# Load packages
library(tidyquant)
## Loading required package: lubridate
##
## Attaching package: 'lubridate'
## The following objects are masked from 'package:base':
##
## date, intersect, setdiff, union
## Loading required package: PerformanceAnalytics
## Loading required package: xts
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
##
## Attaching package: 'PerformanceAnalytics'
## The following object is masked from 'package:graphics':
##
## legend
## Loading required package: quantmod
## Loading required package: TTR
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
## Version 0.4-0 included new data defaults. See ?getSymbols.
## == Need to Learn tidyquant? =============================================================
## Business Science offers a 1-hour course - Learning Lab #9: Performance Analysis & Portfolio Optimization with tidyquant!
## </> Learn more at: https://university.business-science.io/p/learning-labs-pro </>
library(tidyverse)
## -- Attaching packages ------------------------------------------------ tidyverse 1.3.0 --
## v ggplot2 3.3.2 v purrr 0.3.4
## v tibble 3.0.3 v dplyr 1.0.2
## v tidyr 1.1.2 v stringr 1.4.0
## v readr 1.3.1 v forcats 0.5.0
## -- Conflicts --------------------------------------------------- tidyverse_conflicts() --
## x lubridate::as.difftime() masks base::as.difftime()
## x lubridate::date() masks base::date()
## x dplyr::filter() masks stats::filter()
## x dplyr::first() masks xts::first()
## x lubridate::intersect() masks base::intersect()
## x dplyr::lag() masks stats::lag()
## x dplyr::last() masks xts::last()
## x lubridate::setdiff() masks base::setdiff()
## x lubridate::union() masks base::union()
# Import stock prices and calculate returns
returns_quarterly <- c("^DJI", "^GSPC", "^IXIC") %>%
tq_get(get = "stock.prices",
from = "1990-01-01",
to = "2020-11-01") %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = quarterlyReturn)
returns_quarterly
## # A tibble: 372 x 3
## # Groups: symbol [3]
## symbol date quarterly.returns
## <chr> <date> <dbl>
## 1 ^DJI 1990-03-30 -0.0366
## 2 ^DJI 1990-06-29 0.0641
## 3 ^DJI 1990-09-28 -0.149
## 4 ^DJI 1990-12-31 0.0739
## 5 ^DJI 1991-03-28 0.106
## 6 ^DJI 1991-06-28 -0.00244
## 7 ^DJI 1991-09-30 0.0378
## 8 ^DJI 1991-12-31 0.0504
## 9 ^DJI 1992-03-31 0.0210
## 10 ^DJI 1992-06-30 0.0257
## # ... with 362 more rows
# See options for the `performance_fun` argument
tq_performance_fun_options()
## $table.funs
## [1] "table.AnnualizedReturns" "table.Arbitrary"
## [3] "table.Autocorrelation" "table.CAPM"
## [5] "table.CaptureRatios" "table.Correlation"
## [7] "table.Distributions" "table.DownsideRisk"
## [9] "table.DownsideRiskRatio" "table.DrawdownsRatio"
## [11] "table.HigherMoments" "table.InformationRatio"
## [13] "table.RollingPeriods" "table.SFM"
## [15] "table.SpecificRisk" "table.Stats"
## [17] "table.TrailingPeriods" "table.UpDownRatios"
## [19] "table.Variability"
##
## $CAPM.funs
## [1] "CAPM.alpha" "CAPM.beta" "CAPM.beta.bear" "CAPM.beta.bull"
## [5] "CAPM.CML" "CAPM.CML.slope" "CAPM.dynamic" "CAPM.epsilon"
## [9] "CAPM.jensenAlpha" "CAPM.RiskPremium" "CAPM.SML.slope" "TimingRatio"
## [13] "MarketTiming"
##
## $SFM.funs
## [1] "SFM.alpha" "SFM.beta" "SFM.CML" "SFM.CML.slope"
## [5] "SFM.dynamic" "SFM.epsilon" "SFM.jensenAlpha"
##
## $descriptive.funs
## [1] "mean" "sd" "min" "max"
## [5] "cor" "mean.geometric" "mean.stderr" "mean.LCL"
## [9] "mean.UCL"
##
## $annualized.funs
## [1] "Return.annualized" "Return.annualized.excess"
## [3] "sd.annualized" "SharpeRatio.annualized"
##
## $VaR.funs
## [1] "VaR" "ES" "ETL" "CDD" "CVaR"
##
## $moment.funs
## [1] "var" "cov" "skewness" "kurtosis"
## [5] "CoVariance" "CoSkewness" "CoSkewnessMatrix" "CoKurtosis"
## [9] "CoKurtosisMatrix" "M3.MM" "M4.MM" "BetaCoVariance"
## [13] "BetaCoSkewness" "BetaCoKurtosis"
##
## $drawdown.funs
## [1] "AverageDrawdown" "AverageLength" "AverageRecovery"
## [4] "DrawdownDeviation" "DrawdownPeak" "maxDrawdown"
##
## $Bacon.risk.funs
## [1] "MeanAbsoluteDeviation" "Frequency" "SharpeRatio"
## [4] "MSquared" "MSquaredExcess" "HurstIndex"
##
## $Bacon.regression.funs
## [1] "CAPM.alpha" "CAPM.beta" "CAPM.epsilon" "CAPM.jensenAlpha"
## [5] "SystematicRisk" "SpecificRisk" "TotalRisk" "TreynorRatio"
## [9] "AppraisalRatio" "FamaBeta" "Selectivity" "NetSelectivity"
##
## $Bacon.relative.risk.funs
## [1] "ActivePremium" "ActiveReturn" "TrackingError" "InformationRatio"
##
## $Bacon.drawdown.funs
## [1] "PainIndex" "PainRatio" "CalmarRatio" "SterlingRatio"
## [5] "BurkeRatio" "MartinRatio" "UlcerIndex"
##
## $Bacon.downside.risk.funs
## [1] "DownsideDeviation" "DownsidePotential" "DownsideFrequency"
## [4] "SemiDeviation" "SemiVariance" "UpsideRisk"
## [7] "UpsidePotentialRatio" "UpsideFrequency" "BernardoLedoitRatio"
## [10] "DRatio" "Omega" "OmegaSharpeRatio"
## [13] "OmegaExcessReturn" "SortinoRatio" "M2Sortino"
## [16] "Kappa" "VolatilitySkewness" "AdjustedSharpeRatio"
## [19] "SkewnessKurtosisRatio" "ProspectRatio"
##
## $misc.funs
## [1] "KellyRatio" "Modigliani" "UpDownRatios"
Hint: Refer to the ggplot2 cheatsheet. Look for geom_density under One Variable. Use the fill argument to create the plot per each stock.
ggplot(returns_quarterly, aes(x = quarterly.returns, fill = symbol)) +
geom_density(alpha = 0.3)
Hint: Discuss your answer in terms of the mean. Take returns_quarterly and pipe it to tidyquant::tq_performance. Use the performance_fun argument to compute the mean.
returns_quarterly %>%
tq_performance(
Ra = quarterly.returns,
Rb = NULL,
performance_fun = mean
)
## # A tibble: 3 x 2
## # Groups: symbol [3]
## symbol mean.1
## <chr> <dbl>
## 1 ^DJI 0.0212
## 2 ^GSPC 0.0212
## 3 ^IXIC 0.0333
Nasdaq has the highest expected quarterly return.
Hint: Discuss your answer in terms of the standard deviation. Take returns_quarterly and pipe it to tidyquant::tq_performance. Use the performance_fun argument to compute sd (standard deviation).
returns_quarterly %>%
tq_performance(
Ra = quarterly.returns,
Rb = NULL,
performance_fun = sd
)
## # A tibble: 3 x 2
## # Groups: symbol [3]
## symbol sd.1
## <chr> <dbl>
## 1 ^DJI 0.0762
## 2 ^GSPC 0.0794
## 3 ^IXIC 0.122
Nasdaq is the most risky stock
Hint: Discuss your answer in terms of the skewness and the kurtosis. Take returns_quarterly and pipe it to tidyquant::tq_performance. Use the performance_fun argument to compute the skewness. Do the same for the kurtosis.
returns_quarterly %>%
tq_performance(
Ra = quarterly.returns,
Rb = NULL,
performance_fun = skewness)
## # A tibble: 3 x 2
## # Groups: symbol [3]
## symbol skewness.1
## <chr> <dbl>
## 1 ^DJI -0.734
## 2 ^GSPC -0.601
## 3 ^IXIC -0.106
Every stock is skewe.
Hint: Take returns_quarterly and pipe it to tidyquant::tq_performance. Use the performance_fun argument to compute table.DownsideRisk.
returns_quarterly %>%
tq_performance(
Ra = quarterly.returns,
Rb = NULL,
performance_fun = table.DownsideRisk) %>%
t()
## [,1] [,2] [,3]
## symbol "^DJI" "^GSPC" "^IXIC"
## DownsideDeviation(0%) "0.0492" "0.0512" "0.0734"
## DownsideDeviation(MAR=3.33333333333333%) "0.0528" "0.0548" "0.0770"
## DownsideDeviation(Rf=0%) "0.0492" "0.0512" "0.0734"
## GainDeviation "0.0428" "0.0463" "0.0814"
## HistoricalES(95%) "-0.1664" "-0.1686" "-0.2565"
## HistoricalVaR(95%) "-0.1235" "-0.1394" "-0.1954"
## LossDeviation "0.0596" "0.0621" "0.0882"
## MaximumDrawdown "0.4524" "0.4774" "0.7437"
## ModifiedES(95%) "-0.1658" "-0.1724" "-0.2550"
## ModifiedVaR(95%) "-0.1175" "-0.1207" "-0.1658"
## SemiDeviation "0.0587" "0.0607" "0.0885"
Nasdaq has the greatest downside risk.
Hint: Assume that the risk free rate is zero and 95% confidence level. Note that the Sharpe Ratios are calculated using different risk measures: ES, VaR and semideviation. Make your argument based on all three Sharpe Ratios.
returns_quarterly %>%
tq_performance(
Ra = quarterly.returns,
Rb = NULL,
performance_fun = SharpeRatio)
## # A tibble: 3 x 4
## # Groups: symbol [3]
## symbol `ESSharpe(Rf=0%,p=95%~ `StdDevSharpe(Rf=0%,p=95~ `VaRSharpe(Rf=0%,p=95~
## <chr> <dbl> <dbl> <dbl>
## 1 ^DJI 0.128 0.278 0.181
## 2 ^GSPC 0.123 0.266 0.175
## 3 ^IXIC 0.131 0.273 0.201
Nasdaq because it is the highest in the most categories.
Hint: Google tq_performance(). Discuss in terms of ES, VaR and semideviation and their differences between 95% and 99%.
returns_quarterly %>%
tq_performance(
Ra = quarterly.returns,
Rb = NULL,
performance_fun = SharpeRatio, p = 0.99)
## # A tibble: 3 x 4
## # Groups: symbol [3]
## symbol `ESSharpe(Rf=0%,p=99%~ `StdDevSharpe(Rf=0%,p=99~ `VaRSharpe(Rf=0%,p=99~
## <chr> <dbl> <dbl> <dbl>
## 1 ^DJI 0.0784 0.278 0.109
## 2 ^GSPC 0.0799 0.266 0.105
## 3 ^IXIC 0.0814 0.273 0.108
It would be between DOW and Nasdaq because they are very close in numbers. Id probably still choose Nasdaq.
Hint: Use message, echo and results in the chunk options. Refer to the RMarkdown Reference Guide.