Objetivo

Resolver cuestiones de casos de probabilidad en casos mediante la identificación de variables aleatorias, funciones de probabilidad, funciones acumuladas, media, varianza y desviación estándar de distribuciones de variables discretas; visualización gráfica relacionada con variables discretas.

Descripción

Identificar casos relacionados con variables discretas para elaborar mediante programación R y markdown las variables discretas, las funciones de probabilidad de cada variable, la función acumulada, su visualización gráfica para su correcta implementación.

Se incluye en el caso, media, varianza y desviación estándar de distribuciones de variables discretas.

Los casos son identificados de la literatura relacionada con variables aleatorias discretas. Se deben elaborar tres ejercicios en este caso 15 encontrados en la literatura, se pueden apoyar de los mismos ejercicios del caso 14.

Marco de referencia

Una variable aleatoria es una descripción numérica del resultado de un experimento (Anderson et al., 2008).

Las variables aleatorias deben tomar valores numéricos. En efecto, una variable aleatoria asocia un valor numérico a cada uno de los resultados experimentales.

El valor numérico de la variable aleatoria depende del resultado del experimento. Una variable aleatoria puede ser discreta o continua, depende del tipo de valores numéricos que asuma. (Anderson et al., 2008). Para este documento se tratan únicamente variables del tipo discreto.

En cualquier experimento aleatorio, los resultados se presentan al azar; así, a este se le denomina variable aleatoria. Por ejemplo, lanzar un dado constituye un experimento: puede ocurrir cualquiera de los seis resultados posibles. Cada valor de la variabl aleatoria se relaciona con una probabilidad que indica la posibilidad de un resultado determinado(Lind et al., 2015)

En su libro (Walpole et al., 2012) define que una variable aleatoria es una función que asocia un número real con cada elemento del espacio muestral.

Una función de probabilidad, una función de masa de probabilidad o una distribución de probabilidad de la variable aleatoria discreta X si, para cada resultado x posible.

Por otra parte, la función de la distribución acumulativa F(x) ó probabilidad acumulada de una variable aleatoria discreta \(X\) con distribución de probabilidad \(f(x)\) está dada por la suma de sus probabilidades de \(t\) siendo \(t\) menor o igual a \(x\). Es decir, la probabilidad acumulada suma los valores de las funciones de probabilidad a partir del valor inicia de \(x\). El valor final con respecto a valor final de \(x\) debe ser igual a 1. \[F(x)=P(X \le x) = \sum_{t \le x}f(t)\] (Walpole et al., 2012)

La media de una distribución discreta es también recibe el nombre de valor esperado. Se trata de un promedio ponderado de los posibles valores de una variable aleatoria se ponderan con sus correspondientes probabilidades de ocurrencia (Lind et al., 2015)

La fórmula para el valor esperado es: \[\mu = \sum xP(x)\]

La varianza de una distribución discreta constituye un valor típico para resumir una distribución de probabilidad discreta, describe el grado de dispersión (variación) en una distribución (Lind et al., 2015)

Su fórmula es: \[\alpha^2 = \sum(x-\mu)^2P(x)\]

La desviación estándar, \(\alpha\), se determina al extraer la raíz cuadrada positiva de \(\alpha^2\); es decir, \(\alpha = \sqrt{\alpha^2}\) (Lind et al., 2015)

1. Cargar librerías

library(ggplot2)
library(stringr)  # String
library(stringi)  # String
library(gtools)
library(dplyr)
library(knitr)
library(gtools)

options(scipen = 999) # Notación normal

2. Ejercicios

2.1. Ejercicio 1

Se venden 5000 billetes para una rifa a 1 euro cada uno. Existe un único premio de cierta cantidad, calcular los valores de las variables aleatorias y sus probabilidades para 0 para no gana y 1 para si gana cuando un comprador adquiere tres billetes. (Hero, n.d.)

Tabla de probabilidad
discretas <- c(0,1)   # 0 Que no gane, 1 que gane
n <- 5000 # sum(casos)
casos <- c(4950,50)
probabilidades <- casos / n

acumulada <- cumsum(probabilidades)   # Acumulada

tabla <- data.frame(x=discretas, 
              casos = casos,
              f.prob.x = probabilidades,
              F.acum.x = acumulada,
              x.f.prob.x = (discretas * probabilidades))
kable(tabla, caption = "Tabla de probabilidad con la columna para valor esperado")
Tabla de probabilidad con la columna para valor esperado
x casos f.prob.x F.acum.x x.f.prob.x
0 4950 0.99 0.99 0.00
1 50 0.01 1.00 0.01
Valor esperado

Se determina el valor esperado de acuerdo a la fórmula: \[\mu = \sum xP(x)\]

  • VE es el valor esperado
VE <- sum(tabla$x * tabla$f.prob.x)

VE
## [1] 0.01

El valor esperado significa la media ponderada de las probabilidades o lo que es lo mismo es lo que se puede esperar.

Significa muy muy muy …. remoto la probabilidad de ganar en el sorteo de 5000 boletos 0.01

Varianza
  • Agregando columna para obtención de la varianza a partir de los datos de la tabla previamente generada.
tabla <- cbind(tabla, 'VE' = VE, 'x-VE.cuad.f.prob.x' = (tabla$x - VE)^2 * tabla$f.prob.x)

kable(tabla, caption = "Tabla de probabilidad con valor esperado y columnas para varianza")
Tabla de probabilidad con valor esperado y columnas para varianza
x casos f.prob.x F.acum.x x.f.prob.x VE x-VE.cuad.f.prob.x
0 4950 0.99 0.99 0.00 0.01 0.000099
1 50 0.01 1.00 0.01 0.01 0.009801

\[\alpha^2 = \sum(x-\mu)^2P(x)\]

  • varianza = varianza de la distribución
varianza <- sum((tabla$x - VE)^2 * tabla$f.prob.x)
varianza
## [1] 0.0099
Desviación estándard de una distribución discreta
  • La raiz cuadrada de la varianza \[\alpha = \sqrt{ \alpha^2 }\]

  • desv.std = desviación estándard

desv.std <- sqrt(varianza)
desv.std
## [1] 0.09949874
La tabla con las sumatorias
tabla.sumatorias <- rbind(tabla, apply(tabla, 2, sum))
tabla.sumatorias[nrow(tabla), c(1,4,6)] <- '****'

kable(tabla.sumatorias, caption = "Tabla de probabilidad con sumatorias")
Tabla de probabilidad con sumatorias
x casos f.prob.x F.acum.x x.f.prob.x VE x-VE.cuad.f.prob.x
0 4950 0.99 0.99 0.00 0.01 0.000099
**** 50 0.01 **** 0.01 **** 0.009801
1 5000 1.00 1.99 0.01 0.02 0.009900
Gráfica de barra
ggplot(data = tabla, aes(x = x, y=f.prob.x, fill=x)) +
  geom_bar(stat="identity") 

Gráfica lineal acumulada
ggplot(data = tabla, aes(x = x, y=F.acum.x)) +
  geom_point(colour="blue") + 
  geom_line(colour="red")

2.1. Ejercicio 2

Venta de autmóviles de Pelican Ford

Un vendedor llamado John Rasgdale vende la mayor cantidad de automóviles el sábado, así que desarrolló la siguiente distribución de probabilidades, en la cual se muestra la cantidad de automóviles que espera vender un sábado determinado.

  • La variable discreta venta de aumóviles: \(0,1,2,3,4\) el sábado. Los valores de la probabilida son : \(0.1, 0.2, 0.3, 0.3, 0.1\), previamente definidos.

  • Ya se dan las probabilidades de tal forma que la cantidad de casos no se dispone en este ejercicio.

    1. ¿De qué tipo de distribución se trata?
    1. ¿Cuántos automóviles espera vender John un sábado normal?
    1. ¿Cuál es la varianza de la distribución? (Lind et al., 2015).
Tabla de probabilidad
discretas <- 0:4   

# casos <- c(4950,50)
# n <- sum(casos)

# probabilidades <- casos / n
casos <- rep('?', 5)
probabilidades <- c(0.1, 0.2, 0.3, 0.3, 0.1)

acumulada <- cumsum(probabilidades)   # Acumulada

tabla <- data.frame(x=discretas, 
              casos = casos,
              f.prob.x = probabilidades,
              F.acum.x = acumulada,
              x.f.prob.x = (discretas * probabilidades))
kable(tabla, caption = "Tabla de probabilidad con la columna para valor esperado")
Tabla de probabilidad con la columna para valor esperado
x casos f.prob.x F.acum.x x.f.prob.x
0 ? 0.1 0.1 0.0
1 ? 0.2 0.3 0.2
2 ? 0.3 0.6 0.6
3 ? 0.3 0.9 0.9
4 ? 0.1 1.0 0.4
Valor esperado

Se determina el valor esperado de acuerdo a la fórmula: \[\mu = \sum xP(x)\]

  • VE es el valor esperado
VE <- sum(tabla$x * tabla$f.prob.x)

VE
## [1] 2.1

El valor esperado significa la media ponderada de las probabilidades o lo que es lo mismo es lo que se puede esperar.

Varianza
  • Agregando columna para obtención de la varianza a partir de los datos de la tabla previamente generada.
tabla <- cbind(tabla, 'VE' = VE, 'x-VE.cuad.f.prob.x' = (tabla$x - VE)^2 * tabla$f.prob.x)

kable(tabla, caption = "Tabla de probabilidad con valor esperado y columnas para varianza")
Tabla de probabilidad con valor esperado y columnas para varianza
x casos f.prob.x F.acum.x x.f.prob.x VE x-VE.cuad.f.prob.x
0 ? 0.1 0.1 0.0 2.1 0.441
1 ? 0.2 0.3 0.2 2.1 0.242
2 ? 0.3 0.6 0.6 2.1 0.003
3 ? 0.3 0.9 0.9 2.1 0.243
4 ? 0.1 1.0 0.4 2.1 0.361

\[\alpha^2 = \sum(x-\mu)^2P(x)\]

  • varianza = varianza de la distribución
varianza <- sum((tabla$x - VE)^2 * tabla$f.prob.x)
varianza
## [1] 1.29
Desviación estándard de una distribución discreta
  • La raiz cuadrada de la varianza \[\alpha = \sqrt{ \alpha^2 }\]

  • desv.std = desviación estándard

desv.std <- sqrt(varianza)
desv.std
## [1] 1.135782
La tabla con las sumatorias
#tabla.sumatorias <- rbind(tabla, apply(tabla, 2, sum))
#tabla.sumatorias[nrow(tabla), c(1,4,6)] <- '****'

#kable(tabla.sumatorias, caption = "Tabla de probabilidad con sumatorias")
Gráfica de barra
ggplot(data = tabla, aes(x = x, y=f.prob.x, fill=x)) +
  geom_bar(stat="identity") 

Gráfica lineal acumulada
ggplot(data = tabla, aes(x = x, y=F.acum.x)) +
  geom_point(colour="blue") + 
  geom_line(colour="red")

2.3. Caso Hombre y Mujeres.

Una compañía tiene cinco solicitantes para dos puestos de trabajo: dos mujeres y tres hombres. Suponga que los cinco solicitantes son igualmente calificados y que no hay preferencia para elegir su género. Sea x igual al número de mujeres elegidas para ocupar los dos puestos de trabajo. Encuentre las probabilidades para elegir 0 mujeres, 1 mujer o 2 mujeres. (???) * Haciendo las combinacones * M = Mujer * H = Hombre

personas <- c("H1", "H2", "H3", "M1", "M2")
S.espacio.muestral <- combinations(n = 5, r = 2, v=personas)
S.espacio.muestral 
##       [,1] [,2]
##  [1,] "H1" "H2"
##  [2,] "H1" "H3"
##  [3,] "H1" "M1"
##  [4,] "H1" "M2"
##  [5,] "H2" "H3"
##  [6,] "H2" "M1"
##  [7,] "H2" "M2"
##  [8,] "H3" "M1"
##  [9,] "H3" "M2"
## [10,] "M1" "M2"
# Pendiente

Interpretación de los ejercicios del caso

Se presentaron varios ejercicios de variables aleatorias discretas en donde se determiniaron las funciones de probabilidad y la función acumulada, la media o valor esperado, la varianza y sus desviación estándard. Se generaron gráficas de barras de los valores de las variables y la gráfica lineal de las tendencias.

Ejercicio 1

El valor esperado en el ejercicio 1 del sorteo con valor de 1%, significa que es es muy muy muy …. remoto la probabilidad de ganar en el sorteo de 5000 boletos.

Ejercicio 2

Se trata de una distribución de probabilidad discreta de la variable aleatoria “número de automóviles vendidos”.

El valor esperado es del 2.1 que significa que puede vender 2 autos como esperanza.

El valor esperado se utiliza para predecir la media aritmética de la cantidad de automóviles vendidos a largo plazo. Por ejemplo, si John trabaja \(50\) sábados en un año, puede esperar vender \((50)(2.1)\) o \(105\) automóviles solo durante los sábados. Por consiguiente, a veces la media recibe el nombre de valor esperado (Lind et al., 2015)

El valor de la varianza es de 1.29 que significa lo que puede variar con respecto al valor esperado. La desviación estándard es de 1.135782.

¿Cómo se interpreta la variación?

Por ejemplo, Si la vendedora Rita Kirsch también vendió un promedio de 2.1 automóviles los sábados pero tien tal vez una desviacón de 1.9 en comparación del 1.135782 de John, entonces de puede decir que hay mayor variabilidad en la vendedora Rita dado que \((1.91 \geq 1.35)\) (Lind et al., 2015).

Ejercicio 3

Ejercicio 4

Ejercicio 5

Referencias bibliográficas

Anderson, D. R., Sweeney, D. J., & Williams, T. A. (2008). Estadística para administración y economía (10th ed.). Cengage Learning,

Hero, C. (n.d.). Variables aleatorias - variables aleatorias problemas... https://www.coursehero.com/file/14618142/Variables-aleatorias/

Lind, D., Marchal, W., & Wathen, S. (2015). Estadística aplicada a los negocios y la economía (Decimo Sexta). McGraw-Hill.

Walpole, R. E., Myers, R. H., & Myers, S. L. (2012). Probabilidad y estadística para ingeniería y ciencias (Novena Edición). Pearson.