
##          10     410      3.29         100.00      3.29         100.00
##        <NA>       0                               0.00         100.00
##       Total   12473    100.00         100.00    100.00         100.00
## 
## ds_48$q_13  
## Type: Numeric  
## 
##                Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## ----------- ------- --------- -------------- --------- --------------
##           0    9613     77.07          77.07     77.07          77.07
##           5    2619     21.00          98.07     21.00          98.07
##          10     241      1.93         100.00      1.93         100.00
##        <NA>       0                               0.00         100.00
##       Total   12473    100.00         100.00    100.00         100.00
## 
## ds_48$q_14  
## Type: Numeric  
## 
##                Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## ----------- ------- --------- -------------- --------- --------------
##           0   11364     91.11          91.11     91.11          91.11
##           5     984      7.89          99.00      7.89          99.00
##          10     125      1.00         100.00      1.00         100.00
##        <NA>       0                               0.00         100.00
##       Total   12473    100.00         100.00    100.00         100.00
## 
## ds_48$q_15  
## Type: Numeric  
## 
##                Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## ----------- ------- --------- -------------- --------- --------------
##           0   11523     92.38          92.38     92.38          92.38
##           5     689      5.52          97.91      5.52          97.91
##          10     261      2.09         100.00      2.09         100.00
##        <NA>       0                               0.00         100.00
##       Total   12473    100.00         100.00    100.00         100.00
## 
## ds_48$q_16  
## Type: Numeric  
## 
##                Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## ----------- ------- --------- -------------- --------- --------------
##           0    7917     63.47          63.47     63.47          63.47
##           5    2394     19.19          82.67     19.19          82.67
##          10    2162     17.33         100.00     17.33         100.00
##        <NA>       0                               0.00         100.00
##       Total   12473    100.00         100.00    100.00         100.00
## 
## ds_48$q_17  
## Type: Numeric  
## 
##                Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## ----------- ------- --------- -------------- --------- --------------
##           0   11259     90.27          90.27     90.27          90.27
##           5     895      7.18          97.44      7.18          97.44
##          10     319      2.56         100.00      2.56         100.00
##        <NA>       0                               0.00         100.00
##       Total   12473    100.00         100.00    100.00         100.00
## 
## ds_48$q_18  
## Type: Numeric  
## 
##                Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## ----------- ------- --------- -------------- --------- --------------
##           0   10366     83.11          83.11     83.11          83.11
##           5    1707     13.69          96.79     13.69          96.79
##          10     400      3.21         100.00      3.21         100.00
##        <NA>       0                               0.00         100.00
##       Total   12473    100.00         100.00    100.00         100.00
## 
## ds_48$q_19  
## Type: Numeric  
## 
##                Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## ----------- ------- --------- -------------- --------- --------------
##           0    9780     78.41          78.41     78.41          78.41
##           5    1865     14.95          93.36     14.95          93.36
##          10     828      6.64         100.00      6.64         100.00
##        <NA>       0                               0.00         100.00
##       Total   12473    100.00         100.00    100.00         100.00
## 
## ds_48$q_20  
## Type: Numeric  
## 
##                Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## ----------- ------- --------- -------------- --------- --------------
##           0   10480     84.02          84.02     84.02          84.02
##           5    1694     13.58          97.60     13.58          97.60
##          10     299      2.40         100.00      2.40         100.00
##        <NA>       0                               0.00         100.00
##       Total   12473    100.00         100.00    100.00         100.00
## 
## ds_48$q_21  
## Type: Numeric  
## 
##                Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## ----------- ------- --------- -------------- --------- --------------
##           0   10162     81.47          81.47     81.47          81.47
##           5    1930     15.47          96.95     15.47          96.95
##          10     381      3.05         100.00      3.05         100.00
##        <NA>       0                               0.00         100.00
##       Total   12473    100.00         100.00    100.00         100.00
## 
## ds_48$q_22  
## Type: Numeric  
## 
##                Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## ----------- ------- --------- -------------- --------- --------------
##           0   11785     94.48          94.48     94.48          94.48
##           5     354      2.84          97.32      2.84          97.32
##          10     334      2.68         100.00      2.68         100.00
##        <NA>       0                               0.00         100.00
##       Total   12473    100.00         100.00    100.00         100.00
## 
## ds_48$q_23  
## Type: Numeric  
## 
##                Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## ----------- ------- --------- -------------- --------- --------------
##           0   12086     96.90          96.90     96.90          96.90
##           5     214      1.72          98.61      1.72          98.61
##          10     173      1.39         100.00      1.39         100.00
##        <NA>       0                               0.00         100.00
##       Total   12473    100.00         100.00    100.00         100.00
## 
## ds_48$q_24  
## Type: Numeric  
## 
##                Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## ----------- ------- --------- -------------- --------- --------------
##           0    8781     70.40          70.40     70.40          70.40
##           5    3110     24.93          95.33     24.93          95.33
##          10     582      4.67         100.00      4.67         100.00
##        <NA>       0                               0.00         100.00
##       Total   12473    100.00         100.00    100.00         100.00
## 
## ds_48$q_25  
## Type: Numeric  
## 
##                Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## ----------- ------- --------- -------------- --------- --------------
##           0   10713     85.89          85.89     85.89          85.89
##           5    1282     10.28          96.17     10.28          96.17
##          10     478      3.83         100.00      3.83         100.00
##        <NA>       0                               0.00         100.00
##       Total   12473    100.00         100.00    100.00         100.00
## 
## ds_48$q_26  
## Type: Numeric  
## 
##                Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## ----------- ------- --------- -------------- --------- --------------
##           0    9669     77.52          77.52     77.52          77.52
##           5    1732     13.89          91.41     13.89          91.41
##          10    1072      8.59         100.00      8.59         100.00
##        <NA>       0                               0.00         100.00
##       Total   12473    100.00         100.00    100.00         100.00
## 
## ds_48$q_27  
## Type: Numeric  
## 
##                Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## ----------- ------- --------- -------------- --------- --------------
##           0   11938     95.71          95.71     95.71          95.71
##           5     345      2.77          98.48      2.77          98.48
##          10     190      1.52         100.00      1.52         100.00
##        <NA>       0                               0.00         100.00
##       Total   12473    100.00         100.00    100.00         100.00
## 
## ds_48$q_28  
## Type: Numeric  
## 
##                Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## ----------- ------- --------- -------------- --------- --------------
##           0    7964     63.85          63.85     63.85          63.85
##           5    3447     27.64          91.49     27.64          91.49
##          10    1062      8.51         100.00      8.51         100.00
##        <NA>       0                               0.00         100.00
##       Total   12473    100.00         100.00    100.00         100.00
## 
## ds_48$q_29  
## Type: Numeric  
## 
##                Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## ----------- ------- --------- -------------- --------- --------------
##           0   11694     93.75          93.75     93.75          93.75
##           5     690      5.53          99.29      5.53          99.29
##          10      89      0.71         100.00      0.71         100.00
##        <NA>       0                               0.00         100.00
##       Total   12473    100.00         100.00    100.00         100.00
## 
## ds_48$q_30  
## Type: Numeric  
## 
##                Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## ----------- ------- --------- -------------- --------- --------------
##           0   11734     94.08          94.08     94.08          94.08
##           5     579      4.64          98.72      4.64          98.72
##          10     160      1.28         100.00      1.28         100.00
##        <NA>       0                               0.00         100.00
##       Total   12473    100.00         100.00    100.00         100.00
## 
## ds_48$q_31  
## Type: Numeric  
## 
##                Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## ----------- ------- --------- -------------- --------- --------------
##           0    9838     78.87          78.87     78.87          78.87
##           5    2032     16.29          95.17     16.29          95.17
##          10     603      4.83         100.00      4.83         100.00
##        <NA>       0                               0.00         100.00
##       Total   12473    100.00         100.00    100.00         100.00
## 
## ds_48$q_32  
## Type: Numeric  
## 
##                Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## ----------- ------- --------- -------------- --------- --------------
##           0   10832     86.84          86.84     86.84          86.84
##           5    1164      9.33          96.18      9.33          96.18
##          10     477      3.82         100.00      3.82         100.00
##        <NA>       0                               0.00         100.00
##       Total   12473    100.00         100.00    100.00         100.00

1.8 Original data (60 months)

ds_60 %>% 
  select(starts_with("q_")) %>% summarytools::freq()
## Frequencies  
## ds_60$q_1  
## Type: Numeric  
## 
##                Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## ----------- ------- --------- -------------- --------- --------------
##           0   19080     85.44          85.44     85.44          85.44
##           5    2937     13.15          98.59     13.15          98.59
##          10     314      1.41         100.00      1.41         100.00
##        <NA>       0                               0.00         100.00
##       Total   22331    100.00         100.00    100.00         100.00
## 
## ds_60$q_2  
## Type: Numeric  
## 
##                Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## ----------- ------- --------- -------------- --------- --------------
##           0   14230     63.72          63.72     63.72          63.72
##           5    5214     23.35          87.07     23.35          87.07
##          10    2887     12.93         100.00     12.93         100.00
##        <NA>       0                               0.00         100.00
##       Total   22331    100.00         100.00    100.00         100.00
## 
## ds_60$q_3  
## Type: Numeric  
## 
##                Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## ----------- ------- --------- -------------- --------- --------------
##           0   16489     73.84          73.84     73.84          73.84
##           5    4835     21.65          95.49     21.65          95.49
##          10    1007      4.51         100.00      4.51         100.00
##        <NA>       0                               0.00         100.00
##       Total   22331    100.00         100.00    100.00         100.00
## 
## ds_60$q_4  
## Type: Numeric  
## 
##                Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## ----------- ------- --------- -------------- --------- --------------
##           0   17370     77.78          77.78     77.78          77.78
##           5    3881     17.38          95.16     17.38          95.16
##          10    1080      4.84         100.00      4.84         100.00
##        <NA>       0                               0.00         100.00
##       Total   22331    100.00         100.00    100.00         100.00
## 
## ds_60$q_5  
## Type: Numeric  
## 
##                Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## ----------- ------- --------- -------------- --------- --------------
##           0   18083     80.98          80.98     80.98          80.98
##           5    3240     14.51          95.49     14.51          95.49
##          10    1008      4.51         100.00      4.51         100.00
##        <NA>       0                               0.00         100.00
##       Total   22331    100.00         100.00    100.00         100.00
## 
## ds_60$q_6  
## Type: Numeric  
## 
##                Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## ----------- ------- --------- -------------- --------- --------------
##           0   16967     75.98          75.98     75.98          75.98
##           5    3500     15.67          91.65     15.67          91.65
##          10    1864      8.35         100.00      8.35         100.00
##        <NA>       0                               0.00         100.00
##       Total   22331    100.00         100.00    100.00         100.00
## 
## ds_60$q_7  
## Type: Numeric  
## 
##                Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## ----------- ------- --------- -------------- --------- --------------
##           0   16652     74.57          74.57     74.57          74.57
##           5    4693     21.02          95.58     21.02          95.58
##          10     986      4.42         100.00      4.42         100.00
##        <NA>       0                               0.00         100.00
##       Total   22331    100.00         100.00    100.00         100.00
## 
## ds_60$q_8  
## Type: Numeric  
## 
##                Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## ----------- ------- --------- -------------- --------- --------------
##           0   19763     88.50          88.50     88.50          88.50
##           5    2276     10.19          98.69     10.19          98.69
##          10     292      1.31         100.00      1.31         100.00
##        <NA>       0                               0.00         100.00
##       Total   22331    100.00         100.00    100.00         100.00
## 
## ds_60$q_9  
## Type: Numeric  
## 
##                Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## ----------- ------- --------- -------------- --------- --------------
##           0   17211     77.07          77.07     77.07          77.07
##           5    3503     15.69          92.76     15.69          92.76
##          10    1617      7.24         100.00      7.24         100.00
##        <NA>       0                               0.00         100.00
##       Total   22331    100.00         100.00    100.00         100.00
## 
## ds_60$q_10  
## Type: Numeric  
## 
##                Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## ----------- ------- --------- -------------- --------- --------------
##           0   20337     91.07          91.07     91.07          91.07
##           5    1768      7.92          98.99      7.92          98.99
##          10     226      1.01         100.00      1.01         100.00
##        <NA>       0                               0.00         100.00
##       Total   22331    100.00         100.00    100.00         100.00
## 
## ds_60$q_11  
## Type: Numeric  
## 
##                Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## ----------- ------- --------- -------------- --------- --------------
##           0   21546     96.48          96.48     96.48          96.48
##           5     441      1.97          98.46      1.97          98.46
##          10     344      1.54         100.00      1.54         100.00
##        <NA>       0                               0.00         100.00
##       Total   22331    100.00         100.00    100.00         100.00
## 
## ds_60$q_12  
## Type: Numeric  
## 
##                Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## ----------- ------- --------- -------------- --------- --------------
##           0   20431     91.49          91.49     91.49          91.49
##           5     822      3.68          95.17      3.68          95.17
##          10    1078      4.83         100.00      4.83         100.00
##        <NA>       0                               0.00         100.00
##       Total   22331    100.00         100.00    100.00         100.00
## 
## ds_60$q_13  
## Type: Numeric  
## 
##                Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## ----------- ------- --------- -------------- --------- --------------
##           0   18227     81.62          81.62     81.62          81.62
##           5    3348     14.99          96.61     14.99          96.61
##          10     756      3.39         100.00      3.39         100.00
##        <NA>       0                               0.00         100.00
##       Total   22331    100.00         100.00    100.00         100.00
## 
## ds_60$q_14  
## Type: Numeric  
## 
##                Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## ----------- ------- --------- -------------- --------- --------------
##           0   15083     67.54          67.54     67.54          67.54
##           5    6124     27.42          94.97     27.42          94.97
##          10    1124      5.03         100.00      5.03         100.00
##        <NA>       0                               0.00         100.00
##       Total   22331    100.00         100.00    100.00         100.00
## 
## ds_60$q_15  
## Type: Numeric  
## 
##                Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## ----------- ------- --------- -------------- --------- --------------
##           0   15975     71.54          71.54     71.54          71.54
##           5    5675     25.41          96.95     25.41          96.95
##          10     681      3.05         100.00      3.05         100.00
##        <NA>       0                               0.00         100.00
##       Total   22331    100.00         100.00    100.00         100.00
## 
## ds_60$q_16  
## Type: Numeric  
## 
##                Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## ----------- ------- --------- -------------- --------- --------------
##           0   13456     60.26          60.26     60.26          60.26
##           5    5085     22.77          83.03     22.77          83.03
##          10    3790     16.97         100.00     16.97         100.00
##        <NA>       0                               0.00         100.00
##       Total   22331    100.00         100.00    100.00         100.00
## 
## ds_60$q_17  
## Type: Numeric  
## 
##                Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## ----------- ------- --------- -------------- --------- --------------
##           0   19557     87.58          87.58     87.58          87.58
##           5    2231      9.99          97.57      9.99          97.57
##          10     543      2.43         100.00      2.43         100.00
##        <NA>       0                               0.00         100.00
##       Total   22331    100.00         100.00    100.00         100.00
## 
## ds_60$q_18  
## Type: Numeric  
## 
##                Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## ----------- ------- --------- -------------- --------- --------------
##           0   20446     91.56          91.56     91.56          91.56
##           5    1540      6.90          98.46      6.90          98.46
##          10     345      1.54         100.00      1.54         100.00
##        <NA>       0                               0.00         100.00
##       Total   22331    100.00         100.00    100.00         100.00
## 
## ds_60$q_19  
## Type: Numeric  
## 
##                Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## ----------- ------- --------- -------------- --------- --------------
##           0   17580     78.72          78.72     78.72          78.72
##           5    3555     15.92          94.64     15.92          94.64
##          10    1196      5.36         100.00      5.36         100.00
##        <NA>       0                               0.00         100.00
##       Total   22331    100.00         100.00    100.00         100.00
## 
## ds_60$q_20  
## Type: Numeric  
## 
##                Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## ----------- ------- --------- -------------- --------- --------------
##           0   17589     78.76          78.76     78.76          78.76
##           5    4100     18.36          97.13     18.36          97.13
##          10     642      2.87         100.00      2.87         100.00
##        <NA>       0                               0.00         100.00
##       Total   22331    100.00         100.00    100.00         100.00
## 
## ds_60$q_21  
## Type: Numeric  
## 
##                Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## ----------- ------- --------- -------------- --------- --------------
##           0   16848     75.45          75.45     75.45          75.45
##           5    4443     19.90          95.34     19.90          95.34
##          10    1040      4.66         100.00      4.66         100.00
##        <NA>       0                               0.00         100.00
##       Total   22331    100.00         100.00    100.00         100.00
## 
## ds_60$q_22  
## Type: Numeric  
## 
##                Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## ----------- ------- --------- -------------- --------- --------------
##           0   20668     92.55          92.55     92.55          92.55
##           5     893      4.00          96.55      4.00          96.55
##          10     770      3.45         100.00      3.45         100.00
##        <NA>       0                               0.00         100.00
##       Total   22331    100.00         100.00    100.00         100.00
## 
## ds_60$q_23  
## Type: Numeric  
## 
##                Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## ----------- ------- --------- -------------- --------- --------------
##           0   21545     96.48          96.48     96.48          96.48
##           5     458      2.05          98.53      2.05          98.53
##          10     328      1.47         100.00      1.47         100.00
##        <NA>       0                               0.00         100.00
##       Total   22331    100.00         100.00    100.00         100.00
## 
## ds_60$q_24  
## Type: Numeric  
## 
##                Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## ----------- ------- --------- -------------- --------- --------------
##           0   14573     65.26          65.26     65.26          65.26
##           5    6580     29.47          94.72     29.47          94.72
##          10    1178      5.28         100.00      5.28         100.00
##        <NA>       0                               0.00         100.00
##       Total   22331    100.00         100.00    100.00         100.00
## 
## ds_60$q_25  
## Type: Numeric  
## 
##                Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## ----------- ------- --------- -------------- --------- --------------
##           0   18832     84.33          84.33     84.33          84.33
##           5    2467     11.05          95.38     11.05          95.38
##          10    1032      4.62         100.00      4.62         100.00
##        <NA>       0                               0.00         100.00
##       Total   22331    100.00         100.00    100.00         100.00
## 
## ds_60$q_26  
## Type: Numeric  
## 
##                Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## ----------- ------- --------- -------------- --------- --------------
##           0   17647     79.02          79.02     79.02          79.02
##           5    3206     14.36          93.38     14.36          93.38
##          10    1478      6.62         100.00      6.62         100.00
##        <NA>       0                               0.00         100.00
##       Total   22331    100.00         100.00    100.00         100.00
## 
## ds_60$q_27  
## Type: Numeric  
## 
##                Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## ----------- ------- --------- -------------- --------- --------------
##           0   14105     63.16          63.16     63.16          63.16
##           5    6691     29.96          93.13     29.96          93.13
##          10    1535      6.87         100.00      6.87         100.00
##        <NA>       0                               0.00         100.00
##       Total   22331    100.00         100.00    100.00         100.00
## 
## ds_60$q_28  
## Type: Numeric  
## 
##                Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## ----------- ------- --------- -------------- --------- --------------
##           0   20182     90.38          90.38     90.38          90.38
##           5    1946      8.71          99.09      8.71          99.09
##          10     203      0.91         100.00      0.91         100.00
##        <NA>       0                               0.00         100.00
##       Total   22331    100.00         100.00    100.00         100.00
## 
## ds_60$q_29  
## Type: Numeric  
## 
##                Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## ----------- ------- --------- -------------- --------- --------------
##           0   20720     92.79          92.79     92.79          92.79
##           5    1345      6.02          98.81      6.02          98.81
##          10     266      1.19         100.00      1.19         100.00
##        <NA>       0                               0.00         100.00
##       Total   22331    100.00         100.00    100.00         100.00
## 
## ds_60$q_30  
## Type: Numeric  
## 
##                Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## ----------- ------- --------- -------------- --------- --------------
##           0   17795     79.69          79.69     79.69          79.69
##           5    3425     15.34          95.02     15.34          95.02
##          10    1111      4.98         100.00      4.98         100.00
##        <NA>       0                               0.00         100.00
##       Total   22331    100.00         100.00    100.00         100.00
## 
## ds_60$q_31  
## Type: Numeric  
## 
##                Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## ----------- ------- --------- -------------- --------- --------------
##           0   13290     59.51          59.51     59.51          59.51
##           5    7825     35.04          94.55     35.04          94.55
##          10    1216      5.45         100.00      5.45         100.00
##        <NA>       0                               0.00         100.00
##       Total   22331    100.00         100.00    100.00         100.00
## 
## ds_60$q_32  
## Type: Numeric  
## 
##                Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## ----------- ------- --------- -------------- --------- --------------
##           0   18996     85.07          85.07     85.07          85.07
##           5    2262     10.13          95.20     10.13          95.20
##          10    1073      4.80         100.00      4.80         100.00
##        <NA>       0                               0.00         100.00
##       Total   22331    100.00         100.00    100.00         100.00

1.9 Reliability of the original data 48 months

ds_48 %>% 
  select(starts_with("q_")) %>% 
  alpha(.)
## 
## Reliability analysis   
## Call: alpha(x = .)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean   sd median_r
##       0.83      0.84    0.86      0.14 5.1 0.0022    1 0.96     0.12
## 
##  lower alpha upper     95% confidence boundaries
## 0.82 0.83 0.83 
## 
##  Reliability if an item is dropped:
##      raw_alpha std.alpha G6(smc) average_r S/N alpha se  var.r med.r
## q_1       0.82      0.83    0.85      0.14 4.9   0.0023 0.0104  0.11
## q_2       0.83      0.84    0.86      0.14 5.2   0.0021 0.0102  0.12
## q_3       0.83      0.83    0.85      0.14 5.0   0.0022 0.0101  0.12
## q_4       0.82      0.83    0.85      0.14 4.9   0.0023 0.0103  0.12
## q_5       0.83      0.83    0.85      0.14 5.1   0.0022 0.0105  0.12
## q_6       0.83      0.84    0.86      0.14 5.2   0.0022 0.0104  0.12
## q_7       0.82      0.83    0.85      0.14 4.8   0.0023 0.0099  0.11
## q_8       0.82      0.83    0.85      0.14 4.9   0.0023 0.0103  0.11
## q_9       0.82      0.83    0.85      0.14 5.0   0.0022 0.0105  0.11
## q_10      0.83      0.84    0.86      0.14 5.1   0.0022 0.0107  0.12
## q_11      0.83      0.84    0.86      0.14 5.1   0.0022 0.0108  0.12
## q_12      0.83      0.84    0.86      0.14 5.1   0.0022 0.0107  0.12
## q_13      0.81      0.83    0.84      0.13 4.7   0.0023 0.0094  0.11
## q_14      0.82      0.83    0.85      0.14 4.9   0.0022 0.0104  0.12
## q_15      0.83      0.84    0.86      0.14 5.2   0.0022 0.0106  0.12
## q_16      0.82      0.83    0.85      0.14 5.0   0.0022 0.0103  0.12
## q_17      0.82      0.83    0.85      0.14 4.9   0.0022 0.0100  0.12
## q_18      0.82      0.83    0.85      0.13 4.8   0.0023 0.0101  0.11
## q_19      0.82      0.83    0.85      0.14 4.9   0.0022 0.0099  0.12
## q_20      0.82      0.83    0.85      0.13 4.8   0.0023 0.0100  0.11
## q_21      0.83      0.84    0.85      0.14 5.1   0.0022 0.0106  0.12
## q_22      0.82      0.83    0.85      0.14 5.0   0.0022 0.0108  0.11
## q_23      0.83      0.84    0.86      0.14 5.1   0.0022 0.0106  0.12
## q_24      0.81      0.83    0.84      0.13 4.7   0.0024 0.0093  0.11
## q_25      0.82      0.83    0.85      0.14 4.9   0.0023 0.0102  0.12
## q_26      0.82      0.83    0.85      0.14 5.0   0.0022 0.0108  0.12
## q_27      0.82      0.83    0.85      0.14 5.0   0.0022 0.0103  0.12
## q_28      0.82      0.83    0.85      0.14 4.9   0.0022 0.0104  0.11
## q_29      0.82      0.83    0.85      0.14 4.9   0.0022 0.0103  0.11
## q_30      0.82      0.83    0.85      0.14 5.0   0.0022 0.0104  0.12
## q_31      0.82      0.83    0.85      0.14 4.9   0.0023 0.0100  0.12
## q_32      0.83      0.84    0.86      0.14 5.2   0.0022 0.0102  0.12
## 
##  Item statistics 
##          n raw.r std.r r.cor r.drop mean  sd
## q_1  12473  0.47  0.50  0.48   0.43 0.62 1.8
## q_2  12473  0.27  0.22  0.17   0.16 2.19 3.4
## q_3  12473  0.32  0.35  0.31   0.25 1.11 2.5
## q_4  12473  0.48  0.46  0.44   0.41 1.00 2.5
## q_5  12473  0.32  0.34  0.29   0.25 0.95 2.3
## q_6  12473  0.29  0.25  0.20   0.20 1.40 3.0
## q_7  12473  0.55  0.52  0.51   0.48 1.47 2.8
## q_8  12473  0.51  0.48  0.46   0.43 1.68 3.1
## q_9  12473  0.38  0.42  0.38   0.33 0.48 1.7
## q_10 12473  0.27  0.30  0.25   0.22 0.39 1.6
## q_11 12473  0.30  0.30  0.25   0.22 0.71 2.4
## q_12 12473  0.30  0.30  0.24   0.22 1.29 2.5
## q_13 12473  0.64  0.63  0.63   0.59 1.24 2.4
## q_14 12473  0.39  0.43  0.40   0.34 0.49 1.7
## q_15 12473  0.23  0.25  0.19   0.18 0.49 1.8
## q_16 12473  0.44  0.38  0.35   0.33 2.69 3.9
## q_17 12473  0.42  0.45  0.44   0.36 0.61 2.0
## q_18 12473  0.55  0.55  0.54   0.49 1.00 2.4
## q_19 12473  0.44  0.46  0.45   0.36 1.41 2.9
## q_20 12473  0.55  0.54  0.53   0.50 0.92 2.2
## q_21 12473  0.30  0.32  0.27   0.23 1.08 2.4
## q_22 12473  0.35  0.36  0.32   0.30 0.41 1.8
## q_23 12473  0.25  0.28  0.22   0.21 0.22 1.3
## q_24 12473  0.64  0.62  0.63   0.58 1.71 2.8
## q_25 12473  0.49  0.48  0.46   0.43 0.90 2.4
## q_26 12473  0.38  0.35  0.30   0.29 1.55 3.1
## q_27 12473  0.36  0.41  0.38   0.32 0.29 1.5
## q_28 12473  0.46  0.45  0.43   0.38 2.23 3.2
## q_29 12473  0.46  0.50  0.49   0.42 0.35 1.4
## q_30 12473  0.36  0.42  0.39   0.32 0.36 1.5
## q_31 12473  0.50  0.48  0.46   0.43 1.30 2.7
## q_32 12473  0.22  0.21  0.15   0.15 0.85 2.3
## 
## Non missing response frequency for each item
##         0    5   10 miss
## q_1  0.89 0.10 0.01    0
## q_2  0.67 0.22 0.11    0
## q_3  0.82 0.14 0.04    0
## q_4  0.84 0.12 0.04    0
## q_5  0.84 0.14 0.03    0
## q_6  0.79 0.13 0.07    0
## q_7  0.76 0.19 0.05    0
## q_8  0.74 0.17 0.08    0
## q_9  0.92 0.07 0.01    0
## q_10 0.94 0.04 0.02    0
## q_11 0.91 0.04 0.05    0
## q_12 0.78 0.19 0.03    0
## q_13 0.77 0.21 0.02    0
## q_14 0.91 0.08 0.01    0
## q_15 0.92 0.06 0.02    0
## q_16 0.63 0.19 0.17    0
## q_17 0.90 0.07 0.03    0
## q_18 0.83 0.14 0.03    0
## q_19 0.78 0.15 0.07    0
## q_20 0.84 0.14 0.02    0
## q_21 0.81 0.15 0.03    0
## q_22 0.94 0.03 0.03    0
## q_23 0.97 0.02 0.01    0
## q_24 0.70 0.25 0.05    0
## q_25 0.86 0.10 0.04    0
## q_26 0.78 0.14 0.09    0
## q_27 0.96 0.03 0.02    0
## q_28 0.64 0.28 0.09    0
## q_29 0.94 0.06 0.01    0
## q_30 0.94 0.05 0.01    0
## q_31 0.79 0.16 0.05    0
## q_32 0.87 0.09 0.04    0

1.10 Reliability of the original data 60 months

ds_60 %>% 
  select(starts_with("q_")) %>% 
  alpha(.)
## 
## Reliability analysis   
## Call: alpha(x = .)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean  sd median_r
##       0.85      0.86    0.87      0.16 5.9 0.0014  1.2 1.1     0.14
## 
##  lower alpha upper     95% confidence boundaries
## 0.84 0.85 0.85 
## 
##  Reliability if an item is dropped:
##      raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## q_1       0.84      0.85    0.87      0.15 5.6   0.0015 0.013  0.13
## q_2       0.85      0.86    0.87      0.16 6.0   0.0014 0.012  0.14
## q_3       0.85      0.85    0.87      0.16 5.8   0.0014 0.012  0.14
## q_4       0.85      0.85    0.87      0.16 5.8   0.0014 0.012  0.14
## q_5       0.84      0.85    0.87      0.15 5.6   0.0015 0.013  0.13
## q_6       0.85      0.86    0.87      0.16 5.9   0.0014 0.012  0.14
## q_7       0.84      0.85    0.87      0.15 5.6   0.0015 0.012  0.14
## q_8       0.84      0.85    0.87      0.16 5.7   0.0015 0.013  0.13
## q_9       0.84      0.85    0.87      0.15 5.6   0.0015 0.013  0.13
## q_10      0.84      0.85    0.87      0.16 5.7   0.0015 0.013  0.14
## q_11      0.85      0.85    0.87      0.16 5.9   0.0014 0.013  0.14
## q_12      0.85      0.85    0.87      0.16 5.9   0.0014 0.013  0.14
## q_13      0.84      0.85    0.87      0.15 5.5   0.0015 0.012  0.13
## q_14      0.85      0.85    0.87      0.16 5.9   0.0014 0.013  0.14
## q_15      0.84      0.85    0.86      0.15 5.5   0.0015 0.011  0.13
## q_16      0.84      0.85    0.87      0.16 5.8   0.0015 0.012  0.14
## q_17      0.85      0.85    0.87      0.16 5.9   0.0014 0.013  0.14
## q_18      0.84      0.85    0.87      0.16 5.7   0.0015 0.012  0.14
## q_19      0.84      0.85    0.87      0.16 5.7   0.0015 0.012  0.14
## q_20      0.84      0.85    0.87      0.15 5.5   0.0015 0.012  0.13
## q_21      0.85      0.85    0.87      0.16 5.9   0.0014 0.013  0.14
## q_22      0.84      0.85    0.87      0.16 5.8   0.0015 0.013  0.13
## q_23      0.85      0.85    0.87      0.16 5.8   0.0015 0.013  0.14
## q_24      0.83      0.84    0.86      0.15 5.4   0.0016 0.011  0.13
## q_25      0.84      0.85    0.87      0.15 5.6   0.0015 0.012  0.13
## q_26      0.84      0.85    0.87      0.16 5.8   0.0015 0.013  0.13
## q_27      0.84      0.85    0.87      0.15 5.7   0.0015 0.012  0.13
## q_28      0.84      0.85    0.87      0.15 5.6   0.0015 0.012  0.13
## q_29      0.84      0.85    0.87      0.16 5.7   0.0015 0.013  0.13
## q_30      0.84      0.85    0.87      0.15 5.6   0.0015 0.012  0.13
## q_31      0.84      0.85    0.87      0.15 5.5   0.0015 0.012  0.13
## q_32      0.85      0.86    0.87      0.16 5.9   0.0014 0.012  0.14
## 
##  Item statistics 
##          n raw.r std.r r.cor r.drop mean  sd
## q_1  22331  0.48  0.50  0.48   0.43 0.80 2.0
## q_2  22331  0.26  0.22  0.17   0.16 2.46 3.6
## q_3  22331  0.32  0.33  0.29   0.24 1.53 2.8
## q_4  22331  0.31  0.33  0.30   0.24 1.35 2.7
## q_5  22331  0.51  0.50  0.48   0.45 1.18 2.6
## q_6  22331  0.31  0.28  0.23   0.23 1.62 3.1
## q_7  22331  0.56  0.54  0.53   0.50 1.49 2.7
## q_8  22331  0.38  0.42  0.39   0.34 0.64 1.9
## q_9  22331  0.51  0.49  0.48   0.45 1.51 3.0
## q_10 22331  0.38  0.42  0.39   0.34 0.50 1.7
## q_11 22331  0.26  0.30  0.25   0.22 0.25 1.4
## q_12 22331  0.29  0.30  0.25   0.23 0.67 2.3
## q_13 22331  0.57  0.57  0.56   0.52 1.09 2.4
## q_14 22331  0.31  0.30  0.25   0.23 1.87 2.9
## q_15 22331  0.65  0.63  0.64   0.60 1.58 2.6
## q_16 22331  0.45  0.40  0.37   0.36 2.84 3.8
## q_17 22331  0.30  0.32  0.27   0.25 0.74 2.1
## q_18 22331  0.40  0.44  0.43   0.35 0.50 1.7
## q_19 22331  0.41  0.43  0.41   0.34 1.33 2.8
## q_20 22331  0.58  0.57  0.56   0.53 1.21 2.5
## q_21 22331  0.29  0.30  0.25   0.21 1.46 2.7
## q_22 22331  0.38  0.38  0.34   0.32 0.54 2.0
## q_23 22331  0.30  0.32  0.28   0.26 0.25 1.4
## q_24 22331  0.66  0.64  0.64   0.61 2.00 2.9
## q_25 22331  0.55  0.54  0.52   0.49 1.01 2.5
## q_26 22331  0.41  0.39  0.35   0.34 1.38 2.9
## q_27 22331  0.47  0.47  0.44   0.39 2.19 3.1
## q_28 22331  0.52  0.55  0.54   0.48 0.53 1.7
## q_29 22331  0.37  0.42  0.39   0.32 0.42 1.6
## q_30 22331  0.51  0.50  0.48   0.45 1.26 2.7
## q_31 22331  0.61  0.59  0.58   0.55 2.30 3.0
## q_32 22331  0.27  0.26  0.20   0.20 0.99 2.5
## 
## Non missing response frequency for each item
##         0    5   10 miss
## q_1  0.85 0.13 0.01    0
## q_2  0.64 0.23 0.13    0
## q_3  0.74 0.22 0.05    0
## q_4  0.78 0.17 0.05    0
## q_5  0.81 0.15 0.05    0
## q_6  0.76 0.16 0.08    0
## q_7  0.75 0.21 0.04    0
## q_8  0.89 0.10 0.01    0
## q_9  0.77 0.16 0.07    0
## q_10 0.91 0.08 0.01    0
## q_11 0.96 0.02 0.02    0
## q_12 0.91 0.04 0.05    0
## q_13 0.82 0.15 0.03    0
## q_14 0.68 0.27 0.05    0
## q_15 0.72 0.25 0.03    0
## q_16 0.60 0.23 0.17    0
## q_17 0.88 0.10 0.02    0
## q_18 0.92 0.07 0.02    0
## q_19 0.79 0.16 0.05    0
## q_20 0.79 0.18 0.03    0
## q_21 0.75 0.20 0.05    0
## q_22 0.93 0.04 0.03    0
## q_23 0.96 0.02 0.01    0
## q_24 0.65 0.29 0.05    0
## q_25 0.84 0.11 0.05    0
## q_26 0.79 0.14 0.07    0
## q_27 0.63 0.30 0.07    0
## q_28 0.90 0.09 0.01    0
## q_29 0.93 0.06 0.01    0
## q_30 0.80 0.15 0.05    0
## q_31 0.60 0.35 0.05    0
## q_32 0.85 0.10 0.05    0

1.11 Table 1 48 months from the published paper (from where we are getting the data .. Check here: 10.1111/cch.12649)

ds_48 %>% 
  select(sex, score) %>% 
  group_by(sex) %>% 
  summarytools::descr()
## Descriptive Statistics  
## score by sex  
## Data Frame: ds_48  
## N: 6495  
## 
##                     sex = M   sex = F
## ----------------- --------- ---------
##              Mean     37.38     29.08
##           Std.Dev     33.10     27.55
##               Min      0.00      0.00
##                Q1     15.00     10.00
##            Median     30.00     20.00
##                Q3     55.00     40.00
##               Max    240.00    230.00
##               MAD     29.65     22.24
##               IQR     40.00     30.00
##                CV      0.89      0.95
##          Skewness      1.43      1.58
##       SE.Skewness      0.03      0.03
##          Kurtosis      2.52      3.32
##           N.Valid   6495.00   5978.00
##         Pct.Valid    100.00    100.00

1.12 Table 1 60 months from the published paper (from where we are getting the data .. Check here: 10.1111/cch.12649)

ds_60 %>% 
  select(sex, score) %>% 
  group_by(sex) %>% 
  summarytools::descr()
## Descriptive Statistics  
## score by sex  
## Data Frame: ds_60  
## N: 11291  
## 
##                      sex = 1    sex = 2
## ----------------- ---------- ----------
##              Mean      44.82      34.02
##           Std.Dev      36.66      30.44
##               Min       0.00       0.00
##                Q1      15.00      10.00
##            Median      35.00      25.00
##                Q3      65.00      50.00
##               Max     275.00     290.00
##               MAD      29.65      22.24
##               IQR      50.00      40.00
##                CV       0.82       0.89
##          Skewness       1.24       1.49
##       SE.Skewness       0.02       0.02
##          Kurtosis       1.92       2.91
##           N.Valid   11291.00   11040.00
##         Pct.Valid     100.00     100.00

1.13 Random 36 months

As described, I’ll get a random sample from the main data (items-only)

36 months

set.seed(123)
ds_36_random <- ds_36 %>% sample_n(.,500)

1.14 Random 48 months

48 months

set.seed(123)
ds_48_random <- ds_48 %>% sample_n(.,500)

1.15 Random 60 months

60 months

set.seed(15)
ds_60_random <- ds_60 %>% sample_n(.,500)

1.16 Sampling via Fairsubset

library(fairsubset)
check_ds <- fairSubset(ds_60, subset_setting = "ks", manual_N = 500, random_subsets = 10)
ds_60_random2 <- check_ds$best_subset %>% as.data.frame

1.17 Check the randomness of the data

1.17.1 Descriptives

bind_rows(
  ds_60_random %>% mutate(base = "random") %>% select(-months),
  ds_60 %>% mutate(base = "original") %>% select(-months)) %>%
  group_by(base) %>% 
  select(score) %>% 
  summarytools::descr()
## Adding missing grouping variables: `base`
## Descriptive Statistics  
## score by base  
## N: 22331  
## 
##                     base = original   base = random
## ----------------- ----------------- ---------------
##              Mean             39.48           41.00
##           Std.Dev             34.16           36.40
##               Min              0.00            0.00
##                Q1             15.00           15.00
##            Median             30.00           30.00
##                Q3             55.00           60.00
##               Max            290.00          205.00
##               MAD             29.65           29.65
##               IQR             40.00           45.00
##                CV              0.87            0.89
##          Skewness              1.38            1.20
##       SE.Skewness              0.02            0.11
##          Kurtosis              2.44            1.24
##           N.Valid          22331.00          500.00
##         Pct.Valid            100.00          100.00

1.17.2 Total scores

bind_rows(
  ds_60_random %>% mutate(base = "random") %>% select(-months),
  ds_60 %>% mutate(base = "original") %>% select(-months)) %>% 
  {t.test(score ~ base, var.equal = T,.)}
## 
##  Two Sample t-test
## 
## data:  score by base
## t = -0.98204, df = 22829, p-value = 0.3261
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -4.551496  1.513030
## sample estimates:
## mean in group original   mean in group random 
##               39.48077               41.00000
bind_rows(
  ds_60_random %>% mutate(base = "random") %>% select(-months),
  ds_60 %>% mutate(base = "original") %>% select(-months)) %>% 
  {descr::crosstab(.$sex,.$base, chisq = T, plot = F)}
##    Cell Contents 
## |-------------------------|
## |                   Count | 
## |-------------------------|
## 
## ==================================
##          .$base
## .$sex    original   random   Total
## ----------------------------------
## 1           11291      276   11567
## ----------------------------------
## 2           11040      224   11264
## ----------------------------------
## Total       22331      500   22831
## ==================================
## 
## Statistics for All Table Factors
## 
## Pearson's Chi-squared test 
## ------------------------------------------------------------
## Chi^2 = 4.208733      d.f. = 1      p = 0.0402 
## 
## Pearson's Chi-squared test with Yates' continuity correction 
## ------------------------------------------------------------
## Chi^2 = 4.025226      d.f. = 1      p = 0.0448 
##         Minimum expected frequency: 246.6821
ds_60_random %>% select(starts_with("q")) %>% 
  mutate_all(., ~case_when(. == "0" ~ 1,
                           . == "5" ~ 2,
                           . == "10" ~ 3)) %>% alpha(.)
## 
## Reliability analysis   
## Call: alpha(x = .)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean   sd median_r
##       0.86      0.87     0.9      0.17 6.5 0.0085  1.3 0.23     0.15
## 
##  lower alpha upper     95% confidence boundaries
## 0.85 0.86 0.88 
## 
##  Reliability if an item is dropped:
##      raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## q_1       0.86      0.86    0.89      0.17 6.2   0.0088 0.016  0.15
## q_2       0.86      0.87    0.90      0.17 6.5   0.0085 0.016  0.16
## q_3       0.86      0.87    0.90      0.17 6.5   0.0085 0.016  0.15
## q_4       0.86      0.87    0.90      0.17 6.5   0.0085 0.016  0.16
## q_5       0.86      0.86    0.89      0.17 6.2   0.0089 0.017  0.15
## q_6       0.86      0.87    0.90      0.17 6.6   0.0084 0.016  0.16
## q_7       0.85      0.86    0.89      0.16 6.1   0.0091 0.016  0.15
## q_8       0.86      0.86    0.89      0.17 6.4   0.0086 0.016  0.15
## q_9       0.85      0.86    0.89      0.16 6.1   0.0091 0.016  0.15
## q_10      0.86      0.86    0.89      0.17 6.3   0.0087 0.016  0.15
## q_11      0.86      0.87    0.90      0.17 6.5   0.0086 0.017  0.16
## q_12      0.86      0.87    0.90      0.17 6.5   0.0086 0.017  0.16
## q_13      0.86      0.86    0.89      0.16 6.1   0.0090 0.016  0.15
## q_14      0.86      0.86    0.89      0.17 6.4   0.0086 0.017  0.15
## q_15      0.85      0.86    0.89      0.16 6.0   0.0092 0.015  0.14
## q_16      0.86      0.86    0.89      0.17 6.3   0.0088 0.016  0.15
## q_17      0.86      0.87    0.90      0.17 6.5   0.0086 0.017  0.16
## q_18      0.86      0.86    0.89      0.17 6.3   0.0087 0.016  0.15
## q_19      0.86      0.86    0.89      0.17 6.3   0.0087 0.016  0.15
## q_20      0.85      0.86    0.89      0.16 6.1   0.0091 0.016  0.15
## q_21      0.86      0.86    0.90      0.17 6.4   0.0086 0.017  0.15
## q_22      0.86      0.86    0.89      0.17 6.4   0.0087 0.016  0.16
## q_23      0.86      0.86    0.89      0.17 6.4   0.0087 0.016  0.16
## q_24      0.85      0.86    0.89      0.16 6.0   0.0092 0.015  0.15
## q_25      0.85      0.86    0.89      0.16 6.1   0.0090 0.016  0.15
## q_26      0.86      0.86    0.89      0.17 6.4   0.0087 0.017  0.15
## q_27      0.86      0.86    0.89      0.17 6.2   0.0088 0.017  0.15
## q_28      0.86      0.86    0.89      0.17 6.2   0.0088 0.016  0.15
## q_29      0.86      0.86    0.89      0.17 6.3   0.0087 0.016  0.15
## q_30      0.86      0.86    0.89      0.17 6.2   0.0089 0.016  0.15
## q_31      0.85      0.86    0.89      0.16 6.0   0.0092 0.016  0.15
## q_32      0.86      0.87    0.90      0.17 6.5   0.0085 0.016  0.16
## 
##  Item statistics 
##        n raw.r std.r r.cor r.drop mean   sd
## q_1  500  0.46  0.50  0.47   0.42  1.2 0.41
## q_2  500  0.36  0.32  0.29   0.27  1.5 0.71
## q_3  500  0.30  0.31  0.28   0.23  1.3 0.54
## q_4  500  0.27  0.29  0.24   0.20  1.3 0.55
## q_5  500  0.52  0.51  0.50   0.47  1.2 0.51
## q_6  500  0.28  0.25  0.20   0.20  1.3 0.65
## q_7  500  0.60  0.58  0.57   0.55  1.3 0.58
## q_8  500  0.35  0.39  0.37   0.30  1.1 0.39
## q_9  500  0.61  0.59  0.59   0.55  1.3 0.63
## q_10 500  0.37  0.42  0.39   0.33  1.1 0.32
## q_11 500  0.24  0.27  0.22   0.20  1.1 0.29
## q_12 500  0.29  0.30  0.26   0.24  1.1 0.44
## q_13 500  0.59  0.59  0.58   0.54  1.2 0.47
## q_14 500  0.38  0.38  0.35   0.31  1.4 0.57
## q_15 500  0.69  0.68  0.68   0.64  1.3 0.53
## q_16 500  0.49  0.44  0.42   0.41  1.6 0.78
## q_17 500  0.31  0.32  0.27   0.25  1.2 0.43
## q_18 500  0.37  0.42  0.40   0.33  1.1 0.37
## q_19 500  0.43  0.46  0.44   0.37  1.3 0.54
## q_20 500  0.62  0.60  0.60   0.57  1.3 0.55
## q_21 500  0.35  0.36  0.32   0.28  1.3 0.58
## q_22 500  0.37  0.37  0.34   0.32  1.1 0.42
## q_23 500  0.33  0.36  0.33   0.30  1.0 0.27
## q_24 500  0.67  0.64  0.65   0.62  1.4 0.60
## q_25 500  0.59  0.58  0.57   0.54  1.2 0.52
## q_26 500  0.40  0.38  0.35   0.33  1.3 0.57
## q_27 500  0.49  0.48  0.45   0.41  1.5 0.64
## q_28 500  0.49  0.53  0.52   0.45  1.1 0.34
## q_29 500  0.36  0.41  0.39   0.32  1.1 0.30
## q_30 500  0.52  0.51  0.49   0.47  1.3 0.55
## q_31 500  0.65  0.62  0.62   0.60  1.5 0.61
## q_32 500  0.28  0.25  0.20   0.21  1.2 0.55
## 
## Non missing response frequency for each item
##         1    2    3 miss
## q_1  0.83 0.15 0.01    0
## q_2  0.65 0.22 0.13    0
## q_3  0.71 0.25 0.04    0
## q_4  0.78 0.16 0.05    0
## q_5  0.82 0.13 0.04    0
## q_6  0.77 0.13 0.10    0
## q_7  0.74 0.20 0.06    0
## q_8  0.89 0.08 0.02    0
## q_9  0.76 0.15 0.09    0
## q_10 0.90 0.09 0.00    0
## q_11 0.97 0.02 0.02    0
## q_12 0.92 0.04 0.04    0
## q_13 0.81 0.17 0.03    0
## q_14 0.62 0.34 0.04    0
## q_15 0.71 0.26 0.03    0
## q_16 0.60 0.22 0.18    0
## q_17 0.85 0.13 0.02    0
## q_18 0.91 0.07 0.02    0
## q_19 0.78 0.18 0.05    0
## q_20 0.76 0.19 0.05    0
## q_21 0.76 0.18 0.06    0
## q_22 0.93 0.03 0.04    0
## q_23 0.97 0.02 0.01    0
## q_24 0.65 0.29 0.06    0
## q_25 0.83 0.11 0.05    0
## q_26 0.79 0.15 0.06    0
## q_27 0.61 0.31 0.08    0
## q_28 0.90 0.09 0.01    0
## q_29 0.94 0.05 0.01    0
## q_30 0.79 0.15 0.06    0
## q_31 0.59 0.35 0.06    0
## q_32 0.83 0.11 0.06    0

2 Main analysis

Last review on July 12, 2021

3 Exploratory analysis

3.1 KMO

First result presented

ds_60_random %>% select(starts_with("q")) %>% 
  mutate_all(., ~case_when(. == "0" ~ 1,
                           . == "5" ~ 2,
                           . == "10" ~ 3)) %>% KMO()
## Kaiser-Meyer-Olkin factor adequacy
## Call: KMO(r = .)
## Overall MSA =  0.86
## MSA for each item = 
##  q_1  q_2  q_3  q_4  q_5  q_6  q_7  q_8  q_9 q_10 q_11 q_12 q_13 q_14 q_15 q_16 
## 0.92 0.78 0.81 0.81 0.89 0.81 0.91 0.79 0.88 0.86 0.63 0.78 0.90 0.87 0.91 0.90 
## q_17 q_18 q_19 q_20 q_21 q_22 q_23 q_24 q_25 q_26 q_27 q_28 q_29 q_30 q_31 q_32 
## 0.76 0.77 0.80 0.91 0.84 0.80 0.76 0.90 0.90 0.86 0.86 0.85 0.76 0.91 0.91 0.80

3.2 Bartlett

ds_60_random %>% select(starts_with("q")) %>% 
  mutate_all(., ~case_when(. == "0" ~ 1,
                           . == "5" ~ 2,
                           . == "10" ~ 3)) %>% psych::cortest.bartlett()
## R was not square, finding R from data
## $chisq
## [1] 4629.517
## 
## $p.value
## [1] 0
## 
## $df
## [1] 496

3.3 Decide how many factors will be retained

3.4 Polychoric matrix as input

RNGversion(3.6)
set.seed(3)

rho_60 <- ds_60_random %>% select(starts_with("q")) %>% 
  mutate_all(., ~case_when(. == "0" ~ 1,
                           . == "5" ~ 2,
                           . == "10" ~ 3)) %>% 
  polychoric(.)
## Warning in cor.smooth(mat): Matrix was not positive definite, smoothing was done

3.5 Get rho from the polychoric matrix

rho_60 <- rho_60$rho 

3.6 Parallel Analysis (polychoric)

parallel <- rho_60 %>%
  fa.parallel(.) #arbitrarily set
## Warning in fa.parallel(.): It seems as if you are using a correlation
## matrix, but have not specified the number of cases. The number of subjects is
## arbitrarily set to be 100
## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect. Try a
## different factor score estimation method.

## Parallel analysis suggests that the number of factors =  3  and the number of components =  2
parallel_full <- rho_60 %>%
  fa.parallel(.,n.obs = 500)
## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect. Try a
## different factor score estimation method.

## Parallel analysis suggests that the number of factors =  8  and the number of components =  4

Second result presented (page 10)

Parallel Analysis using polychoric correlation as input
PCA: 10.72 4.46 1.91 1.48 1.33 1.26 1.13 1.02 0.92 EFA: 10.13 3.70 1.22 0.73

parallel
## Call: fa.parallel(x = .)
## Parallel analysis suggests that the number of factors =  3  and the number of components =  2 
## 
##  Eigen Values of 
## 
##  eigen values of factors
##  [1] 10.13  3.70  1.22  0.73  0.69  0.49  0.44  0.30  0.18  0.15  0.05  0.04
## [13] -0.03 -0.06 -0.09 -0.15 -0.17 -0.21 -0.22 -0.27 -0.37 -0.40 -0.43 -0.49
## [25] -0.51 -0.52 -0.57 -0.62 -0.68 -0.71 -0.73 -0.75
## 
##  eigen values of simulated factors
##  [1]  1.36  1.10  0.99  0.86  0.74  0.67  0.57  0.48  0.41  0.32  0.27  0.21
## [13]  0.14  0.08  0.01 -0.04 -0.09 -0.14 -0.18 -0.24 -0.29 -0.33 -0.38 -0.42
## [25] -0.45 -0.49 -0.53 -0.57 -0.61 -0.66 -0.69 -0.74
## 
##  eigen values of components 
##  [1] 10.72  4.46  1.91  1.48  1.33  1.26  1.13  1.02  0.92  0.84  0.82  0.72
## [13]  0.68  0.62  0.57  0.51  0.49  0.43  0.36  0.32  0.28  0.27  0.21  0.20
## [25]  0.18  0.11  0.09  0.06  0.00  0.00  0.00  0.00
## 
##  eigen values of simulated components
##  [1] 2.25 2.07 1.95 1.82 1.71 1.63 1.54 1.44 1.37 1.29 1.23 1.17 1.10 1.04 0.97
## [16] 0.93 0.87 0.82 0.77 0.72 0.67 0.62 0.58 0.54 0.50 0.47 0.43 0.38 0.35 0.30
## [31] 0.27 0.21
#build the table
obs <- data.frame(parallel$fa.values, parallel$pc.values)
obs$type <- c('Observed Data')
obs$num <- c(row.names(obs))
obs$num <- as.numeric(obs$num)
colnames(obs) <- c('eigenvalue_fa', 'eigenvalue_pca','type', 'num')

obs <- obs %>% 
  pivot_longer(-c(num, type)) %>% 
  mutate(name = str_remove(name,"eigenvalue_")) %>% 
  mutate(name = str_remove(name,"eigenvalue_")) %>% 
  mutate(name = toupper(name))

Plotting via ggplot2

plot_scree_poly <- ggplot(obs, aes(x = num, y = value, color = name)) +
  geom_point(size=2) +
  geom_line() + 
  scale_y_continuous(name='Eigenvalue')+
  scale_x_continuous(name='Factor Number', breaks=min(obs$num):max(obs$num))+
  geom_hline(yintercept = 1, linetype = 'dashed') +
  labs(color = "Method") +
  ggtitle("Polychoric correlation") +
  theme_classic()

3.7 Parallel Analysis (Pearson correlation)

If I want to use the raw data (instead of a polychoric matrix as input), the results become fuzzy. 7 factors and 3 were recommended. However, due to the ordinal nature of the responses, the use of a polychoric matrix is recommended.

parallel_raw <- ds_60_random %>% select(starts_with("q")) %>% 
                                           mutate_all(., ~case_when(. == "0" ~ 1,
                                                                    . == "5" ~ 2,
                                                                    . == "10" ~ 3)) %>%
  fa.parallel(., cor = "cor")

## Parallel analysis suggests that the number of factors =  7  and the number of components =  3

Thir result presented (page 10)

Pearson eigenvalues PCA: 6.83, 3.12, 1.60 1.38 1.37 1.21 1.15 1.074 0.987 EFA: 6.12, 2.26, 0.83

parallel_raw
## Call: fa.parallel(x = ., cor = "cor")
## Parallel analysis suggests that the number of factors =  7  and the number of components =  3 
## 
##  Eigen Values of 
##   Original factors Resampled data Simulated data Original components
## 1             6.12           0.57           0.55                6.83
## 2             2.26           0.45           0.45                3.12
## 3             0.83           0.41           0.41                1.60
## 4             0.56           0.37           0.36                1.38
## 5             0.51           0.33           0.33                1.37
## 6             0.34           0.29           0.29                1.21
## 7             0.31           0.26           0.26                1.15
##   Resampled components Simulated components
## 1                 1.51                 1.50
## 2                 1.44                 1.44
## 3                 1.40                 1.39
## 4                 1.35                 1.35
## 5                 1.32                 1.31
## 6                 1.27                 1.27
## 7                 1.24                 1.24

A better plot using the raw data as input

#build the table
obs_raw <- data.frame(parallel_raw$fa.values, parallel_raw$pc.values)
obs_raw$type <- c('Observed Data')
obs_raw$num <- c(row.names(obs_raw))
obs_raw$num <- as.numeric(obs_raw$num)
colnames(obs_raw) <- c('eigenvalue_fa', 'eigenvalue_pca','type', 'num')

obs_raw <- obs_raw %>% 
  pivot_longer(-c(num, type)) %>% 
  mutate(name = str_remove(name,"eigenvalue_")) %>% 
  mutate(name = str_remove(name,"eigenvalue_")) %>% 
  mutate(name = toupper(name))

Plotting via ggplot2

plot_scree_pearson <- ggplot(obs_raw, aes(x = num, y = value, color = name)) +
  geom_point(size=2) +
  geom_line() + 
  scale_y_continuous(name='Eigenvalue')+
  scale_x_continuous(name='Factor Number', breaks=min(obs$num):max(obs$num))+
  geom_hline(yintercept = 1, linetype = 'dashed') +
  labs(color = "Method") +
  ggtitle("Pearson correlation") +
  theme_classic()

3.8 Plot two graphs together

data_plot_scree <- bind_rows(
obs_raw %>% 
  mutate(correlation = "Pearson")
  ,
obs %>% 
  mutate(correlation = "Polychoric")
) %>% 
  arrange(num)
ggplot(data_plot_scree, aes(x = num, y = value,  shape = factor(correlation), linetype = factor(correlation), color = factor(name))) +
  geom_point(size=3) +
  geom_line(size=0.5) + 
  scale_y_continuous(name='Eigenvalue', breaks = 0:12)+
  scale_x_continuous(name='Factor Number', breaks=min(obs$num):max(obs$num))+
  geom_hline(yintercept = 1, linetype = 'dashed') +
  labs(color = "EFA or PCA", linetype = "Type of correlation", shape = "Type of correlation") +
  annotate(geom="text", x=28, y=1.5, label="Kaiser criterion")+
  #ggtitle("Pearson correlation") +
  theme_classic() 

3.9 Nest (Raw Data)

source("C:/Users/luisf/Dropbox/Puc-Rio/Artigo - Theory and models/NEST.R")
ds_60_random %>% select(starts_with("q")) %>% 
                                           mutate_all(., ~case_when(. == "0" ~ 1,
                                                                    . == "5" ~ 2,
                                                                    . == "10" ~ 3)) %>%
  NEST(.)

4 Solutions

fatores_itens <- function(...) {
  j <- unclass(...$loadings) %>% #get vector
    as.data.frame() %>%  #transform into dataframe
    rownames_to_column("item") %>%  #assign a consistent name
    mutate(lambda = pmap_chr(select(., -c(item)), ~ if_else(abs(c(...)) %>% 
                                                              max  >= 0.3,"in","out")))  %>% 
    filter(lambda == "in") %>% #exclusion criteria (factor loadings)
    mutate(main_factor = pmap_chr(select(., -c(item, lambda)), ~ abs(c(...)) %>% 
                                    which.max %>% 
                                    names )) %>%  #return the items
    #return the items
    group_by(main_factor) %>% 
    mutate(itens_factor = paste0(item, collapse = ",")) %>% #insert y
    select(main_factor, itens_factor) %>% #select final results
    distinct(main_factor, .keep_all = TRUE) %>% #remove duplicates
    mutate(itens_factor = str_remove_all(string = itens_factor, pattern = "q_")) %>% #compile a better report
    mutate(numero = str_count(itens_factor, "\\d+")) %>% #count how many non-exclusive items
    janitor::adorn_totals()

  j
}

4.1 Solution: Elbow (Polychoric)

sol_elbow <- fa(rho_60,
   fm = "wls",
   nfactors = 2, rotate = "Promax")
## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect. Try a
## different factor score estimation method.
sol_elbow
## Factor Analysis using method =  wls
## Call: fa(r = rho_60, nfactors = 2, rotate = "Promax", fm = "wls")
## Standardized loadings (pattern matrix) based upon correlation matrix
##       WLS1  WLS2   h2   u2 com
## q_1   0.19  0.60 0.48 0.52 1.2
## q_2   0.56 -0.22 0.27 0.73 1.3
## q_3  -0.17  0.66 0.38 0.62 1.1
## q_4  -0.18  0.63 0.35 0.65 1.2
## q_5   0.56  0.19 0.43 0.57 1.2
## q_6   0.60 -0.35 0.33 0.67 1.6
## q_7   0.64  0.16 0.51 0.49 1.1
## q_8  -0.04  0.71 0.49 0.51 1.0
## q_9   0.70  0.09 0.54 0.46 1.0
## q_10 -0.12  0.85 0.66 0.34 1.0
## q_11  0.29  0.20 0.17 0.83 1.8
## q_12  0.55 -0.09 0.28 0.72 1.0
## q_13  0.49  0.36 0.51 0.49 1.8
## q_14  0.00  0.56 0.32 0.68 1.0
## q_15  0.57  0.37 0.63 0.37 1.7
## q_16  0.78 -0.26 0.52 0.48 1.2
## q_17  0.27  0.18 0.14 0.86 1.7
## q_18  0.08  0.64 0.46 0.54 1.0
## q_19 -0.05  0.75 0.53 0.47 1.0
## q_20  0.66  0.17 0.55 0.45 1.1
## q_21  0.01  0.56 0.31 0.69 1.0
## q_22  0.70 -0.16 0.43 0.57 1.1
## q_23  0.77 -0.07 0.56 0.44 1.0
## q_24  0.61  0.26 0.56 0.44 1.4
## q_25  0.80 -0.01 0.64 0.36 1.0
## q_26  0.36  0.20 0.23 0.77 1.6
## q_27  0.24  0.46 0.35 0.65 1.5
## q_28  0.37  0.51 0.53 0.47 1.8
## q_29  0.01  0.74 0.56 0.44 1.0
## q_30  0.72  0.00 0.51 0.49 1.0
## q_31  0.62  0.21 0.53 0.47 1.2
## q_32  0.58 -0.29 0.29 0.71 1.5
## 
##                       WLS1 WLS2
## SS loadings           7.89 6.14
## Proportion Var        0.25 0.19
## Cumulative Var        0.25 0.44
## Proportion Explained  0.56 0.44
## Cumulative Proportion 0.56 1.00
## 
##  With factor correlations of 
##      WLS1 WLS2
## WLS1 1.00 0.38
## WLS2 0.38 1.00
## 
## Mean item complexity =  1.3
## Test of the hypothesis that 2 factors are sufficient.
## 
## The degrees of freedom for the null model are  496  and the objective function was  108.04
## The degrees of freedom for the model are 433  and the objective function was  93.46 
## 
## The root mean square of the residuals (RMSR) is  0.08 
## The df corrected root mean square of the residuals is  0.09 
## 
## Fit based upon off diagonal values = 0.94
fatores_itens(sol_elbow)
##  main_factor                                     itens_factor numero
##         WLS2                  1,3,4,8,10,14,18,19,21,27,28,29     12
##         WLS1 2,5,6,7,9,12,13,15,16,20,22,23,24,25,26,30,31,32     18
##        Total                                                -     30

4.2 Solution: Elbow (Pearson)

sol_elbow_raw <- ds_60_random %>% select(starts_with("q")) %>% 
  mutate_all(., ~case_when(. == "0" ~ 1,
                           . == "5" ~ 2,
                           . == "10" ~ 3)) %>% 
  fa(.,
     fm = "wls",
     nfactors = 2, 
     rotate = "Promax")
sol_elbow_raw
## Factor Analysis using method =  wls
## Call: fa(r = ., nfactors = 2, rotate = "Promax", fm = "wls")
## Standardized loadings (pattern matrix) based upon correlation matrix
##       WLS1  WLS2    h2   u2 com
## q_1   0.16  0.48 0.301 0.70 1.2
## q_2   0.42 -0.16 0.160 0.84 1.3
## q_3  -0.09  0.50 0.230 0.77 1.1
## q_4  -0.08  0.43 0.167 0.83 1.1
## q_5   0.45  0.12 0.251 0.75 1.1
## q_6   0.38 -0.21 0.137 0.86 1.6
## q_7   0.59  0.11 0.395 0.61 1.1
## q_8  -0.03  0.53 0.276 0.72 1.0
## q_9   0.58  0.06 0.362 0.64 1.0
## q_10 -0.08  0.65 0.399 0.60 1.0
## q_11  0.14  0.11 0.040 0.96 1.9
## q_12  0.31 -0.05 0.088 0.91 1.1
## q_13  0.44  0.30 0.360 0.64 1.8
## q_14  0.06  0.40 0.180 0.82 1.0
## q_15  0.55  0.31 0.502 0.50 1.6
## q_16  0.64 -0.21 0.366 0.63 1.2
## q_17  0.17  0.13 0.059 0.94 1.9
## q_18  0.03  0.50 0.259 0.74 1.0
## q_19 -0.02  0.63 0.394 0.61 1.0
## q_20  0.61  0.11 0.419 0.58 1.1
## q_21  0.03  0.40 0.168 0.83 1.0
## q_22  0.44 -0.11 0.174 0.83 1.1
## q_23  0.41 -0.08 0.158 0.84 1.1
## q_24  0.61  0.20 0.489 0.51 1.2
## q_25  0.68 -0.06 0.439 0.56 1.0
## q_26  0.27  0.13 0.110 0.89 1.5
## q_27  0.24  0.34 0.223 0.78 1.8
## q_28  0.27  0.38 0.289 0.71 1.8
## q_29  0.02  0.52 0.281 0.72 1.0
## q_30  0.60 -0.05 0.347 0.65 1.0
## q_31  0.60  0.15 0.433 0.57 1.1
## q_32  0.37 -0.18 0.126 0.87 1.4
## 
##                       WLS1 WLS2
## SS loadings           5.05 3.53
## Proportion Var        0.16 0.11
## Cumulative Var        0.16 0.27
## Proportion Explained  0.59 0.41
## Cumulative Proportion 0.59 1.00
## 
##  With factor correlations of 
##      WLS1 WLS2
## WLS1 1.00 0.31
## WLS2 0.31 1.00
## 
## Mean item complexity =  1.3
## Test of the hypothesis that 2 factors are sufficient.
## 
## The degrees of freedom for the null model are  496  and the objective function was  9.5 with Chi Square of  4629.52
## The degrees of freedom for the model are 433  and the objective function was  2.85 
## 
## The root mean square of the residuals (RMSR) is  0.06 
## The df corrected root mean square of the residuals is  0.06 
## 
## The harmonic number of observations is  500 with the empirical chi square  1574.23  with prob <  3.6e-129 
## The total number of observations was  500  with Likelihood Chi Square =  1387.46  with prob <  2.1e-100 
## 
## Tucker Lewis Index of factoring reliability =  0.735
## RMSEA index =  0.066  and the 90 % confidence intervals are  0.063 0.07
## BIC =  -1303.47
## Fit based upon off diagonal values = 0.93
## Measures of factor score adequacy             
##                                                   WLS1 WLS2
## Correlation of (regression) scores with factors   0.94 0.91
## Multiple R square of scores with factors          0.89 0.83
## Minimum correlation of possible factor scores     0.77 0.67
qgraph::qgraph.loadings(sol_elbow$loadings, 
                        model = "reflective",
                        posCol="blue",negCol="purple",
                        layout="circle",
                        width=20, minimum = 0.3,
                        title = "Exploratory Factor Analysis (Elbow method)")

4.3 Solution: Parallel (Polychoric)

sol_parallel <- fa(rho_60,
                   fm = "wls",
                    nfactors = 3, 
                   rotate = "Promax")
## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect. Try a
## different factor score estimation method.
sol_parallel
## Factor Analysis using method =  wls
## Call: fa(r = rho_60, nfactors = 3, rotate = "Promax", fm = "wls")
## Standardized loadings (pattern matrix) based upon correlation matrix
##       WLS1  WLS2  WLS3   h2   u2 com
## q_1   0.21  0.56  0.08 0.48 0.52 1.3
## q_2   0.10 -0.11  0.56 0.37 0.63 1.1
## q_3   0.20  0.53 -0.36 0.44 0.56 2.1
## q_4  -0.06  0.61 -0.08 0.35 0.65 1.1
## q_5   0.32  0.21  0.36 0.45 0.55 2.6
## q_6   0.21 -0.27  0.46 0.37 0.63 2.1
## q_7   0.65  0.08  0.08 0.53 0.47 1.1
## q_8  -0.07  0.72  0.12 0.51 0.49 1.1
## q_9   0.31  0.15  0.53 0.61 0.39 1.8
## q_10 -0.08  0.85  0.05 0.67 0.33 1.0
## q_11 -0.34  0.41  0.77 0.54 0.46 1.9
## q_12  0.19 -0.01  0.46 0.34 0.66 1.3
## q_13  0.60  0.26 -0.02 0.53 0.47 1.4
## q_14  0.02  0.55  0.05 0.32 0.68 1.0
## q_15  0.68  0.26 -0.02 0.66 0.34 1.3
## q_16  0.63 -0.30  0.22 0.52 0.48 1.7
## q_17  0.19  0.18  0.14 0.15 0.85 2.8
## q_18 -0.08  0.69  0.27 0.52 0.48 1.3
## q_19 -0.04  0.75  0.08 0.54 0.46 1.0
## q_20  0.57  0.13  0.20 0.55 0.45 1.4
## q_21 -0.08  0.58  0.16 0.34 0.66 1.2
## q_22  0.25 -0.07  0.56 0.51 0.49 1.4
## q_23  0.65 -0.11  0.21 0.56 0.44 1.3
## q_24  0.81  0.11 -0.13 0.65 0.35 1.1
## q_25  0.69 -0.06  0.21 0.64 0.36 1.2
## q_26  0.38  0.15  0.04 0.23 0.77 1.3
## q_27  0.49  0.33 -0.20 0.40 0.60 2.1
## q_28  0.53  0.40 -0.07 0.56 0.44 1.9
## q_29  0.18  0.67 -0.10 0.56 0.44 1.2
## q_30  0.84 -0.13 -0.06 0.59 0.41 1.1
## q_31  0.68  0.11  0.03 0.56 0.44 1.1
## q_32  0.63 -0.38 -0.03 0.34 0.66 1.7
## 
##                       WLS1 WLS2 WLS3
## SS loadings           6.85 5.62 2.92
## Proportion Var        0.21 0.18 0.09
## Cumulative Var        0.21 0.39 0.48
## Proportion Explained  0.45 0.37 0.19
## Cumulative Proportion 0.45 0.81 1.00
## 
##  With factor correlations of 
##      WLS1 WLS2 WLS3
## WLS1 1.00 0.38 0.51
## WLS2 0.38 1.00 0.06
## WLS3 0.51 0.06 1.00
## 
## Mean item complexity =  1.5
## Test of the hypothesis that 3 factors are sufficient.
## 
## The degrees of freedom for the null model are  496  and the objective function was  108.04
## The degrees of freedom for the model are 403  and the objective function was  92.16 
## 
## The root mean square of the residuals (RMSR) is  0.07 
## The df corrected root mean square of the residuals is  0.08 
## 
## Fit based upon off diagonal values = 0.96
fatores_itens(sol_parallel)
##  main_factor                             itens_factor numero
##         WLS2                1,3,4,8,10,14,18,19,21,29     10
##         WLS3                         2,5,6,9,11,12,22      7
##         WLS1 7,13,15,16,20,23,24,25,26,27,28,30,31,32     14
##        Total                                        -     31

4.4 Solution: Parallel (Pearson)

sol_parallel_raw <- ds_60_random %>% select(starts_with("q")) %>% 
  mutate_all(., ~case_when(. == "0" ~ 1,
                           . == "5" ~ 2,
                           . == "10" ~ 3)) %>% 
  fa(.,
     fm = "wls",
     nfactors = 3, 
     rotate = "Promax")
sol_parallel_raw
## Factor Analysis using method =  wls
## Call: fa(r = ., nfactors = 3, rotate = "Promax", fm = "wls")
## Standardized loadings (pattern matrix) based upon correlation matrix
##       WLS1  WLS2  WLS3    h2   u2 com
## q_1   0.11  0.46  0.10 0.303 0.70 1.2
## q_2  -0.15 -0.03  0.59 0.262 0.74 1.1
## q_3   0.27  0.38 -0.31 0.267 0.73 2.8
## q_4   0.01  0.41 -0.07 0.166 0.83 1.1
## q_5   0.04  0.19  0.47 0.303 0.70 1.3
## q_6  -0.04 -0.13  0.44 0.177 0.82 1.2
## q_7   0.60 -0.02  0.08 0.421 0.58 1.0
## q_8  -0.15  0.59  0.15 0.316 0.68 1.3
## q_9  -0.13  0.21  0.78 0.561 0.44 1.2
## q_10 -0.09  0.67  0.04 0.412 0.59 1.0
## q_11 -0.18  0.21  0.33 0.092 0.91 2.3
## q_12  0.01  0.00  0.32 0.106 0.89 1.0
## q_13  0.42  0.21  0.10 0.363 0.64 1.6
## q_14  0.10  0.37 -0.01 0.179 0.82 1.2
## q_15  0.73  0.14 -0.06 0.573 0.43 1.1
## q_16  0.38 -0.24  0.32 0.362 0.64 2.7
## q_17  0.05  0.14  0.14 0.062 0.94 2.3
## q_18 -0.13  0.56  0.19 0.297 0.70 1.4
## q_19  0.00  0.63  0.03 0.399 0.60 1.0
## q_20  0.47  0.04  0.22 0.418 0.58 1.4
## q_21  0.04  0.39  0.02 0.169 0.83 1.0
## q_22 -0.04 -0.01  0.51 0.233 0.77 1.0
## q_23  0.07 -0.03  0.38 0.176 0.82 1.1
## q_24  0.94 -0.04 -0.18 0.667 0.33 1.1
## q_25  0.37 -0.07  0.38 0.436 0.56 2.1
## q_26  0.29  0.07  0.03 0.115 0.89 1.1
## q_27  0.42  0.22 -0.11 0.250 0.75 1.7
## q_28  0.24  0.34  0.10 0.288 0.71 2.0
## q_29 -0.03  0.54  0.08 0.292 0.71 1.1
## q_30  0.55 -0.15  0.13 0.366 0.63 1.3
## q_31  0.63  0.02  0.07 0.464 0.54 1.0
## q_32  0.25 -0.21  0.14 0.125 0.87 2.6
## 
##                       WLS1 WLS2 WLS3
## SS loadings           3.79 3.19 2.64
## Proportion Var        0.12 0.10 0.08
## Cumulative Var        0.12 0.22 0.30
## Proportion Explained  0.39 0.33 0.27
## Cumulative Proportion 0.39 0.73 1.00
## 
##  With factor correlations of 
##      WLS1 WLS2 WLS3
## WLS1 1.00 0.40 0.63
## WLS2 0.40 1.00 0.11
## WLS3 0.63 0.11 1.00
## 
## Mean item complexity =  1.4
## Test of the hypothesis that 3 factors are sufficient.
## 
## The degrees of freedom for the null model are  496  and the objective function was  9.5 with Chi Square of  4629.52
## The degrees of freedom for the model are 403  and the objective function was  2.28 
## 
## The root mean square of the residuals (RMSR) is  0.05 
## The df corrected root mean square of the residuals is  0.05 
## 
## The harmonic number of observations is  500 with the empirical chi square  1149.58  with prob <  6.2e-73 
## The total number of observations was  500  with Likelihood Chi Square =  1106.45  with prob <  6.8e-67 
## 
## Tucker Lewis Index of factoring reliability =  0.79
## RMSEA index =  0.059  and the 90 % confidence intervals are  0.055 0.063
## BIC =  -1398.03
## Fit based upon off diagonal values = 0.95
## Measures of factor score adequacy             
##                                                   WLS1 WLS2 WLS3
## Correlation of (regression) scores with factors   0.94 0.91 0.91
## Multiple R square of scores with factors          0.89 0.83 0.82
## Minimum correlation of possible factor scores     0.79 0.65 0.64
#library(semPlot)
#semPaths(semPlotModel(sol_parallel$loadings), 
#         layout="circle",
#         nCharNodes = 6)
qgraph::qgraph.loadings(sol_parallel$loadings, 
                        model = "reflective",
                        posCol="blue",negCol="purple",
                        layout="circle",
                        width=20,minimum = 0.3,
                        title = "Exploratory Factor Analysis (Parallel Analysis)")

4.5 SOL PCA (Polychoric and Varimax)

sol_pca <- principal(rho_60,
                     nfactors = 2, rotate = "varimax")
sol_pca
## Principal Components Analysis
## Call: principal(r = rho_60, nfactors = 2, rotate = "varimax")
## Standardized loadings (pattern matrix) based upon correlation matrix
##        RC1   RC2   h2   u2 com
## q_1   0.28  0.67 0.52 0.48 1.3
## q_2   0.55 -0.11 0.31 0.69 1.1
## q_3  -0.08  0.65 0.43 0.57 1.0
## q_4  -0.09  0.61 0.38 0.62 1.0
## q_5   0.60  0.32 0.46 0.54 1.5
## q_6   0.55 -0.23 0.36 0.64 1.3
## q_7   0.69  0.31 0.57 0.43 1.4
## q_8   0.06  0.72 0.53 0.47 1.0
## q_9   0.73  0.24 0.59 0.41 1.2
## q_10  0.00  0.84 0.70 0.30 1.0
## q_11  0.32  0.26 0.17 0.83 1.9
## q_12  0.54  0.03 0.30 0.70 1.0
## q_13  0.55  0.49 0.55 0.45 2.0
## q_14  0.08  0.58 0.35 0.65 1.0
## q_15  0.64  0.52 0.68 0.32 1.9
## q_16  0.76 -0.11 0.59 0.41 1.0
## q_17  0.30  0.25 0.15 0.85 1.9
## q_18  0.17  0.68 0.49 0.51 1.1
## q_19  0.05  0.76 0.58 0.42 1.0
## q_20  0.71  0.33 0.61 0.39 1.4
## q_21  0.09  0.57 0.33 0.67 1.0
## q_22  0.67 -0.01 0.45 0.55 1.0
## q_23  0.71  0.12 0.52 0.48 1.1
## q_24  0.67  0.41 0.62 0.38 1.7
## q_25  0.82  0.16 0.71 0.29 1.1
## q_26  0.39  0.29 0.23 0.77 1.8
## q_27  0.31  0.53 0.37 0.63 1.6
## q_28  0.44  0.62 0.58 0.42 1.8
## q_29  0.11  0.78 0.61 0.39 1.0
## q_30  0.73  0.16 0.56 0.44 1.1
## q_31  0.66  0.36 0.57 0.43 1.5
## q_32  0.53 -0.17 0.31 0.69 1.2
## 
##                        RC1  RC2
## SS loadings           8.21 6.98
## Proportion Var        0.26 0.22
## Cumulative Var        0.26 0.47
## Proportion Explained  0.54 0.46
## Cumulative Proportion 0.54 1.00
## 
## Mean item complexity =  1.3
## Test of the hypothesis that 2 components are sufficient.
## 
## The root mean square of the residuals (RMSR) is  0.08 
## 
## Fit based upon off diagonal values = 0.94

4.6 SOL PCA (Pearson)

sol_pca_raw <- ds_60_random %>% 
  select(starts_with("q")) %>% 
  mutate_all(., ~case_when(. == "0" ~ 1,
                           . == "5" ~ 2,
                           . == "10" ~ 3)) %>% 
  principal(.,
            nfactors = 2, rotate = "varimax")
sol_pca_raw
## Principal Components Analysis
## Call: principal(r = ., nfactors = 2, rotate = "varimax")
## Standardized loadings (pattern matrix) based upon correlation matrix
##        RC1   RC2    h2   u2 com
## q_1   0.19  0.56 0.346 0.65 1.2
## q_2   0.46 -0.10 0.219 0.78 1.1
## q_3  -0.08  0.55 0.306 0.69 1.0
## q_4  -0.08  0.47 0.228 0.77 1.1
## q_5   0.49  0.23 0.291 0.71 1.4
## q_6   0.41 -0.17 0.197 0.80 1.3
## q_7   0.60  0.25 0.427 0.57 1.3
## q_8   0.00  0.58 0.335 0.67 1.0
## q_9   0.61  0.19 0.413 0.59 1.2
## q_10 -0.04  0.67 0.449 0.55 1.0
## q_11  0.16  0.16 0.050 0.95 2.0
## q_12  0.34  0.01 0.117 0.88 1.0
## q_13  0.47  0.42 0.393 0.61 2.0
## q_14  0.08  0.47 0.231 0.77 1.1
## q_15  0.56  0.45 0.523 0.48 1.9
## q_16  0.65 -0.08 0.424 0.58 1.0
## q_17  0.19  0.19 0.073 0.93 2.0
## q_18  0.06  0.55 0.306 0.69 1.0
## q_19  0.02  0.67 0.444 0.56 1.0
## q_20  0.62  0.25 0.454 0.55 1.3
## q_21  0.05  0.46 0.218 0.78 1.0
## q_22  0.48 -0.03 0.228 0.77 1.0
## q_23  0.45 -0.01 0.204 0.80 1.0
## q_24  0.62  0.36 0.508 0.49 1.6
## q_25  0.69  0.10 0.484 0.52 1.0
## q_26  0.29  0.21 0.132 0.87 1.8
## q_27  0.27  0.44 0.261 0.74 1.7
## q_28  0.31  0.49 0.331 0.67 1.7
## q_29  0.04  0.58 0.337 0.66 1.0
## q_30  0.62  0.09 0.392 0.61 1.0
## q_31  0.61  0.30 0.463 0.54 1.5
## q_32  0.40 -0.13 0.173 0.83 1.2
## 
##                        RC1  RC2
## SS loadings           5.40 4.56
## Proportion Var        0.17 0.14
## Cumulative Var        0.17 0.31
## Proportion Explained  0.54 0.46
## Cumulative Proportion 0.54 1.00
## 
## Mean item complexity =  1.3
## Test of the hypothesis that 2 components are sufficient.
## 
## The root mean square of the residuals (RMSR) is  0.06 
##  with the empirical chi square  2046.33  with prob <  3.6e-207 
## 
## Fit based upon off diagonal values = 0.91
qgraph::qgraph.loadings(sol_pca$loadings, 
                        model = "formative",
                        posCol="blue",negCol="purple",
                        layout="circle",
                        width=20,minimum = 0.3,
                        title = "Principal Component Analysis (Parallel Analysis)")

4.7 Network

library(EGAnet)
## 
## EGAnet (version 0.9.8) 
## For help getting started, type browseVignettes("EGAnet")
##  For bugs and errors, submit an issue to <https://github.com/hfgolino/EGAnet/issues> 
## 
## NEW: EGAnet will write your Methods section for you. Type ?methods.section for more details
set.seed(12) #or 1
ega_60 <- ds_60_random %>% select(starts_with("q")) %>% 
                                           mutate_all(., ~case_when(. == "0" ~ 1,
                                                                    . == "5" ~ 2,
                                                                    . == "10" ~ 3)) %>% 
 
  EGA(.)
## Registered S3 method overwritten by 'GGally':
##   method from   
##   +.gg   ggplot2
## Variables detected as ordinal: q_1; q_2; q_3; q_4; q_5; q_6; q_7; q_8; q_9; q_10; q_11; q_12; q_13; q_14; q_15; q_16; q_17; q_18; q_19; q_20; q_21; q_22; q_23; q_24; q_25; q_26; q_27; q_28; q_29; q_30; q_31; q_32
## Warning in EGA.estimate(data = cor.data, n = n, model = model, model.args = model.args, : Correlation matrix is not positive definite.
## Forcing positive definite matrix using Matrix::nearPD()
## Results may be unreliable
## Network estimated with:
##  • gamma = 0.5
##  • lambda.min.ratio = 0.1
## Warning in EGA.estimate(cor.data, n = n, model = model, model.args = model.args, : Correlation matrix is not positive definite.
## Forcing positive definite matrix using Matrix::nearPD()
## Results may be unreliable

ega_60
## EGA Results:
## 
## Number of Dimensions:
## [1] 6
## 
## Items per Dimension:
##      items dimension
## q_16  q_16         1
## q_22  q_22         1
## q_23  q_23         1
## q_24  q_24         1
## q_25  q_25         1
## q_28  q_28         1
## q_30  q_30         1
## q_31  q_31         1
## q_32  q_32         1
## q_3    q_3         2
## q_4    q_4         2
## q_11  q_11         2
## q_12  q_12         2
## q_14  q_14         2
## q_17  q_17         2
## q_21  q_21         2
## q_26  q_26         2
## q_7    q_7         3
## q_13  q_13         3
## q_15  q_15         3
## q_20  q_20         3
## q_1    q_1         4
## q_10  q_10         4
## q_18  q_18         4
## q_19  q_19         4
## q_2    q_2         5
## q_6    q_6         5
## q_8    q_8         5
## q_27  q_27         5
## q_29  q_29         5
## q_5    q_5         6
## q_9    q_9         6
#methods.section(ega.wmt)

4.8 Hull method

I need to export the dataset as CSV file and then run the analysis in Factor.

ds_60_random %>% select(starts_with("q")) %>% 
                                           mutate_all(., ~case_when(. == "0" ~ 1,
                                                                    . == "5" ~ 2,
                                                                    . == "10" ~ 3)) %>% write.csv(., "ds_60_random.csv", row.names = F)

5 Main factors

fa(rho_60,
   fm = "wls",
   nfactors = 2, rotate = "Promax")$loadings %>% unclass(.) %>% 
  data.frame() %>% 
  rownames_to_column("item") %>% 
  pivot_longer(-item) %>% 
  group_by(item) %>% 
  mutate(fator = which.max(value)) %>% 
  pivot_wider() %>% 
  arrange(desc(fator))
## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect. Try a
## different factor score estimation method.
## # A tibble: 32 x 4
## # Groups:   item [32]
##    item  fator      WLS1  WLS2
##    <chr> <int>     <dbl> <dbl>
##  1 q_1       2  0.193    0.596
##  2 q_3       2 -0.172    0.657
##  3 q_4       2 -0.182    0.634
##  4 q_8       2 -0.0400   0.711
##  5 q_10      2 -0.123    0.851
##  6 q_14      2  0.000734 0.562
##  7 q_18      2  0.0760   0.645
##  8 q_19      2 -0.0512   0.746
##  9 q_21      2  0.00599  0.556
## 10 q_27      2  0.239    0.457
## # ... with 22 more rows
  #print(n=100)
  #filter(fator == "2") %>% 
  #pull(item)

!Done.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. https://creativecommons.org/licenses/by-nc-sa/4.0/