Retail Inventories: Retail (Excluding Food Services) (MRTSIM44000USN)
symbol <-fredr_series_observations(series_id = "MRTSIM44000USN",
observation_start = as.Date("2000-01-01"))
indicator <-as.data.frame(symbol)[,c(1,3)]
tail(indicator) %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
column_spec(2, T, color = "red" )
|
date
|
value
|
243
|
2020-03-01
|
668331
|
244
|
2020-04-01
|
643641
|
245
|
2020-05-01
|
597665
|
246
|
2020-06-01
|
579705
|
247
|
2020-07-01
|
580499
|
248
|
2020-08-01
|
586524
|
indicator %>%
ggplot(aes(x = date, y = value)) +
geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-10-2020'), ymin = -Inf, ymax = Inf),
fill = "white", alpha = 0.04)+
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "Monthly",
y = "Millions of dollars",
title = "Retail Inventories: Retail (Excluding Food Services) (MRTSIM44000USN)",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")
indicator2 %>%
ggplot(aes(x = date, y = value)) +
geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-10-2020'), ymin = -Inf, ymax = Inf),
fill = "white", alpha = 0.04)+
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "Monthly",
y = "Millions of dollars",
title = "Retail Inventories: Retail (Excluding Food Services) _ Short Term Trend",
subtitle = str_glue("From {min(indicator2$date)} through {max(indicator2$date)}"),
caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
theme_economist()

Retail Inventories: Clothing and Clothing Accessory Stores (MRTSIM448USN)
symbol <-fredr_series_observations(series_id = "MRTSIM448USN",
observation_start = as.Date("2000-01-01"))
indicator <-as.data.frame(symbol)[,c(1,3)]
tail(indicator) %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
column_spec(2, T, color = "red" )
|
date
|
value
|
243
|
2020-03-01
|
54304
|
244
|
2020-04-01
|
52612
|
245
|
2020-05-01
|
50541
|
246
|
2020-06-01
|
48175
|
247
|
2020-07-01
|
47720
|
248
|
2020-08-01
|
47754
|
indicator %>%
ggplot(aes(x = date, y = value)) +
geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-10-2020'), ymin = -Inf, ymax = Inf),
fill = "white", alpha = 0.04)+
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "Monthly",
y = "Millions of dollars",
title = "Retail Inventories: Clothing and Clothing Accessory Stores (MRTSIM448USN)",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")
indicator2 %>%
ggplot(aes(x = date, y = value)) +
geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-10-2020'), ymin = -Inf, ymax = Inf),
fill = "white", alpha = 0.04)+
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "Monthly",
y = "Millions of dollars",
title = "Retail Inventories: Clothing and Clothing Accessory Stores _ Short Term Trend",
subtitle = str_glue("From {min(indicator2$date)} through {max(indicator2$date)}"),
caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
theme_economist()

Retail Inventories: Department Stores (MRTSIM4521EUSS)
symbol <-fredr_series_observations(series_id = "MRTSIM4521EUSS",
observation_start = as.Date("2000-01-01"))
indicator <-as.data.frame(symbol)[,c(1,3)]
tail(indicator) %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
column_spec(2, T, color = "red" )
|
date
|
value
|
243
|
2020-03-01
|
23389
|
244
|
2020-04-01
|
22157
|
245
|
2020-05-01
|
21712
|
246
|
2020-06-01
|
20270
|
247
|
2020-07-01
|
20061
|
248
|
2020-08-01
|
20537
|
indicator %>%
ggplot(aes(x = date, y = value)) +
geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-10-2020'), ymin = -Inf, ymax = Inf),
fill = "white", alpha = 0.04)+
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "Monthly",
y = "Millions of dollars",
title = "Retail Inventories: Department Stores (MRTSIM4521EUSS)",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")
indicator2 %>%
ggplot(aes(x = date, y = value)) +
geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-10-2020'), ymin = -Inf, ymax = Inf),
fill = "white", alpha = 0.04)+
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "Monthly",
y = "Millions of dollars",
title = "Retail Inventories: Department Stores (MRTSIM4521EUSS) _ Short Term Trend",
subtitle = str_glue("From {min(indicator2$date)} through {max(indicator2$date)}"),
caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
theme_economist()

##Retail Sales: New Car Dealers (MRTSMPCSM44111USN)
symbol <-fredr_series_observations(series_id = "BUS5615TAXABL144QNSA",
observation_start = as.Date("2000-01-01"))
indicator <-as.data.frame(symbol)[,c(1,3)]
tail(indicator) %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
column_spec(2, T, color = "red" )
|
date
|
value
|
62
|
2019-01-01
|
NA
|
63
|
2019-04-01
|
NA
|
64
|
2019-07-01
|
NA
|
65
|
2019-10-01
|
NA
|
66
|
2020-01-01
|
2960
|
67
|
2020-04-01
|
659
|
indicator %>%
ggplot(aes(x = date, y = value)) +
geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-10-2020'), ymin = -Inf, ymax = Inf),
fill = "white", alpha = 0.04)+
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "Quarterly",
y = "Millions of Dollars",
title = " Retail Sales: New Car Dealers (MRTSMPCSM44111USN)",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
theme_economist()

Total Discharges for General Medical and Surgical Hospitals, All Establishments (DISC6221ALLEST176QNSA)
symbol <-fredr_series_observations(series_id = "DISC6221ALLEST176QNSA",
observation_start = as.Date("2000-01-01"))
indicator <-as.data.frame(symbol)[,c(1,3)]
tail(indicator) %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
column_spec(2, T, color = "red" )
|
date
|
value
|
27
|
2019-01-01
|
9236
|
28
|
2019-04-01
|
9216
|
29
|
2019-07-01
|
9095
|
30
|
2019-10-01
|
9152
|
31
|
2020-01-01
|
8942
|
32
|
2020-04-01
|
7513
|
indicator %>%
ggplot(aes(x = date, y = value)) +
geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-10-2020'), ymin = -Inf, ymax = Inf),
fill = "white", alpha = 0.04)+
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "Quarterly",
y = "Thousands of Patents",
title = " Total Discharges for General Medical and Surgical Hospitals",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")
indicator2 %>%
ggplot(aes(x = date, y = value)) +
geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-10-2020'), ymin = -Inf, ymax = Inf),
fill = "white", alpha = 0.04)+
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "Quarterly",
y = "Thousands of Patents",
title = "Total Discharges for General Medical and Surgical Hospitals _ Short Term Trend",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
theme_economist()

Total Expense for Ambulatory Health Care Services, All Establishments (EXP621ALLEST144QNSA)
symbol <-fredr_series_observations(series_id = "EXP621ALLEST144QNSA",
observation_start = as.Date("2000-01-01"))
indicator <-as.data.frame(symbol)[,c(1,3)]
tail(indicator) %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
column_spec(2, T, color = "red" )
|
date
|
value
|
41
|
2019-01-01
|
226693
|
42
|
2019-04-01
|
234386
|
43
|
2019-07-01
|
235022
|
44
|
2019-10-01
|
247626
|
45
|
2020-01-01
|
233781
|
46
|
2020-04-01
|
205704
|
indicator %>%
ggplot(aes(x = date, y = value)) +
geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-10-2020'), ymin = -Inf, ymax = Inf),
fill = "white", alpha = 0.04)+
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "Quarterly",
y = "Millions of Dollars",
title = " Total Expense for Ambulatory Health Care Services",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")
indicator2 %>%
ggplot(aes(x = date, y = value)) +
geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-10-2020'), ymin = -Inf, ymax = Inf),
fill = "white", alpha = 0.04)+
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "Quarterly",
y = "Millions of Dollars",
title = "Total Expense for Ambulatory Health Care Services _ Short Term Trend",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
theme_economist()

Total Revenue for Outpatient Care Centers, All Establishments (REV6214ALLEST144QNSA)
symbol <-fredr_series_observations(series_id = "REV6214ALLEST144QNSA",
observation_start = as.Date("2000-01-01"))
indicator <-as.data.frame(symbol)[,c(1,3)]
tail(indicator) %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
column_spec(2, T, color = "red" )
|
date
|
value
|
41
|
2019-01-01
|
37014
|
42
|
2019-04-01
|
37978
|
43
|
2019-07-01
|
37895
|
44
|
2019-10-01
|
39742
|
45
|
2020-01-01
|
37558
|
46
|
2020-04-01
|
33418
|
indicator %>%
ggplot(aes(x = date, y = value)) +
geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-10-2020'), ymin = -Inf, ymax = Inf),
fill = "white", alpha = 0.04)+
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "Quarterly",
y = "Millions of Dollars",
title = " Total Revenue for Outpatient Care Centers",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")
indicator2 %>%
ggplot(aes(x = date, y = value)) +
geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-10-2020'), ymin = -Inf, ymax = Inf),
fill = "white", alpha = 0.04)+
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "Quarterly",
y = "Millions of Dollars",
title = "Total Revenue for Outpatient Care Centers _ Short Term Trend",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
theme_economist()

Total Revenue for Ambulatory Health Care Services, All Establishments (REV621ALLEST144QNSA)
symbol <-fredr_series_observations(series_id = "REV621ALLEST144QNSA",
observation_start = as.Date("2000-01-01"))
indicator <-as.data.frame(symbol)[,c(1,3)]
tail(indicator) %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
column_spec(2, T, color = "red" )
|
date
|
value
|
41
|
2019-01-01
|
262750
|
42
|
2019-04-01
|
272023
|
43
|
2019-07-01
|
272186
|
44
|
2019-10-01
|
282083
|
45
|
2020-01-01
|
268931
|
46
|
2020-04-01
|
230057
|
indicator %>%
ggplot(aes(x = date, y = value)) +
geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-10-2020'), ymin = -Inf, ymax = Inf),
fill = "white", alpha = 0.04)+
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "Quarterly",
y = "Millions of Dollars",
title = "Total Revenue for Ambulatory Health Care Services",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")
indicator2 %>%
ggplot(aes(x = date, y = value)) +
geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-10-2020'), ymin = -Inf, ymax = Inf),
fill = "white", alpha = 0.04)+
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "Quarterly",
y = "Millions of Dollars",
title = "Total Revenue for Ambulatory Health Care Services _ Short Term Trend",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
theme_economist()

Total Expense for Child Day Care Services, All Establishments (EXP6244ALLEST144QNSA)
symbol <-fredr_series_observations(series_id = "EXP6244ALLEST144QNSA",
observation_start = as.Date("2000-01-01"))
indicator <-as.data.frame(symbol)[,c(1,3)]
tail(indicator) %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
column_spec(2, T, color = "red" )
|
date
|
value
|
41
|
2019-01-01
|
10243
|
42
|
2019-04-01
|
10311
|
43
|
2019-07-01
|
10032
|
44
|
2019-10-01
|
10824
|
45
|
2020-01-01
|
10796
|
46
|
2020-04-01
|
7783
|
indicator %>%
ggplot(aes(x = date, y = value)) +
geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-10-2020'), ymin = -Inf, ymax = Inf),
fill = "white", alpha = 0.04)+
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "Quarterly",
y = "Millions of Dollars",
title = "Total Expense for Child Day Care Services",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")
indicator2 %>%
ggplot(aes(x = date, y = value)) +
geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-10-2020'), ymin = -Inf, ymax = Inf),
fill = "white", alpha = 0.04)+
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "Quarterly",
y = "Millions of Dollars",
title = "Total Expense for Child Day Care Services _ Short Term Trend",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
theme_economist()
