Agniv Saikia
06/11/2020
The data was extracted from the 1974 Motor Trend US magazine, and comprises fuel consumption and 10 aspects of automobile design and performance for 32 automobiles (1973-74 models).
Henderson and Velleman (1981), Building multiple regression models interactively. Biometrics, 37, 391-411. The first 5 observations are as follows
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
## Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
A data frame with 32 observations on 11 variables.
| Index | Field | Detail |
|---|---|---|
| [, 1] | mpg | Miles/(US) gallon (mileage) |
| [, 2] | cyl | Number of cylinders |
| [, 3] | disp | Displacement (cu.in.) |
| [, 4] | hp | Gross horsepower |
| [, 5] | drat | Rear axle ratio |
| [, 6] | wt | Weight (lb/1000) |
| [, 7] | qsec | 1/4 mile time |
| [, 8] | vs | Engine (V-Shaped or Straight) |
| [, 9] | am | Transmission (0 = automatic, 1 = manual) |
| [,10] | gear | Number of forward gears |
| [,11] | carb | Number of carburetors |
fText <- reactive({
paste("mpg ~", input$variable)})
ftPoint <- reactive({
paste("mpg ~", "as.integer(", input$variable, ")")})
fit <- reactive({
lm(as.formula(ftPoint()), data=mpg)
})
output$caption <- renderText({
fText()})
output$mpgBoxPlot <- renderPlot({
boxplot(as.formula(fText()),
data = mpg,
outline = input$outliers)})
output$fit <- renderPrint({
summary(fit())})
output$mpgPlot <- renderPlot({
with(mpg, {
plot(as.formula(ftPoint()))
abline(fit(), col=2)
}) })