Retail Inventories: Retail (Excluding Food Services) (MRTSIM44000USN)

symbol <-fredr_series_observations(series_id = "MRTSIM44000USN", 
      observation_start = as.Date("2000-01-01"))
      
indicator <-as.data.frame(symbol)[,c(1,3)]

tail(indicator) %>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(2, T, color = "red" ) 
date value
243 2020-03-01 668331
244 2020-04-01 643641
245 2020-05-01 597665
246 2020-06-01 579705
247 2020-07-01 580499
248 2020-08-01 586524
indicator   %>% 
    ggplot(aes(x = date, y = value)) +
   geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-10-2020'), ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.04)+ 
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "Monthly",
      y = "Millions of dollars",
      title = "Retail Inventories: Retail (Excluding Food Services) (MRTSIM44000USN)",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
      caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
    theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")


indicator2   %>% 
    ggplot(aes(x = date, y = value)) +
   geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-10-2020'), ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.04)+ 
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "Monthly",
      y = "Millions of dollars",
      title = "Retail Inventories: Retail (Excluding Food Services) _ Short Term Trend",
      subtitle = str_glue("From {min(indicator2$date)} through {max(indicator2$date)}"), 
      caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
    theme_economist()

Retail Inventories: Clothing and Clothing Accessory Stores (MRTSIM448USN)

symbol <-fredr_series_observations(series_id = "MRTSIM448USN", 
      observation_start = as.Date("2000-01-01"))
      
indicator <-as.data.frame(symbol)[,c(1,3)]

tail(indicator) %>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(2, T, color = "red" ) 
date value
243 2020-03-01 54304
244 2020-04-01 52612
245 2020-05-01 50541
246 2020-06-01 48175
247 2020-07-01 47720
248 2020-08-01 47754
indicator   %>% 
    ggplot(aes(x = date, y = value)) +
   geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-10-2020'), ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.04)+ 
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "Monthly",
      y = "Millions of dollars",
      title = "Retail Inventories: Clothing and Clothing Accessory Stores (MRTSIM448USN)",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
      caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
    theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")


indicator2   %>% 
    ggplot(aes(x = date, y = value)) +
   geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-10-2020'), ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.04)+ 
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "Monthly",
      y = "Millions of dollars",
      title = "Retail Inventories: Clothing and Clothing Accessory Stores _ Short Term Trend",
      subtitle = str_glue("From {min(indicator2$date)} through {max(indicator2$date)}"), 
      caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
    theme_economist()

Retail Inventories: Department Stores (MRTSIM4521EUSS)

symbol <-fredr_series_observations(series_id = "MRTSIM4521EUSS", 
      observation_start = as.Date("2000-01-01"))
      
indicator <-as.data.frame(symbol)[,c(1,3)]

tail(indicator) %>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(2, T, color = "red" ) 
date value
243 2020-03-01 23389
244 2020-04-01 22157
245 2020-05-01 21712
246 2020-06-01 20270
247 2020-07-01 20061
248 2020-08-01 20537
indicator   %>% 
    ggplot(aes(x = date, y = value)) +
   geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-10-2020'), ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.04)+ 
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "Monthly",
      y = "Millions of dollars",
      title = "Retail Inventories: Department Stores (MRTSIM4521EUSS)",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
      caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
    theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")


indicator2   %>% 
    ggplot(aes(x = date, y = value)) +
   geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-10-2020'), ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.04)+ 
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "Monthly",
      y = "Millions of dollars",
      title = "Retail Inventories: Department Stores (MRTSIM4521EUSS) _ Short Term Trend",
      subtitle = str_glue("From {min(indicator2$date)} through {max(indicator2$date)}"), 
      caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
    theme_economist()

##Retail Sales: New Car Dealers (MRTSMPCSM44111USN)

symbol <-fredr_series_observations(series_id = "BUS5615TAXABL144QNSA", 
      observation_start = as.Date("2000-01-01"))
      
indicator <-as.data.frame(symbol)[,c(1,3)]

tail(indicator) %>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(2, T, color = "red" ) 
date value
62 2019-01-01 NA
63 2019-04-01 NA
64 2019-07-01 NA
65 2019-10-01 NA
66 2020-01-01 2960
67 2020-04-01 659
indicator   %>% 
    ggplot(aes(x = date, y = value)) +
   geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-10-2020'), ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.04)+ 
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "Quarterly",
      y = "Millions of Dollars",
      title = " Retail Sales: New Car Dealers (MRTSMPCSM44111USN)",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
      caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
    theme_economist()

Total Discharges for General Medical and Surgical Hospitals, All Establishments (DISC6221ALLEST176QNSA)

symbol <-fredr_series_observations(series_id = "DISC6221ALLEST176QNSA", 
      observation_start = as.Date("2000-01-01"))
      
indicator <-as.data.frame(symbol)[,c(1,3)]

tail(indicator) %>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(2, T, color = "red" ) 
date value
27 2019-01-01 9236
28 2019-04-01 9216
29 2019-07-01 9095
30 2019-10-01 9152
31 2020-01-01 8942
32 2020-04-01 7513
indicator   %>% 
    ggplot(aes(x = date, y = value)) +
   geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-10-2020'), ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.04)+ 
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "Quarterly",
      y = "Thousands of Patents",
      title = " Total Discharges for General Medical and Surgical Hospitals",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
      caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
    theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")


indicator2   %>% 
    ggplot(aes(x = date, y = value)) +
   geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-10-2020'), ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.04)+ 
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "Quarterly",
      y = "Thousands of Patents",
      title = "Total Discharges for General Medical and Surgical Hospitals _ Short Term Trend",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"), 
      caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
    theme_economist()

Total Expense for Ambulatory Health Care Services, All Establishments (EXP621ALLEST144QNSA)

symbol <-fredr_series_observations(series_id = "EXP621ALLEST144QNSA", 
      observation_start = as.Date("2000-01-01"))
      
indicator <-as.data.frame(symbol)[,c(1,3)]

tail(indicator) %>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(2, T, color = "red" ) 
date value
41 2019-01-01 226693
42 2019-04-01 234386
43 2019-07-01 235022
44 2019-10-01 247626
45 2020-01-01 233781
46 2020-04-01 205704
indicator   %>% 
    ggplot(aes(x = date, y = value)) +
   geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-10-2020'), ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.04)+ 
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "Quarterly",
      y = "Millions of Dollars",
      title = " Total Expense for Ambulatory Health Care Services",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
      caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
    theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")


indicator2   %>% 
    ggplot(aes(x = date, y = value)) +
   geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-10-2020'), ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.04)+ 
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "Quarterly",
      y = "Millions of Dollars",
      title = "Total Expense for Ambulatory Health Care Services _ Short Term Trend",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"), 
      caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
    theme_economist()

Total Revenue for Outpatient Care Centers, All Establishments (REV6214ALLEST144QNSA)

symbol <-fredr_series_observations(series_id = "REV6214ALLEST144QNSA", 
      observation_start = as.Date("2000-01-01"))
      
indicator <-as.data.frame(symbol)[,c(1,3)]

tail(indicator) %>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(2, T, color = "red" ) 
date value
41 2019-01-01 37014
42 2019-04-01 37978
43 2019-07-01 37895
44 2019-10-01 39742
45 2020-01-01 37558
46 2020-04-01 33418
indicator   %>% 
    ggplot(aes(x = date, y = value)) +
   geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-10-2020'), ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.04)+ 
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "Quarterly",
      y = "Millions of Dollars",
      title = " Total Revenue for Outpatient Care Centers",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
      caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
    theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")


indicator2   %>% 
    ggplot(aes(x = date, y = value)) +
   geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-10-2020'), ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.04)+ 
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "Quarterly",
      y = "Millions of Dollars",
      title = "Total Revenue for Outpatient Care Centers _ Short Term Trend",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"), 
      caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
    theme_economist()

Total Revenue for Ambulatory Health Care Services, All Establishments (REV621ALLEST144QNSA)

symbol <-fredr_series_observations(series_id = "REV621ALLEST144QNSA", 
      observation_start = as.Date("2000-01-01"))
      
indicator <-as.data.frame(symbol)[,c(1,3)]

tail(indicator) %>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(2, T, color = "red" ) 
date value
41 2019-01-01 262750
42 2019-04-01 272023
43 2019-07-01 272186
44 2019-10-01 282083
45 2020-01-01 268931
46 2020-04-01 230057
indicator   %>% 
    ggplot(aes(x = date, y = value)) +
   geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-10-2020'), ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.04)+ 
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "Quarterly",
      y = "Millions of Dollars",
      title = "Total Revenue for Ambulatory Health Care Services",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
      caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
    theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")


indicator2   %>% 
    ggplot(aes(x = date, y = value)) +
   geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-10-2020'), ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.04)+ 
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "Quarterly",
      y = "Millions of Dollars",
      title = "Total Revenue for Ambulatory Health Care Services _ Short Term Trend",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"), 
      caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
    theme_economist()

Total Expense for Child Day Care Services, All Establishments (EXP6244ALLEST144QNSA)

symbol <-fredr_series_observations(series_id = "EXP6244ALLEST144QNSA", 
      observation_start = as.Date("2000-01-01"))
      
indicator <-as.data.frame(symbol)[,c(1,3)]

tail(indicator) %>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(2, T, color = "red" ) 
date value
41 2019-01-01 10243
42 2019-04-01 10311
43 2019-07-01 10032
44 2019-10-01 10824
45 2020-01-01 10796
46 2020-04-01 7783
indicator   %>% 
    ggplot(aes(x = date, y = value)) +
   geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-10-2020'), ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.04)+ 
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "Quarterly",
      y = "Millions of Dollars",
      title = "Total Expense for Child Day Care Services",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
      caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
    theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")


indicator2   %>% 
    ggplot(aes(x = date, y = value)) +
   geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-10-2020'), ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.04)+ 
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "Quarterly",
      y = "Millions of Dollars",
      title = "Total Expense for Child Day Care Services _ Short Term Trend",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"), 
      caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
    theme_economist()