## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.0 ──
## ✓ ggplot2 3.3.2 ✓ purrr 0.3.4
## ✓ tibble 3.0.4 ✓ dplyr 1.0.2
## ✓ tidyr 1.1.2 ✓ stringr 1.4.0
## ✓ readr 1.4.0 ✓ forcats 0.5.0
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
##
## Attaching package: 'kableExtra'
## The following object is masked from 'package:dplyr':
##
## group_rows
## Loading required package: Matrix
##
## Attaching package: 'Matrix'
## The following objects are masked from 'package:tidyr':
##
## expand, pack, unpack
## Registered S3 methods overwritten by 'car':
## method from
## influence.merMod lme4
## cooks.distance.influence.merMod lme4
## dfbeta.influence.merMod lme4
## dfbetas.influence.merMod lme4
## ************
## Welcome to afex. For support visit: http://afex.singmann.science/
## - Functions for ANOVAs: aov_car(), aov_ez(), and aov_4()
## - Methods for calculating p-values with mixed(): 'KR', 'S', 'LRT', and 'PB'
## - 'afex_aov' and 'mixed' objects can be passed to emmeans() for follow-up tests
## - NEWS: library('emmeans') now needs to be called explicitly!
## - Get and set global package options with: afex_options()
## - Set orthogonal sum-to-zero contrasts globally: set_sum_contrasts()
## - For example analyses see: browseVignettes("afex")
## ************
##
## Attaching package: 'afex'
## The following object is masked from 'package:lme4':
##
## lmer
#Data Preparation
##Load Data
##
## ── Column specification ────────────────────────────────────────────────────────
## cols(
## .default = col_double(),
## t1_gender_4_TEXT = col_logical(),
## t1_ethnicity_8_TEXT = col_character(),
## t1_religion_11_TEXT = col_character(),
## t1_job_and_industry_1 = col_character(),
## t1_job_and_industry_2 = col_character(),
## t1_debrief_purpose = col_character(),
## t1_debrief_glitch = col_character(),
## t1_debrief_else = col_character(),
## t2_full_vid1_q1 = col_character(),
## t2_full_vid2_q1 = col_character(),
## t2_full_vid2_q2 = col_character(),
## t2_full_vid3_q1 = col_character(),
## t2_full_vid3_q2 = col_character(),
## t2_full_vid4_q1 = col_character(),
## t2_full_vid4_q2 = col_character(),
## t2_full_vid5_q2 = col_character(),
## t2_abr_introvid_q1 = col_character(),
## t2_abr_exvid_q1 = col_character(),
## t2_abr_exvid_q2 = col_character(),
## t2_abr_strvid_q1 = col_character()
## # ... with 15 more columns
## )
## ℹ Use `spec()` for the full column specifications.
How many people did we have?
d.study %>%
group_by(condition)%>%
summarise(n=n()) %>%
kable(digits = 2, caption = "Participants Per Task")
## `summarise()` ungrouping output (override with `.groups` argument)
| condition | n |
|---|---|
| abr_intervention | 112 |
| active_control | 107 |
| full_intervention | 105 |
#Confirmatory Analyses
##H1 - SFMM
Let’s tidy the data
d_sfmm <- d.study %>%
select(subid_final, condition, sfmm_all9_t1_score, sfmm_all9_t2_score)%>%
gather(item, score, contains("sfmm"))%>%
separate(item, sep = "_", into = c("construct_name", "type", "time", "score_name"))%>%
select(-construct_name, -score_name, -type)
Let’s change data to be numeric & factors (and appropriate contrasts)
#Make Rating Numeric
d_sfmm$score <- as.numeric(d_sfmm$score)
#Factor Condition
d_sfmm$condition <- as.factor(d_sfmm$condition)
contrasts(d_sfmm$condition)
## active_control full_intervention
## abr_intervention 0 0
## active_control 1 0
## full_intervention 0 1
contrasts(d_sfmm$condition) = cbind(dummy_full_vs_control = c(0,0,1), dummy_abridged_vs_control = c(1,0,0))
contrasts(d_sfmm$condition)
## dummy_full_vs_control dummy_abridged_vs_control
## abr_intervention 0 1
## active_control 0 0
## full_intervention 1 0
#Factor Time
d_sfmm$time <- as.factor(d_sfmm$time)
contrasts(d_sfmm$time)
## t2
## t1 0
## t2 1
contrasts(d_sfmm$time) = cbind(dummy_t2_vs_t1 = c(0,1))
contrasts(d_sfmm$time)
## dummy_t2_vs_t1
## t1 0
## t2 1
#Factor subject id
d_sfmm$subid_final <- as.factor(d_sfmm$subid_final)
Interaction
summary(lmer(score ~ time*condition + (1 | subid_final), data = d_sfmm))
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: score ~ time * condition + (1 | subid_final)
## Data: d_sfmm
##
## REML criterion at convergence: 1163.3
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.88861 -0.47875 0.06395 0.50270 2.50306
##
## Random effects:
## Groups Name Variance Std.Dev.
## subid_final (Intercept) 0.2523 0.5023
## Residual 0.1736 0.4167
## Number of obs: 648, groups: subid_final, 324
##
## Fixed effects:
## Estimate Std. Error
## (Intercept) 4.717e+00 6.309e-02
## timedummy_t2_vs_t1 -1.807e-14 5.697e-02
## conditiondummy_full_vs_control -1.684e-01 8.965e-02
## conditiondummy_abridged_vs_control -1.014e-01 8.822e-02
## timedummy_t2_vs_t1:conditiondummy_full_vs_control 1.979e-01 8.095e-02
## timedummy_t2_vs_t1:conditiondummy_abridged_vs_control 2.391e-01 7.966e-02
## df t value
## (Intercept) 4.753e+02 74.760
## timedummy_t2_vs_t1 3.210e+02 0.000
## conditiondummy_full_vs_control 4.753e+02 -1.878
## conditiondummy_abridged_vs_control 4.753e+02 -1.150
## timedummy_t2_vs_t1:conditiondummy_full_vs_control 3.210e+02 2.445
## timedummy_t2_vs_t1:conditiondummy_abridged_vs_control 3.210e+02 3.001
## Pr(>|t|)
## (Intercept) <2e-16 ***
## timedummy_t2_vs_t1 1.0000
## conditiondummy_full_vs_control 0.0610 .
## conditiondummy_abridged_vs_control 0.2508
## timedummy_t2_vs_t1:conditiondummy_full_vs_control 0.0150 *
## timedummy_t2_vs_t1:conditiondummy_abridged_vs_control 0.0029 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) tm_2__1 cndtndmmy_f__ cndtndmmy_b__
## tmdmmy_2__1 -0.451
## cndtndmmy_f__ -0.704 0.318
## cndtndmmy_b__ -0.715 0.323 0.503
## tmdmmy_t2_vs_t1:cndtndmmy_f__ 0.318 -0.704 -0.451 -0.227
## tmdmmy_t2_vs_t1:cndtndmmy_b__ 0.323 -0.715 -0.227 -0.451
## tmdmmy_t2_vs_t1:cndtndmmy_f__
## tmdmmy_2__1
## cndtndmmy_f__
## cndtndmmy_b__
## tmdmmy_t2_vs_t1:cndtndmmy_f__
## tmdmmy_t2_vs_t1:cndtndmmy_b__ 0.503
##Descriptives
d_sfmm %>%
ungroup()%>%
group_by(subid_final, condition, time) %>%
summarise(mean_score = mean(score))%>%
group_by(condition, time)%>%
summarise(mean = mean(mean_score),
sd = sd(mean_score)) %>%
kable(digits = 2)
## `summarise()` regrouping output by 'subid_final', 'condition' (override with `.groups` argument)
## `summarise()` regrouping output by 'condition' (override with `.groups` argument)
| condition | time | mean | sd |
|---|---|---|---|
| abr_intervention | t1 | 4.62 | 0.59 |
| abr_intervention | t2 | 4.85 | 0.62 |
| active_control | t1 | 4.72 | 0.61 |
| active_control | t2 | 4.72 | 0.67 |
| full_intervention | t1 | 4.55 | 0.69 |
| full_intervention | t2 | 4.75 | 0.73 |
–
##Intelligence Mindset
Let’s tidy the data
d_mindset_intelligence <- d.study %>%
select(subid_final, condition, mndst_intelligence_t1_score, mndst_intelligence_t2_score)%>%
gather(item, score, contains("intelligence"))%>%
separate(item, sep = "_", into = c("construct_name", "type", "time", "score_name"))%>%
select(-construct_name, -score_name, -type)
Let’s change data to be numeric & factors (and appropriate contrasts)
#Make Rating Numeric
d_mindset_intelligence$score <- as.numeric(d_mindset_intelligence$score)
#Factor Condition
d_mindset_intelligence$condition <- as.factor(d_mindset_intelligence$condition)
contrasts(d_mindset_intelligence$condition)
## active_control full_intervention
## abr_intervention 0 0
## active_control 1 0
## full_intervention 0 1
contrasts(d_mindset_intelligence$condition) = cbind(dummy_full_vs_control = c(0,0,1), dummy_abridged_vs_control = c(1,0,0))
contrasts(d_mindset_intelligence$condition)
## dummy_full_vs_control dummy_abridged_vs_control
## abr_intervention 0 1
## active_control 0 0
## full_intervention 1 0
#Factor Time
d_mindset_intelligence$time <- as.factor(d_mindset_intelligence$time)
contrasts(d_mindset_intelligence$time)
## t2
## t1 0
## t2 1
contrasts(d_mindset_intelligence$time) = cbind(dummy_t2_vs_t1 = c(0,1))
contrasts(d_mindset_intelligence$time)
## dummy_t2_vs_t1
## t1 0
## t2 1
#Factor subject id
d_mindset_intelligence$subid_final <- as.factor(d_mindset_intelligence$subid_final)
Analysis
#Analysis
summary(lmer(score ~ time*condition + (1 | subid_final), data = d_mindset_intelligence))
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: score ~ time * condition + (1 | subid_final)
## Data: d_mindset_intelligence
##
## REML criterion at convergence: 1436.9
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -4.3736 -0.3948 -0.0251 0.3622 4.2113
##
## Random effects:
## Groups Name Variance Std.Dev.
## subid_final (Intercept) 0.4666 0.6831
## Residual 0.2361 0.4859
## Number of obs: 648, groups: subid_final, 324
##
## Fixed effects:
## Estimate Std. Error
## (Intercept) 3.62617 0.08104
## timedummy_t2_vs_t1 0.06542 0.06643
## conditiondummy_full_vs_control -0.09522 0.11515
## conditiondummy_abridged_vs_control -0.02126 0.11332
## timedummy_t2_vs_t1:conditiondummy_full_vs_control 0.13815 0.09440
## timedummy_t2_vs_t1:conditiondummy_abridged_vs_control 0.00266 0.09289
## df t value
## (Intercept) 445.54554 44.745
## timedummy_t2_vs_t1 321.00001 0.985
## conditiondummy_full_vs_control 445.54554 -0.827
## conditiondummy_abridged_vs_control 445.54554 -0.188
## timedummy_t2_vs_t1:conditiondummy_full_vs_control 321.00001 1.464
## timedummy_t2_vs_t1:conditiondummy_abridged_vs_control 321.00001 0.029
## Pr(>|t|)
## (Intercept) <2e-16 ***
## timedummy_t2_vs_t1 0.325
## conditiondummy_full_vs_control 0.409
## conditiondummy_abridged_vs_control 0.851
## timedummy_t2_vs_t1:conditiondummy_full_vs_control 0.144
## timedummy_t2_vs_t1:conditiondummy_abridged_vs_control 0.977
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) tm_2__1 cndtndmmy_f__ cndtndmmy_b__
## tmdmmy_2__1 -0.410
## cndtndmmy_f__ -0.704 0.288
## cndtndmmy_b__ -0.715 0.293 0.503
## tmdmmy_t2_vs_t1:cndtndmmy_f__ 0.288 -0.704 -0.410 -0.206
## tmdmmy_t2_vs_t1:cndtndmmy_b__ 0.293 -0.715 -0.206 -0.410
## tmdmmy_t2_vs_t1:cndtndmmy_f__
## tmdmmy_2__1
## cndtndmmy_f__
## cndtndmmy_b__
## tmdmmy_t2_vs_t1:cndtndmmy_f__
## tmdmmy_t2_vs_t1:cndtndmmy_b__ 0.503
Let’s plot!
#Summarize
d_mindset_intelligence_summ <- d_mindset_intelligence %>%
group_by(condition, time) %>%
summarise(mean_rating = mean(score),
ci_rating = ci(score))
## `summarise()` regrouping output by 'condition' (override with `.groups` argument)
#Change levels
d_mindset_intelligence_summ$time <- factor(d_mindset_intelligence_summ$time, levels = c("t1", "t2"))
#Plot
ggplot(d_mindset_intelligence_summ,
aes(x=time,
y=mean_rating,
fill = condition))+
geom_bar(stat="identity", position = "dodge")+
geom_errorbar(aes(ymin = (mean_rating - ci_rating), ymax = (mean_rating + ci_rating)),width = 0.2, position = position_dodge(width = 0.9))+
labs(x = "",
y = "Agreement (adj) \n 1 = Strongly disagree to 7 = Strongly agree",
title = "Mindset -- Intelligence",
caption = "95% confidence intervals") +
ggthemes::theme_few()+
coord_cartesian(ylim=c(1,7))+
theme(plot.caption =element_text(size=10),
axis.text=element_text(size=14),
axis.title = element_text(size=14),
#axis.text.x=element_blank(),
title = element_text(size=15))
##Descriptives
d_mindset_intelligence %>%
ungroup()%>%
group_by(subid_final, condition, time) %>%
summarise(mean_score = mean(score))%>%
group_by(condition, time)%>%
summarise(mean = mean(mean_score),
sd = sd(mean_score)) %>%
kable(digits = 2)
## `summarise()` regrouping output by 'subid_final', 'condition' (override with `.groups` argument)
## `summarise()` regrouping output by 'condition' (override with `.groups` argument)
| condition | time | mean | sd |
|---|---|---|---|
| abr_intervention | t1 | 3.60 | 0.87 |
| abr_intervention | t2 | 3.67 | 0.88 |
| active_control | t1 | 3.63 | 0.77 |
| active_control | t2 | 3.69 | 0.85 |
| full_intervention | t1 | 3.53 | 0.82 |
| full_intervention | t2 | 3.73 | 0.84 |
d_mindset_personality <- d.study %>%
select(subid_final, condition, mndst_pers_t1_score, mndst_pers_t2_score)%>%
gather(item, score, contains("pers"))%>%
separate(item, sep = "_", into = c("construct_name", "type", "time", "score_name"))%>%
select(-construct_name, -score_name, -type)
Let’s change data to be numeric & factors (and appropriate contrasts)
#Make Rating Numeric
d_mindset_personality$score <- as.numeric(d_mindset_personality$score)
#Factor Condition
d_mindset_personality$condition <- as.factor(d_mindset_personality$condition)
contrasts(d_mindset_personality$condition)
## active_control full_intervention
## abr_intervention 0 0
## active_control 1 0
## full_intervention 0 1
contrasts(d_mindset_personality$condition) = cbind(dummy_full_vs_control = c(0,0,1), dummy_abridged_vs_control = c(1,0,0))
contrasts(d_mindset_personality$condition)
## dummy_full_vs_control dummy_abridged_vs_control
## abr_intervention 0 1
## active_control 0 0
## full_intervention 1 0
#Factor Time
d_mindset_personality$time <- as.factor(d_mindset_personality$time)
contrasts(d_mindset_personality$time)
## t2
## t1 0
## t2 1
contrasts(d_mindset_personality$time) = cbind(dummy_t2_vs_t1 = c(0,1))
contrasts(d_mindset_personality$time)
## dummy_t2_vs_t1
## t1 0
## t2 1
#Factor subject id
d_mindset_personality$subid_final <- as.factor(d_mindset_personality$subid_final)
Analysis
#Analysis
summary(lmer(score ~ time*condition + (1 | subid_final), data = d_mindset_personality))
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: score ~ time * condition + (1 | subid_final)
## Data: d_mindset_personality
##
## REML criterion at convergence: 1670.8
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -5.0158 -0.3224 -0.0108 0.3458 4.9215
##
## Random effects:
## Groups Name Variance Std.Dev.
## subid_final (Intercept) 0.6872 0.8290
## Residual 0.3348 0.5786
## Number of obs: 648, groups: subid_final, 324
##
## Fixed effects:
## Estimate Std. Error
## (Intercept) 4.10514 0.09773
## timedummy_t2_vs_t1 0.02921 0.07911
## conditiondummy_full_vs_control -0.09085 0.13887
## conditiondummy_abridged_vs_control 0.10133 0.13666
## timedummy_t2_vs_t1:conditiondummy_full_vs_control 0.22079 0.11241
## timedummy_t2_vs_t1:conditiondummy_abridged_vs_control 0.15048 0.11062
## df t value
## (Intercept) 442.10832 42.004
## timedummy_t2_vs_t1 321.00000 0.369
## conditiondummy_full_vs_control 442.10832 -0.654
## conditiondummy_abridged_vs_control 442.10832 0.741
## timedummy_t2_vs_t1:conditiondummy_full_vs_control 321.00000 1.964
## timedummy_t2_vs_t1:conditiondummy_abridged_vs_control 321.00000 1.360
## Pr(>|t|)
## (Intercept) <2e-16 ***
## timedummy_t2_vs_t1 0.7122
## conditiondummy_full_vs_control 0.5133
## conditiondummy_abridged_vs_control 0.4588
## timedummy_t2_vs_t1:conditiondummy_full_vs_control 0.0504 .
## timedummy_t2_vs_t1:conditiondummy_abridged_vs_control 0.1747
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) tm_2__1 cndtndmmy_f__ cndtndmmy_b__
## tmdmmy_2__1 -0.405
## cndtndmmy_f__ -0.704 0.285
## cndtndmmy_b__ -0.715 0.289 0.503
## tmdmmy_t2_vs_t1:cndtndmmy_f__ 0.285 -0.704 -0.405 -0.204
## tmdmmy_t2_vs_t1:cndtndmmy_b__ 0.289 -0.715 -0.204 -0.405
## tmdmmy_t2_vs_t1:cndtndmmy_f__
## tmdmmy_2__1
## cndtndmmy_f__
## cndtndmmy_b__
## tmdmmy_t2_vs_t1:cndtndmmy_f__
## tmdmmy_t2_vs_t1:cndtndmmy_b__ 0.503
d_mindset_personality %>%
ungroup()%>%
group_by(subid_final, condition, time) %>%
summarise(mean_score = mean(score))%>%
group_by(condition, time)%>%
summarise(mean = mean(mean_score),
sd = sd(mean_score)) %>%
kable(digits = 2)
## `summarise()` regrouping output by 'subid_final', 'condition' (override with `.groups` argument)
## `summarise()` regrouping output by 'condition' (override with `.groups` argument)
| condition | time | mean | sd |
|---|---|---|---|
| abr_intervention | t1 | 4.21 | 1.04 |
| abr_intervention | t2 | 4.39 | 1.06 |
| active_control | t1 | 4.11 | 1.02 |
| active_control | t2 | 4.13 | 1.03 |
| full_intervention | t1 | 4.01 | 0.98 |
| full_intervention | t2 | 4.26 | 0.92 |
d_mindset_failure <- d.study %>%
select(subid_final, condition, mndst_fail_t1_score, mndst_fail_t2_score)%>%
gather(item, score, contains("fail"))%>%
separate(item, sep = "_", into = c("construct_name", "type", "time", "score_name"))%>%
select(-construct_name, -score_name, -type)
Let’s change data to be numeric & factors (and appropriate contrasts)
#Make Rating Numeric
d_mindset_failure$score <- as.numeric(d_mindset_failure$score)
#Factor Condition
d_mindset_failure$condition <- as.factor(d_mindset_failure$condition)
contrasts(d_mindset_failure$condition)
## active_control full_intervention
## abr_intervention 0 0
## active_control 1 0
## full_intervention 0 1
contrasts(d_mindset_failure$condition) = cbind(dummy_full_vs_control = c(0,0,1), dummy_abridged_vs_control = c(1,0,0))
contrasts(d_mindset_failure$condition)
## dummy_full_vs_control dummy_abridged_vs_control
## abr_intervention 0 1
## active_control 0 0
## full_intervention 1 0
#Factor Time
d_mindset_failure$time <- as.factor(d_mindset_failure$time)
contrasts(d_mindset_failure$time)
## t2
## t1 0
## t2 1
contrasts(d_mindset_failure$time) = cbind(dummy_t2_vs_t1 = c(0,1))
contrasts(d_mindset_failure$time)
## dummy_t2_vs_t1
## t1 0
## t2 1
#Factor subject id
d_mindset_failure$subid_final <- as.factor(d_mindset_failure$subid_final)
Analysis
#Analysis
summary(lmer(score ~ time*condition + (1 | subid_final), data = d_mindset_failure))
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: score ~ time * condition + (1 | subid_final)
## Data: d_mindset_failure
##
## REML criterion at convergence: 1370.1
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -4.3046 -0.3711 -0.0822 0.2697 4.0540
##
## Random effects:
## Groups Name Variance Std.Dev.
## subid_final (Intercept) 0.3525 0.5937
## Residual 0.2378 0.4877
## Number of obs: 648, groups: subid_final, 324
##
## Fixed effects:
## Estimate Std. Error
## (Intercept) 3.780374 0.074275
## timedummy_t2_vs_t1 0.090343 0.066674
## conditiondummy_full_vs_control -0.027993 0.105540
## conditiondummy_abridged_vs_control 0.041055 0.103862
## timedummy_t2_vs_t1:conditiondummy_full_vs_control 0.049340 0.094740
## timedummy_t2_vs_t1:conditiondummy_abridged_vs_control -0.007009 0.093234
## df t value
## (Intercept) 473.269933 50.897
## timedummy_t2_vs_t1 321.000005 1.355
## conditiondummy_full_vs_control 473.269933 -0.265
## conditiondummy_abridged_vs_control 473.269933 0.395
## timedummy_t2_vs_t1:conditiondummy_full_vs_control 321.000005 0.521
## timedummy_t2_vs_t1:conditiondummy_abridged_vs_control 321.000005 -0.075
## Pr(>|t|)
## (Intercept) <2e-16 ***
## timedummy_t2_vs_t1 0.176
## conditiondummy_full_vs_control 0.791
## conditiondummy_abridged_vs_control 0.693
## timedummy_t2_vs_t1:conditiondummy_full_vs_control 0.603
## timedummy_t2_vs_t1:conditiondummy_abridged_vs_control 0.940
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) tm_2__1 cndtndmmy_f__ cndtndmmy_b__
## tmdmmy_2__1 -0.449
## cndtndmmy_f__ -0.704 0.316
## cndtndmmy_b__ -0.715 0.321 0.503
## tmdmmy_t2_vs_t1:cndtndmmy_f__ 0.316 -0.704 -0.449 -0.226
## tmdmmy_t2_vs_t1:cndtndmmy_b__ 0.321 -0.715 -0.226 -0.449
## tmdmmy_t2_vs_t1:cndtndmmy_f__
## tmdmmy_2__1
## cndtndmmy_f__
## cndtndmmy_b__
## tmdmmy_t2_vs_t1:cndtndmmy_f__
## tmdmmy_t2_vs_t1:cndtndmmy_b__ 0.503
d_mindset_failure %>%
ungroup()%>%
group_by(subid_final, condition, time) %>%
summarise(mean_score = mean(score))%>%
group_by(condition, time)%>%
summarise(mean = mean(mean_score),
sd = sd(mean_score)) %>%
kable(digits = 2)
## `summarise()` regrouping output by 'subid_final', 'condition' (override with `.groups` argument)
## `summarise()` regrouping output by 'condition' (override with `.groups` argument)
| condition | time | mean | sd |
|---|---|---|---|
| abr_intervention | t1 | 3.82 | 0.76 |
| abr_intervention | t2 | 3.90 | 0.85 |
| active_control | t1 | 3.78 | 0.72 |
| active_control | t2 | 3.87 | 0.75 |
| full_intervention | t1 | 3.75 | 0.72 |
| full_intervention | t2 | 3.89 | 0.79 |
d_mindset_process <- d.study %>%
select(subid_final, condition, mndst_process_t1_score, mndst_process_t2_score)%>%
gather(item, score, contains("process"))%>%
separate(item, sep = "_", into = c("construct_name", "type", "time", "score_name"))%>%
select(-construct_name, -score_name, -type)
Let’s change data to be numeric & factors (and appropriate contrasts)
#Make Rating Numeric
d_mindset_process$score <- as.numeric(d_mindset_process$score)
#Factor Condition
d_mindset_process$condition <- as.factor(d_mindset_process$condition)
contrasts(d_mindset_process$condition)
## active_control full_intervention
## abr_intervention 0 0
## active_control 1 0
## full_intervention 0 1
contrasts(d_mindset_process$condition) = cbind(dummy_full_vs_control = c(0,0,1), dummy_abridged_vs_control = c(1,0,0))
contrasts(d_mindset_process$condition)
## dummy_full_vs_control dummy_abridged_vs_control
## abr_intervention 0 1
## active_control 0 0
## full_intervention 1 0
#Factor Time
d_mindset_process$time <- as.factor(d_mindset_process$time)
contrasts(d_mindset_process$time)
## t2
## t1 0
## t2 1
contrasts(d_mindset_process$time) = cbind(dummy_t2_vs_t1 = c(0,1))
contrasts(d_mindset_process$time)
## dummy_t2_vs_t1
## t1 0
## t2 1
#Factor subject id
d_mindset_failure$subid_final <- as.factor(d_mindset_failure$subid_final)
Analysis
#Analysis
summary(lmer(score ~ time*condition + (1 | subid_final), data = d_mindset_process))
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: score ~ time * condition + (1 | subid_final)
## Data: d_mindset_process
##
## REML criterion at convergence: 935.4
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.50450 -0.47464 -0.01444 0.51168 2.50823
##
## Random effects:
## Groups Name Variance Std.Dev.
## subid_final (Intercept) 0.2096 0.4578
## Residual 0.1095 0.3309
## Number of obs: 648, groups: subid_final, 324
##
## Fixed effects:
## Estimate Std. Error
## (Intercept) 2.86248 0.05461
## timedummy_t2_vs_t1 0.06275 0.04524
## conditiondummy_full_vs_control -0.02439 0.07760
## conditiondummy_abridged_vs_control 0.07502 0.07636
## timedummy_t2_vs_t1:conditiondummy_full_vs_control 0.08691 0.06428
## timedummy_t2_vs_t1:conditiondummy_abridged_vs_control -0.04362 0.06326
## df t value
## (Intercept) 448.47592 52.417
## timedummy_t2_vs_t1 321.00001 1.387
## conditiondummy_full_vs_control 448.47592 -0.314
## conditiondummy_abridged_vs_control 448.47592 0.982
## timedummy_t2_vs_t1:conditiondummy_full_vs_control 321.00001 1.352
## timedummy_t2_vs_t1:conditiondummy_abridged_vs_control 321.00001 -0.690
## Pr(>|t|)
## (Intercept) <2e-16 ***
## timedummy_t2_vs_t1 0.166
## conditiondummy_full_vs_control 0.753
## conditiondummy_abridged_vs_control 0.326
## timedummy_t2_vs_t1:conditiondummy_full_vs_control 0.177
## timedummy_t2_vs_t1:conditiondummy_abridged_vs_control 0.491
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) tm_2__1 cndtndmmy_f__ cndtndmmy_b__
## tmdmmy_2__1 -0.414
## cndtndmmy_f__ -0.704 0.291
## cndtndmmy_b__ -0.715 0.296 0.503
## tmdmmy_t2_vs_t1:cndtndmmy_f__ 0.291 -0.704 -0.414 -0.208
## tmdmmy_t2_vs_t1:cndtndmmy_b__ 0.296 -0.715 -0.208 -0.414
## tmdmmy_t2_vs_t1:cndtndmmy_f__
## tmdmmy_2__1
## cndtndmmy_f__
## cndtndmmy_b__
## tmdmmy_t2_vs_t1:cndtndmmy_f__
## tmdmmy_t2_vs_t1:cndtndmmy_b__ 0.503
d_mindset_process %>%
ungroup()%>%
group_by(subid_final, condition, time) %>%
summarise(mean_score = mean(score))%>%
group_by(condition, time)%>%
summarise(mean = mean(mean_score),
sd = sd(mean_score)) %>%
kable(digits = 2)
## `summarise()` regrouping output by 'subid_final', 'condition' (override with `.groups` argument)
## `summarise()` regrouping output by 'condition' (override with `.groups` argument)
| condition | time | mean | sd |
|---|---|---|---|
| abr_intervention | t1 | 2.94 | 0.53 |
| abr_intervention | t2 | 2.96 | 0.56 |
| active_control | t1 | 2.86 | 0.56 |
| active_control | t2 | 2.93 | 0.60 |
| full_intervention | t1 | 2.84 | 0.57 |
| full_intervention | t2 | 2.99 | 0.58 |
####Exercise Mindset
Let’s tidy the data
d_mindset_exercise <- d.study %>%
select(subid_final, condition, mndst_exercise_t1_score, mndst_exercise_t2_score)%>%
gather(item, score, contains("exercise"))%>%
separate(item, sep = "_", into = c("construct_name", "type", "time", "score_name"))%>%
select(-construct_name, -score_name, -type)
Let’s change data to be numeric & factors (and appropriate contrasts)
#Make Rating Numeric
d_mindset_exercise$score <- as.numeric(d_mindset_exercise$score)
#Factor Condition
d_mindset_exercise$condition <- as.factor(d_mindset_exercise$condition)
contrasts(d_mindset_exercise$condition)
## active_control full_intervention
## abr_intervention 0 0
## active_control 1 0
## full_intervention 0 1
contrasts(d_mindset_exercise$condition)= cbind(dummy_full_vs_control = c(0,0,1), dummy_abridged_vs_control = c(1,0,0))
contrasts(d_mindset_exercise$condition)
## dummy_full_vs_control dummy_abridged_vs_control
## abr_intervention 0 1
## active_control 0 0
## full_intervention 1 0
#Factor Time
d_mindset_exercise$time <- as.factor(d_mindset_exercise$time)
contrasts(d_mindset_exercise$time)
## t2
## t1 0
## t2 1
contrasts(d_mindset_exercise$time) = cbind(dummy_t2_vs_t1 = c(0,1))
contrasts(d_mindset_exercise$time)
## dummy_t2_vs_t1
## t1 0
## t2 1
#Factor subject id
d_mindset_exercise$subid_final <- as.factor(d_mindset_exercise$subid_final)
Analysis
#Analysis
summary(lmer(score ~ time*condition + (1 | subid_final), data = d_mindset_exercise))
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: score ~ time * condition + (1 | subid_final)
## Data: d_mindset_exercise
##
## REML criterion at convergence: 1795.6
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.7155 -0.4781 -0.0023 0.4637 2.8513
##
## Random effects:
## Groups Name Variance Std.Dev.
## subid_final (Intercept) 0.9279 0.9633
## Residual 0.3779 0.6147
## Number of obs: 648, groups: subid_final, 324
##
## Fixed effects:
## Estimate Std. Error
## (Intercept) 4.666542 0.110470
## timedummy_t2_vs_t1 -0.097196 0.084047
## conditiondummy_full_vs_control 0.002029 0.156970
## conditiondummy_abridged_vs_control -0.055828 0.154475
## timedummy_t2_vs_t1:conditiondummy_full_vs_control 0.220244 0.119425
## timedummy_t2_vs_t1:conditiondummy_abridged_vs_control 0.245768 0.117526
## df t value
## (Intercept) 426.597671 42.243
## timedummy_t2_vs_t1 321.000011 -1.156
## conditiondummy_full_vs_control 426.597672 0.013
## conditiondummy_abridged_vs_control 426.597672 -0.361
## timedummy_t2_vs_t1:conditiondummy_full_vs_control 321.000011 1.844
## timedummy_t2_vs_t1:conditiondummy_abridged_vs_control 321.000011 2.091
## Pr(>|t|)
## (Intercept) <2e-16 ***
## timedummy_t2_vs_t1 0.2484
## conditiondummy_full_vs_control 0.9897
## conditiondummy_abridged_vs_control 0.7180
## timedummy_t2_vs_t1:conditiondummy_full_vs_control 0.0661 .
## timedummy_t2_vs_t1:conditiondummy_abridged_vs_control 0.0373 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) tm_2__1 cndtndmmy_f__ cndtndmmy_b__
## tmdmmy_2__1 -0.380
## cndtndmmy_f__ -0.704 0.268
## cndtndmmy_b__ -0.715 0.272 0.503
## tmdmmy_t2_vs_t1:cndtndmmy_f__ 0.268 -0.704 -0.380 -0.191
## tmdmmy_t2_vs_t1:cndtndmmy_b__ 0.272 -0.715 -0.191 -0.380
## tmdmmy_t2_vs_t1:cndtndmmy_f__
## tmdmmy_2__1
## cndtndmmy_f__
## cndtndmmy_b__
## tmdmmy_t2_vs_t1:cndtndmmy_f__
## tmdmmy_t2_vs_t1:cndtndmmy_b__ 0.503
Let’s plot!
#Summarize
d_mindset_exercise_summ <- d_mindset_exercise %>%
group_by(condition, time) %>%
summarise(mean_rating = mean(score),
ci_rating = ci(score))
## `summarise()` regrouping output by 'condition' (override with `.groups` argument)
#Change levels
d_mindset_exercise_summ$time <- factor(d_mindset_exercise_summ$time, levels = c("t1", "t2"))
#Plot
ggplot(d_mindset_exercise_summ,
aes(x=time,
y=mean_rating,
fill = condition))+
geom_bar(stat="identity", position = "dodge")+
geom_errorbar(aes(ymin = (mean_rating - ci_rating), ymax = (mean_rating + ci_rating)),width = 0.2, position = position_dodge(width = 0.9))+
labs(x = "",
y = "Agreement (adj) \n 1 = Strongly disagree to 7 = Strongly agree",
title = "Mindset -- Exercise",
caption = "95% confidence intervals") +
ggthemes::theme_few()+
coord_cartesian(ylim=c(1,7))+
theme(plot.caption =element_text(size=10),
axis.text=element_text(size=14),
axis.title = element_text(size=14),
#axis.text.x=element_blank(),
title = element_text(size=15))
##Descriptives
d_mindset_exercise %>%
ungroup()%>%
group_by(subid_final, condition, time) %>%
summarise(mean_score = mean(score))%>%
group_by(condition, time)%>%
summarise(mean = mean(mean_score),
sd = sd(mean_score)) %>%
kable(digits = 2)
## `summarise()` regrouping output by 'subid_final', 'condition' (override with `.groups` argument)
## `summarise()` regrouping output by 'condition' (override with `.groups` argument)
| condition | time | mean | sd |
|---|---|---|---|
| abr_intervention | t1 | 4.61 | 1.15 |
| abr_intervention | t2 | 4.76 | 1.28 |
| active_control | t1 | 4.67 | 1.15 |
| active_control | t2 | 4.57 | 1.19 |
| full_intervention | t1 | 4.67 | 1.06 |
| full_intervention | t2 | 4.79 | 1.00 |
####Stress Mindset
Let’s tidy the data
d_mindset_stress <- d.study %>%
select(subid_final, condition, mndst_stress_t1_score, mndst_stress_t2_score)%>%
gather(item, score, contains("stress"))%>%
separate(item, sep = "_", into = c("construct_name", "type", "time", "score_name"))%>%
select(-construct_name, -score_name, -type)
Let’s change data to be numeric & factors (and appropriate contrasts)
#Make Rating Numeric
d_mindset_stress$score <- as.numeric(d_mindset_stress$score)
#Factor Condition
d_mindset_stress$condition <- as.factor(d_mindset_stress$condition)
contrasts(d_mindset_stress$condition)
## active_control full_intervention
## abr_intervention 0 0
## active_control 1 0
## full_intervention 0 1
contrasts(d_mindset_stress$condition) =cbind(dummy_full_vs_control = c(0,0,1), dummy_abridged_vs_control = c(1,0,0))
contrasts(d_mindset_stress$condition)
## dummy_full_vs_control dummy_abridged_vs_control
## abr_intervention 0 1
## active_control 0 0
## full_intervention 1 0
#Factor Time
d_mindset_stress$time <- as.factor(d_mindset_stress$time)
contrasts(d_mindset_stress$time)
## t2
## t1 0
## t2 1
contrasts(d_mindset_stress$time) = cbind(dummy_t2_vs_t1 = c(0,1))
contrasts(d_mindset_stress$time)
## dummy_t2_vs_t1
## t1 0
## t2 1
#Factor subject id
d_mindset_stress$subid_final <- as.factor(d_mindset_stress$subid_final)
Analysis
#Analysis
summary(lmer(score ~ time*condition + (1 | subid_final), data = d_mindset_stress))
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: score ~ time * condition + (1 | subid_final)
## Data: d_mindset_stress
##
## REML criterion at convergence: 1216.8
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.3928 -0.4316 0.0589 0.5032 3.2245
##
## Random effects:
## Groups Name Variance Std.Dev.
## subid_final (Intercept) 0.08469 0.2910
## Residual 0.29774 0.5457
## Number of obs: 648, groups: subid_final, 324
##
## Fixed effects:
## Estimate Std. Error
## (Intercept) 1.831e+00 5.978e-02
## timedummy_t2_vs_t1 -4.673e-03 7.460e-02
## conditiondummy_full_vs_control 4.677e-02 8.495e-02
## conditiondummy_abridged_vs_control 8.657e-04 8.360e-02
## timedummy_t2_vs_t1:conditiondummy_full_vs_control 3.940e-01 1.060e-01
## timedummy_t2_vs_t1:conditiondummy_abridged_vs_control 3.529e-01 1.043e-01
## df t value
## (Intercept) 6.120e+02 30.621
## timedummy_t2_vs_t1 3.210e+02 -0.063
## conditiondummy_full_vs_control 6.120e+02 0.551
## conditiondummy_abridged_vs_control 6.120e+02 0.010
## timedummy_t2_vs_t1:conditiondummy_full_vs_control 3.210e+02 3.717
## timedummy_t2_vs_t1:conditiondummy_abridged_vs_control 3.210e+02 3.383
## Pr(>|t|)
## (Intercept) < 2e-16 ***
## timedummy_t2_vs_t1 0.950093
## conditiondummy_full_vs_control 0.582101
## conditiondummy_abridged_vs_control 0.991741
## timedummy_t2_vs_t1:conditiondummy_full_vs_control 0.000238 ***
## timedummy_t2_vs_t1:conditiondummy_abridged_vs_control 0.000806 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) tm_2__1 cndtndmmy_f__ cndtndmmy_b__
## tmdmmy_2__1 -0.624
## cndtndmmy_f__ -0.704 0.439
## cndtndmmy_b__ -0.715 0.446 0.503
## tmdmmy_t2_vs_t1:cndtndmmy_f__ 0.439 -0.704 -0.624 -0.314
## tmdmmy_t2_vs_t1:cndtndmmy_b__ 0.446 -0.715 -0.314 -0.624
## tmdmmy_t2_vs_t1:cndtndmmy_f__
## tmdmmy_2__1
## cndtndmmy_f__
## cndtndmmy_b__
## tmdmmy_t2_vs_t1:cndtndmmy_f__
## tmdmmy_t2_vs_t1:cndtndmmy_b__ 0.503
Let’s plot!
#Summarize
d_mindset_stress_summ <- d_mindset_stress %>%
group_by(condition, time) %>%
summarise(mean_rating = mean(score),
ci_rating = ci(score))
## `summarise()` regrouping output by 'condition' (override with `.groups` argument)
#Change levels
d_mindset_stress_summ$time <- factor(d_mindset_stress_summ$time, levels = c("t1", "t2"))
#Plot
ggplot(d_mindset_stress_summ,
aes(x=time,
y=mean_rating,
fill = condition))+
geom_bar(stat="identity", position = "dodge")+
geom_errorbar(aes(ymin = (mean_rating - ci_rating), ymax = (mean_rating + ci_rating)),width = 0.2, position = position_dodge(width = 0.9))+
labs(x = "",
y = "Agreement (adj) \n 0 = Strongly disagree to 4 = Strongly agree",
title = "Mindset -- Stress",
caption = "95% confidence intervals") +
ggthemes::theme_few()+
coord_cartesian(ylim=c(0,4))+
theme(plot.caption =element_text(size=10),
axis.text=element_text(size=14),
axis.title = element_text(size=14),
#axis.text.x=element_blank(),
title = element_text(size=15))
##Descriptives
d_mindset_intelligence %>%
ungroup()%>%
group_by(subid_final, condition, time) %>%
summarise(mean_score = mean(score))%>%
group_by(condition, time)%>%
summarise(mean = mean(mean_score),
sd = sd(mean_score)) %>%
kable(digits = 2)
## `summarise()` regrouping output by 'subid_final', 'condition' (override with `.groups` argument)
## `summarise()` regrouping output by 'condition' (override with `.groups` argument)
| condition | time | mean | sd |
|---|---|---|---|
| abr_intervention | t1 | 3.60 | 0.87 |
| abr_intervention | t2 | 3.67 | 0.88 |
| active_control | t1 | 3.63 | 0.77 |
| active_control | t2 | 3.69 | 0.85 |
| full_intervention | t1 | 3.53 | 0.82 |
| full_intervention | t2 | 3.73 | 0.84 |
###All mindsets
##Plot
#Create tidy
d_mindset_all <- d.study %>%
select(subid_final, condition,
mndst_pers_t1_score, mndst_pers_t2_score,
mndst_process_t1_score, mndst_process_t2_score,
mndst_fail_t1_score, mndst_fail_t2_score,
mndst_exercise_t1_score, mndst_exercise_t2_score,
mndst_intelligence_t1_score, mndst_intelligence_t2_score,
mndst_stress_t1_score, mndst_stress_t2_score)%>%
gather(item, score, contains("score"))%>%
separate(item, sep = "_", into = c("mndst_name", "mndst_domain", "time", "score_name"))%>%
select(-mndst_name, -score_name) %>%
mutate(condition = ifelse(condition == "active_control", "Active Control",
ifelse(condition == "full_intervention", "Full Intervention",
ifelse(condition == "abr_intervention", "Abridged Intervention", "Error"))))
#mutate(time = ifelse(time == "t1", "Baseline",
# ifelse(time == "t2", "Post-Intervention", "error")))
#Summarize
d_meta_summ <- d_mindset_all %>%
group_by(condition, mndst_domain, time) %>%
summarise(mean_rating = mean(score),
ci_rating = ci(score))
## `summarise()` regrouping output by 'condition', 'mndst_domain' (override with `.groups` argument)
#Create list of lines
d_hline <- d_meta_summ %>%
filter((time == "Baseline") & (condition == "Active Control")) %>%
ungroup() %>%
select(mndst_domain) %>%
mutate(hline = ifelse(mndst_domain == "Exercise Mindset", 4,
ifelse(mndst_domain == "Intelligence Mindset", 3.5,
ifelse(mndst_domain == "Stress Mindset", 2, "error"))))
d_hline$hline <- as.numeric(d_hline$hline)
#Change levels
#d_meta_summ$time <- factor(d_meta_summ$time, levels = c("Baseline", "Post-Intervention"))
d_meta_summ$condition <- factor(d_meta_summ$condition, levels = c( "Full Intervention", "Abridged Intervention", "Active Control"))
#Colors
group.colors <- c("Active Control" = "#D3D3D3", "Abridged Intervention" = "#999999", "Full Intervention" = "#E69F00")
#Caption
caption <- "Note. Meta-mindset intervention, compared to the active control and the non-active control, lead to an increase in intelligence and stress mindset scores post-intervention compared to baseline. Horizontal grey line is midpoint of each scale (exercise mindset: 1 to 7; intelligence mindset: 1 to 6; stress mindset: 0 to 4). Participants received intervention or controls one week after baseline. Error bars represent 95% confidence intervals."
#Prep
wrap_strings <- function(vector_of_strings,width){as.character(sapply(vector_of_strings,FUN=function(x){paste(strwrap(x,width=width), collapse="\n")}))}
#function from here: https://stackoverflow.com/questions/7367138/text-wrap-for-plot-titles
#Plot
ggplot(d_meta_summ,
aes(x=time,
y=mean_rating,
col = condition))+
geom_point(size=3) +
geom_errorbar(data=d_meta_summ, aes(ymin = (mean_rating - ci_rating), ymax = (mean_rating + ci_rating)),width = 0.2, size = 1)+
geom_line(aes(group = condition, color=condition), size = 1) +
#geom_jitter(data=d_mindset_all, aes(x = time, y = score, col=condition),width=.1, height=.1,size=.6, alpha = 0.25) +
#geom_hline(data= d_hline, aes(yintercept=hline), linetype = "dotted") +
facet_grid(~mndst_domain, scales = "free_y") +
scale_color_manual(values=group.colors)+
scale_y_discrete(limits=c(1,2,3,4,5,6)) +
coord_cartesian(ylim=c(1,6.2)) +
scale_y_continuous(expand = c(0,0)) +
theme_few() +
labs(x = "Time",
y = "Mindset Score",
title = "Figure 2\nStudy 4: Effect of Condition on Mindset Scores"
#colour = "Condition",
#linetype = "Significance"
) +
theme(text = element_text(family = "Times New Roman"),
plot.caption =element_text(size=10, hjust = 0),
axis.text=element_text(size=12),
axis.title = element_text(size=12),
#axis.text.x=element_blank(),
title = element_text(size=12))
## Warning: Continuous limits supplied to discrete scale.
## Did you mean `limits = factor(...)` or `scale_*_continuous()`?
## Scale for 'y' is already present. Adding another scale for 'y', which will
## replace the existing scale.
=======
#Summarize new variables (CMM and mindfulness) #In this questionnaire you will be shown a number of statements regarding mindsets. Please indicate your agreement with each statement by selecting the number that best represents your answer on the scale presented below the statement.
d.study <- d.study %>%
mutate(t2_cmm_2_reversed = 7 - t2_cmm_2_toreverse,
t2_cmm_6_reversed = 7 - t2_cmm_6_toreverse,
t2_cmm_7_reversed = 7 - t2_cmm_7_toreverse,
t2_cmm_8_reversed = 7 - t2_cmm_8_toreverse,
t2_cmm_9_reversed = 7 - t2_cmm_9_toreverse,
t2_cmm_10_reversed = 7 - t2_cmm_10_toreverse) %>%
mutate(cmm_t2_score = (t2_cmm_1 +
t2_cmm_2_reversed +
t2_cmm_3 +
t2_cmm_4 +
t2_cmm_5 +
t2_cmm_6_reversed +
t2_cmm_7_reversed +
t2_cmm_8_reversed +
t2_cmm_9_reversed +
t2_cmm_10_reversed)/10)
d.study <- d.study %>%
mutate(cmm_t2_score_6 = (t2_cmm_2_reversed + t2_cmm_6_reversed +
t2_cmm_7_reversed +
t2_cmm_8_reversed +
t2_cmm_9_reversed +
t2_cmm_10_reversed)/6)
d.study <- d.study %>% mutate(cmm_t2_score_4 = (t2_cmm_2_reversed + t2_cmm_7_reversed +
t2_cmm_9_reversed +
t2_cmm_10_reversed)/4)
#PANAS
d.study <- d.study %>%
mutate(posaff_sum = (t2_fil_panas_1 +
t2_fil_panas_3 +
t2_fil_panas_5 +
t2_fil_panas_9 +
t2_fil_panas_10 +
t2_fil_panas_12 +
t2_fil_panas_14 +
t2_fil_panas_17 +
t2_fil_panas_19),
negaff_sum = (t2_fil_panas_2 +
t2_fil_panas_4 +
t2_fil_panas_6 +
t2_fil_panas_7 +
t2_fil_panas_8 +
t2_fil_panas_11 +
t2_fil_panas_13 +
t2_fil_panas_15 +
t2_fil_panas_18 +
t2_fil_panas_20))
#missing item16 from the pos aff so max is 45 while max for neg is 50
####Self-efficacy (post)
Scoring: Compute the sum of the items. Higher scores indicate more self-efficacy.
d.study <- d.study %>%
mutate(selfefficacy_score = (t2_fil_selfeff_1 +
t2_fil_selfeff_2 +
t2_fil_selfeff_3 +
t2_fil_selfeff_4 +
t2_fil_selfeff_5 +
t2_fil_selfeff_6 +
t2_fil_selfeff_7 +
t2_fil_selfeff_8 +
t2_fil_selfeff_9 +
t2_fil_selfeff_10))
#mindfulness by factor than whole ffmq-15
#Observe 1, 6, 11
d.study <- d.study %>%
mutate(ffmq_obs = t2_ffmq15_1 + t2_ffmq15_6 + t2_ffmq15_11/3)
#describe 2, 7R, 12
d.study <- d.study %>%
mutate(t2_ffmq15_7_reversed = 6 - t2_ffmq15_7) %>%
mutate(ffmq_des = t2_ffmq15_2 + t2_ffmq15_7_reversed + t2_ffmq15_12/3)
#acting with awareness 3R, 8R, 13R
d.study <- d.study %>%
mutate(t2_ffmq15_3_reversed = 6 - t2_ffmq15_3,
t2_ffmq15_8_reversed = 6 - t2_ffmq15_8,
t2_ffmq15_13_reversed = 6 - t2_ffmq15_13) %>%
mutate(ffmq_awa = t2_ffmq15_3_reversed + t2_ffmq15_8_reversed + t2_ffmq15_13_reversed/3)
#nonjudging 4R, 9R, 14R
d.study <- d.study %>%
mutate(t2_ffmq15_4_reversed = 6 - t2_ffmq15_4,
t2_ffmq15_9_reversed = 6 - t2_ffmq15_9,
t2_ffmq15_14_reversed = 6 - t2_ffmq15_14) %>%
mutate(ffmq_nj = t2_ffmq15_4_reversed + t2_ffmq15_9_reversed + t2_ffmq15_14_reversed/3)
#nonreactivity 5,10, 15
d.study <- d.study %>%
mutate(ffmq_nr = t2_ffmq15_5 + t2_ffmq15_10 + t2_ffmq15_15/3)
#ffmq15-entire scale
d.study <- d.study %>%
mutate(ffmq15_5f = ffmq_obs + ffmq_des + ffmq_awa + ffmq_nj + ffmq_nr)
#meta-awareness-observe factor only ffmq-39
d.study <- d.study %>%
mutate(MetAwa = t2_ffmq_1 + t2_ffmq_2 + t2_ffmq_3 + t2_ffmq_4 + t2_ffmq_5/5)
#create table with the expl variables (CMM and other mindsets)
library(tidyverse)
df <- d.study %>%
select(ffmq15_5f, ffmq_obs, ffmq_des, ffmq_awa, ffmq_nj, ffmq_nr, MetAwa, cmm_t2_score, mndst_intelligence_t2_score, mndst_process_t2_score, mndst_exercise_t2_score, mndst_fail_t2_score, mndst_pers_t2_score, mndst_stress_t2_score, subid_final, condition, sfmm_all9_t2_score, cmm_t2_score_6, selfefficacy_score, posaff_sum, negaff_sum, cmm_t2_score_4)
names(df)
## [1] "ffmq15_5f" "ffmq_obs"
## [3] "ffmq_des" "ffmq_awa"
## [5] "ffmq_nj" "ffmq_nr"
## [7] "MetAwa" "cmm_t2_score"
## [9] "mndst_intelligence_t2_score" "mndst_process_t2_score"
## [11] "mndst_exercise_t2_score" "mndst_fail_t2_score"
## [13] "mndst_pers_t2_score" "mndst_stress_t2_score"
## [15] "subid_final" "condition"
## [17] "sfmm_all9_t2_score" "cmm_t2_score_6"
## [19] "selfefficacy_score" "posaff_sum"
## [21] "negaff_sum" "cmm_t2_score_4"
names(df)
## [1] "ffmq15_5f" "ffmq_obs"
## [3] "ffmq_des" "ffmq_awa"
## [5] "ffmq_nj" "ffmq_nr"
## [7] "MetAwa" "cmm_t2_score"
## [9] "mndst_intelligence_t2_score" "mndst_process_t2_score"
## [11] "mndst_exercise_t2_score" "mndst_fail_t2_score"
## [13] "mndst_pers_t2_score" "mndst_stress_t2_score"
## [15] "subid_final" "condition"
## [17] "sfmm_all9_t2_score" "cmm_t2_score_6"
## [19] "selfefficacy_score" "posaff_sum"
## [21] "negaff_sum" "cmm_t2_score_4"
str(df)
## tibble [324 × 22] (S3: tbl_df/tbl/data.frame)
## $ ffmq15_5f : num [1:324] 37.7 35 37 32.7 38.3 ...
## $ ffmq_obs : num [1:324] 10.67 8.33 8.33 9.67 9.33 ...
## $ ffmq_des : num [1:324] 6.33 8 8 7.33 6.33 ...
## $ ffmq_awa : num [1:324] 4.33 6.67 4.67 3.33 8.67 ...
## $ ffmq_nj : num [1:324] 5.67 5 7 3.67 7.67 ...
## $ ffmq_nr : num [1:324] 10.67 7 9 8.67 6.33 ...
## $ MetAwa : num [1:324] 16.8 14.8 15.6 16.8 18 12.6 16.8 19 18 7.2 ...
## $ cmm_t2_score : num [1:324] 3.4 3.2 3.2 3.2 3.3 3.4 3.1 3.3 3 3.2 ...
## $ mndst_intelligence_t2_score: num [1:324] 3.25 3.5 3.25 3.75 3.62 ...
## $ mndst_process_t2_score : num [1:324] 2.86 2.43 2.29 3.43 3.86 ...
## $ mndst_exercise_t2_score : num [1:324] 3.6 4.24 4.24 4.32 7 3.64 4.92 5.2 5 4.8 ...
## $ mndst_fail_t2_score : num [1:324] 3.67 3.5 3.5 3.83 3.5 ...
## $ mndst_pers_t2_score : num [1:324] 4 3.75 3.75 4 4 ...
## $ mndst_stress_t2_score : num [1:324] 2.25 2.5 2.12 2.5 3.12 ...
## $ subid_final : num [1:324] 12 14 286 96 118 4 36 227 7 1 ...
## $ condition : chr [1:324] "full_intervention" "abr_intervention" "active_control" "active_control" ...
## $ sfmm_all9_t2_score : num [1:324] 5.11 4.22 5 5.22 6 ...
## $ cmm_t2_score_6 : num [1:324] 2.17 2.5 2.17 1.83 1.5 ...
## $ selfefficacy_score : num [1:324] 35 25 29 35 40 26 30 37 34 31 ...
## $ posaff_sum : num [1:324] 37 26 33 39 42 16 37 39 40 43 ...
## $ negaff_sum : num [1:324] 40 28 38 46 10 18 33 44 42 14 ...
## $ cmm_t2_score_4 : num [1:324] 2.25 2.25 2 1.75 1.25 2.75 2 1.75 1.5 1.75 ...
head(df)
## # A tibble: 6 x 22
## ffmq15_5f ffmq_obs ffmq_des ffmq_awa ffmq_nj ffmq_nr MetAwa cmm_t2_score
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 37.7 10.7 6.33 4.33 5.67 10.7 16.8 3.4
## 2 35 8.33 8 6.67 5 7 14.8 3.2
## 3 37 8.33 8 4.67 7 9 15.6 3.2
## 4 32.7 9.67 7.33 3.33 3.67 8.67 16.8 3.2
## 5 38.3 9.33 6.33 8.67 7.67 6.33 18 3.3
## 6 33.3 6.67 6 6.67 7 7 12.6 3.4
## # … with 14 more variables: mndst_intelligence_t2_score <dbl>,
## # mndst_process_t2_score <dbl>, mndst_exercise_t2_score <dbl>,
## # mndst_fail_t2_score <dbl>, mndst_pers_t2_score <dbl>,
## # mndst_stress_t2_score <dbl>, subid_final <dbl>, condition <chr>,
## # sfmm_all9_t2_score <dbl>, cmm_t2_score_6 <dbl>, selfefficacy_score <dbl>,
## # posaff_sum <dbl>, negaff_sum <dbl>, cmm_t2_score_4 <dbl>
#add health?
#scatter plots
# FFMQ15 and CMM
ggplot(df, aes(x=ffmq15_5f,
y=cmm_t2_score_4)) +
geom_point() +
facet_wrap(~condition)
# MetAwa and CMM
ggplot(df, aes(x=MetAwa,
y=cmm_t2_score)) +
geom_point() +
facet_wrap(~condition)
#Sfmm
ggplot(df, aes(x=sfmm_all9_t2_score,
y=cmm_t2_score)) +
geom_point() +
facet_wrap(~condition)
#intelligence mindset
ggplot(df, aes(x=mndst_intelligence_t2_score,
y=cmm_t2_score)) +
geom_point() +
facet_wrap(~condition)
#process mindset
ggplot(df, aes(x=mndst_process_t2_score,
y=cmm_t2_score)) +
geom_point() +
facet_wrap(~condition)
#exercise mindset
ggplot(df, aes(x=mndst_exercise_t2_score,
y=cmm_t2_score)) +
geom_point() +
facet_wrap(~condition)
#fail mindset
ggplot(df, aes(x=mndst_fail_t2_score,
y=cmm_t2_score)) +
geom_point() +
facet_wrap(~condition)
#personality mindset
ggplot(df, aes(x=mndst_pers_t2_score,
y=cmm_t2_score)) +
geom_point() +
facet_wrap(~condition)
#stress mindset
ggplot(df, aes(x=mndst_stress_t2_score,
y=cmm_t2_score)) +
geom_point() +
facet_wrap(~condition)
#scatter plots with CMM 4 item
# FFMQ15 and CMM
ggplot(df, aes(x=ffmq15_5f,
y=cmm_t2_score_4)) +
geom_point() +
facet_wrap(~condition)
# MetAwa and CMM
ggplot(df, aes(x=MetAwa,
y=cmm_t2_score_4)) +
geom_point() +
facet_wrap(~condition)
#Sfmm
ggplot(df, aes(x=sfmm_all9_t2_score,
y=cmm_t2_score_4)) +
geom_point() +
facet_wrap(~condition)
#intelligence mindset
ggplot(df, aes(x=mndst_intelligence_t2_score,
y=cmm_t2_score_4)) +
geom_point() +
facet_wrap(~condition)
#process mindset
ggplot(df, aes(x=mndst_process_t2_score,
y=cmm_t2_score_4)) +
geom_point() +
facet_wrap(~condition)
#exercise mindset
ggplot(df, aes(x=mndst_exercise_t2_score,
y=cmm_t2_score_4)) +
geom_point() +
facet_wrap(~condition)
#fail mindset
ggplot(df, aes(x=mndst_fail_t2_score,
y=cmm_t2_score_4)) +
geom_point() +
facet_wrap(~condition)
#personality mindset
ggplot(df, aes(x=mndst_pers_t2_score,
y=cmm_t2_score_4)) +
geom_point() +
facet_wrap(~condition)
#stress mindset
ggplot(df, aes(x=mndst_stress_t2_score,
y=cmm_t2_score_4)) +
geom_point() +
facet_wrap(~condition)
boxplot(df$cmm_t2_score) #few outliers with 10 item
boxplot(df$cmm_t2_score_6) # 6item more normal range
boxplot(df$cmm_t2_score_4) #4 item
library("psych")
##
## Attaching package: 'psych'
## The following objects are masked from 'package:ggplot2':
##
## %+%, alpha
#histograms
hist(df$cmm_t2_score_4)#**
hist(df$cmm_t2_score_6) #**
hist(df$ffmq15_5f)
hist(df$MetAwa)
hist(df$mndst_intelligence_t2_score)
hist(df$mndst_process_t2_score)
hist(df$sfmm_all9_t2_score)
hist(df$mndst_exercise_t2_score)
hist(df$mndst_fail_t2_score)
hist(df$mndst_pers_t2_score)
hist(df$mndst_stress_t2_score)
#descriptives of variables **
describe.by(df)
## Warning: describe.by is deprecated. Please use the describeBy function
## Warning in describeBy(x = x, group = group, mat = mat, type = type, ...): no
## grouping variable requested
## vars n mean sd median trimmed mad min
## ffmq15_5f 1 324 38.34 5.33 37.33 37.74 4.45 27.33
## ffmq_obs 2 324 8.58 1.66 8.33 8.62 1.48 3.67
## ffmq_des 3 324 7.78 1.74 7.67 7.69 1.48 3.33
## ffmq_awa 4 324 7.21 2.39 7.00 7.16 2.97 2.33
## ffmq_nj 5 324 6.61 2.49 6.00 6.45 2.47 2.33
## ffmq_nr 6 324 8.16 1.93 8.17 8.20 1.73 2.33
## MetAwa 7 324 15.49 2.77 15.60 15.58 2.67 6.20
## cmm_t2_score 8 324 3.78 0.92 3.40 3.63 0.44 2.70
## mndst_intelligence_t2_score 9 324 3.70 0.85 3.62 3.63 0.56 1.00
## mndst_process_t2_score 10 324 2.96 0.58 3.00 2.96 0.64 1.43
## mndst_exercise_t2_score 11 324 4.71 1.17 4.52 4.70 1.01 1.48
## mndst_fail_t2_score 12 324 3.89 0.80 3.67 3.78 0.49 1.67
## mndst_pers_t2_score 13 324 4.26 1.01 4.12 4.18 0.56 1.00
## mndst_stress_t2_score 14 324 2.09 0.68 2.12 2.09 0.56 0.00
## subid_final 15 324 162.50 93.67 162.50 162.50 120.09 1.00
## condition* 16 324 1.98 0.82 2.00 1.97 1.48 1.00
## sfmm_all9_t2_score 17 324 4.77 0.67 4.78 4.79 0.66 2.33
## cmm_t2_score_6 18 324 3.05 1.41 2.50 2.89 0.99 1.00
## selfefficacy_score 19 324 31.48 4.41 31.00 31.50 4.45 20.00
## posaff_sum 20 324 33.69 7.52 34.00 34.22 7.41 9.00
## negaff_sum 21 324 25.89 11.69 27.00 25.53 15.57 10.00
## cmm_t2_score_4 22 324 3.05 1.44 2.50 2.91 1.11 1.00
## max range skew kurtosis se
## ffmq15_5f 58.33 31.00 1.18 1.86 0.30
## ffmq_obs 11.67 8.00 -0.16 -0.37 0.09
## ffmq_des 11.67 8.33 0.39 -0.03 0.10
## ffmq_awa 11.67 9.33 0.13 -0.78 0.13
## ffmq_nj 11.67 9.33 0.44 -0.59 0.14
## ffmq_nr 11.67 9.33 -0.30 0.01 0.11
## MetAwa 21.00 14.80 -0.34 0.00 0.15
## cmm_t2_score 6.00 3.30 1.25 0.30 0.05
## mndst_intelligence_t2_score 6.00 5.00 0.59 1.88 0.05
## mndst_process_t2_score 4.00 2.57 -0.04 -0.51 0.03
## mndst_exercise_t2_score 7.00 5.52 0.00 0.08 0.06
## mndst_fail_t2_score 6.00 4.33 1.12 0.99 0.04
## mndst_pers_t2_score 7.00 6.00 0.70 1.61 0.06
## mndst_stress_t2_score 4.00 4.00 0.04 1.81 0.04
## subid_final 324.00 323.00 0.00 -1.21 5.20
## condition* 3.00 2.00 0.04 -1.51 0.05
## sfmm_all9_t2_score 6.00 3.67 -0.35 0.11 0.04
## cmm_t2_score_6 6.00 5.00 0.85 -0.51 0.08
## selfefficacy_score 40.00 20.00 -0.07 -0.53 0.25
## posaff_sum 45.00 36.00 -0.64 0.02 0.42
## negaff_sum 50.00 40.00 0.08 -1.29 0.65
## cmm_t2_score_4 6.00 5.00 0.77 -0.61 0.08
##kurtosis above 3 indicates tails may be heavier than normal - (.3)
### skewness between -.5 and .5 indicates fairly symmetrical - (1.25) - highly skewed - generally lower scores
#alpha cmm (std.alpha 83)
df.CMM.10 <- d.study %>%
select(t2_cmm_1, t2_cmm_2_reversed, t2_cmm_3, t2_cmm_4, t2_cmm_5, t2_cmm_6_reversed, t2_cmm_7_reversed, t2_cmm_8_reversed, t2_cmm_9_reversed, t2_cmm_10_reversed)
#adjusting CMM items removing all items loading on second factor in cmm.10
df.CMM.6 <- df.CMM.10 %>% select(-t2_cmm_1, -t2_cmm_3, -t2_cmm_4, -t2_cmm_5)
#adjusting to create 4 item scale - removing items 1,3,4, 5, #6 and #8
df.CMM.4 <- df.CMM.10 %>% select(t2_cmm_2_reversed, t2_cmm_7_reversed, t2_cmm_9_reversed, t2_cmm_10_reversed)
library(corrr)
- #inter item correlation
cor(df.CMM.6)
## t2_cmm_2_reversed t2_cmm_6_reversed t2_cmm_7_reversed
## t2_cmm_2_reversed -1.0000000 -0.7742452 -0.8000453
## t2_cmm_6_reversed -0.7742452 -1.0000000 -0.7408900
## t2_cmm_7_reversed -0.8000453 -0.7408900 -1.0000000
## t2_cmm_8_reversed -0.7327086 -0.8036319 -0.7412689
## t2_cmm_9_reversed -0.7239716 -0.7189249 -0.7015721
## t2_cmm_10_reversed -0.7498984 -0.7903516 -0.7412374
## t2_cmm_8_reversed t2_cmm_9_reversed t2_cmm_10_reversed
## t2_cmm_2_reversed -0.7327086 -0.7239716 -0.7498984
## t2_cmm_6_reversed -0.8036319 -0.7189249 -0.7903516
## t2_cmm_7_reversed -0.7412689 -0.7015721 -0.7412374
## t2_cmm_8_reversed -1.0000000 -0.7327862 -0.7664108
## t2_cmm_9_reversed -0.7327862 -1.0000000 -0.7598499
## t2_cmm_10_reversed -0.7664108 -0.7598499 -1.0000000
alpha(df.CMM.10) #suggests dropping no items will add to reliability, however 2 dropping 2 items (#3, and #5) would not lower reliability, adding (#1, #4) would remove .02. - possibly remove items (#3, and #5) or (#5 and #1), r.drop <.3 indicate low correlation with overall (this would sugegst removing (1,3,4, and 5)) - looking at reliability analysis reveals that removing items, 1, 3, 4, 5 will not reduce reliability very much -- later on we see that it expands it - good reliability - low raw.r whih are item-total correlations still decent but lowest for nonreversed
##
## Reliability analysis
## Call: alpha(x = df.CMM.10)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.87 0.84 0.89 0.34 5.2 0.0093 3.8 0.92 0.14
##
## lower alpha upper 95% confidence boundaries
## 0.85 0.87 0.88
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r
## t2_cmm_1 0.87 0.84 0.89 0.38 5.4 0.0085 0.113
## t2_cmm_2_reversed 0.83 0.80 0.87 0.31 4.1 0.0122 0.092
## t2_cmm_3 0.88 0.85 0.89 0.38 5.5 0.0084 0.110
## t2_cmm_4 0.88 0.85 0.89 0.38 5.6 0.0082 0.108
## t2_cmm_5 0.88 0.85 0.90 0.39 5.7 0.0084 0.108
## t2_cmm_6_reversed 0.83 0.81 0.87 0.31 4.1 0.0120 0.089
## t2_cmm_7_reversed 0.83 0.80 0.87 0.31 4.1 0.0120 0.094
## t2_cmm_8_reversed 0.84 0.81 0.87 0.32 4.2 0.0119 0.090
## t2_cmm_9_reversed 0.84 0.81 0.87 0.32 4.2 0.0118 0.096
## t2_cmm_10_reversed 0.83 0.81 0.87 0.31 4.1 0.0120 0.090
## med.r
## t2_cmm_1 0.23
## t2_cmm_2_reversed 0.12
## t2_cmm_3 0.25
## t2_cmm_4 0.27
## t2_cmm_5 0.28
## t2_cmm_6_reversed 0.13
## t2_cmm_7_reversed 0.12
## t2_cmm_8_reversed 0.13
## t2_cmm_9_reversed 0.13
## t2_cmm_10_reversed 0.13
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## t2_cmm_1 324 0.34 0.45 0.36 0.24 4.8 0.94
## t2_cmm_2_reversed 324 0.86 0.80 0.80 0.80 3.1 1.64
## t2_cmm_3 324 0.30 0.42 0.33 0.21 5.0 0.93
## t2_cmm_4 324 0.29 0.41 0.32 0.19 4.9 1.00
## t2_cmm_5 324 0.27 0.38 0.27 0.17 4.9 0.91
## t2_cmm_6_reversed 324 0.85 0.79 0.80 0.80 3.0 1.54
## t2_cmm_7_reversed 324 0.85 0.79 0.79 0.79 3.1 1.60
## t2_cmm_8_reversed 324 0.84 0.77 0.77 0.77 3.1 1.56
## t2_cmm_9_reversed 324 0.83 0.78 0.77 0.77 3.0 1.59
## t2_cmm_10_reversed 324 0.85 0.79 0.80 0.80 3.0 1.56
##
## Non missing response frequency for each item
## 1 2 3 4 5 6 miss
## t2_cmm_1 0.01 0.02 0.04 0.28 0.44 0.22 0
## t2_cmm_2_reversed 0.18 0.27 0.19 0.10 0.15 0.12 0
## t2_cmm_3 0.00 0.02 0.04 0.20 0.42 0.32 0
## t2_cmm_4 0.01 0.01 0.07 0.21 0.40 0.30 0
## t2_cmm_5 0.00 0.01 0.05 0.25 0.41 0.28 0
## t2_cmm_6_reversed 0.15 0.32 0.22 0.10 0.11 0.10 0
## t2_cmm_7_reversed 0.16 0.27 0.23 0.09 0.13 0.12 0
## t2_cmm_8_reversed 0.15 0.29 0.23 0.09 0.13 0.10 0
## t2_cmm_9_reversed 0.17 0.33 0.18 0.11 0.09 0.11 0
## t2_cmm_10_reversed 0.17 0.30 0.23 0.09 0.12 0.10 0
#r.drop which item-total, correlation without that item itself indicate low correlation owith rest of scale and <.3 suggest consider removal
alpha(df.CMM.6)#much higher reliability and internal consistency at .95 alpha afterremoving 1, 3, 4, 5
##
## Reliability analysis
## Call: alpha(x = df.CMM.6)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.95 0.95 0.94 0.75 18 0.0045 3 1.4 0.74
##
## lower alpha upper 95% confidence boundaries
## 0.94 0.95 0.96
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r
## t2_cmm_2_reversed 0.94 0.94 0.92 0.75 15 0.0055 0.00097
## t2_cmm_6_reversed 0.94 0.94 0.92 0.74 15 0.0057 0.00071
## t2_cmm_7_reversed 0.94 0.94 0.93 0.76 15 0.0054 0.00082
## t2_cmm_8_reversed 0.94 0.94 0.93 0.75 15 0.0055 0.00100
## t2_cmm_9_reversed 0.94 0.94 0.93 0.76 16 0.0051 0.00071
## t2_cmm_10_reversed 0.94 0.94 0.93 0.75 15 0.0056 0.00118
## med.r
## t2_cmm_2_reversed 0.74
## t2_cmm_6_reversed 0.74
## t2_cmm_7_reversed 0.75
## t2_cmm_8_reversed 0.75
## t2_cmm_9_reversed 0.76
## t2_cmm_10_reversed 0.74
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## t2_cmm_2_reversed 324 0.90 0.89 0.87 0.85 3.1 1.6
## t2_cmm_6_reversed 324 0.90 0.90 0.88 0.86 3.0 1.5
## t2_cmm_7_reversed 324 0.89 0.88 0.86 0.83 3.1 1.6
## t2_cmm_8_reversed 324 0.89 0.89 0.87 0.84 3.1 1.6
## t2_cmm_9_reversed 324 0.87 0.87 0.83 0.81 3.0 1.6
## t2_cmm_10_reversed 324 0.90 0.90 0.88 0.85 3.0 1.6
##
## Non missing response frequency for each item
## 1 2 3 4 5 6 miss
## t2_cmm_2_reversed 0.18 0.27 0.19 0.10 0.15 0.12 0
## t2_cmm_6_reversed 0.15 0.32 0.22 0.10 0.11 0.10 0
## t2_cmm_7_reversed 0.16 0.27 0.23 0.09 0.13 0.12 0
## t2_cmm_8_reversed 0.15 0.29 0.23 0.09 0.13 0.10 0
## t2_cmm_9_reversed 0.17 0.33 0.18 0.11 0.09 0.11 0
## t2_cmm_10_reversed 0.17 0.30 0.23 0.09 0.12 0.10 0
alpha(df.CMM.4) ### Reliability analysis
##
## Reliability analysis
## Call: alpha(x = df.CMM.4)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.92 0.92 0.9 0.75 12 0.0071 3 1.4 0.75
##
## lower alpha upper 95% confidence boundaries
## 0.91 0.92 0.94
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r
## t2_cmm_2_reversed 0.89 0.89 0.85 0.73 8.3 0.0104 0.00089
## t2_cmm_7_reversed 0.90 0.90 0.85 0.74 8.7 0.0099 0.00034
## t2_cmm_9_reversed 0.91 0.91 0.87 0.76 9.7 0.0090 0.00101
## t2_cmm_10_reversed 0.90 0.90 0.86 0.74 8.6 0.0100 0.00266
## med.r
## t2_cmm_2_reversed 0.74
## t2_cmm_7_reversed 0.75
## t2_cmm_9_reversed 0.75
## t2_cmm_10_reversed 0.72
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## t2_cmm_2_reversed 324 0.91 0.91 0.87 0.84 3.1 1.6
## t2_cmm_7_reversed 324 0.90 0.90 0.86 0.82 3.1 1.6
## t2_cmm_9_reversed 324 0.88 0.89 0.83 0.79 3.0 1.6
## t2_cmm_10_reversed 324 0.90 0.90 0.86 0.82 3.0 1.6
##
## Non missing response frequency for each item
## 1 2 3 4 5 6 miss
## t2_cmm_2_reversed 0.18 0.27 0.19 0.10 0.15 0.12 0
## t2_cmm_7_reversed 0.16 0.27 0.23 0.09 0.13 0.12 0
## t2_cmm_9_reversed 0.17 0.33 0.18 0.11 0.09 0.11 0
## t2_cmm_10_reversed 0.17 0.30 0.23 0.09 0.12 0.10 0
#variable correlations - CMM strong cor with intelligence, failure, personality, and ffmq, .2 for stress, strong 10 item and 6 item as expected, strong correlations with same 6 item but little les
cor.df <- df %>% select(cmm_t2_score, mndst_intelligence_t2_score, mndst_process_t2_score, mndst_exercise_t2_score, mndst_fail_t2_score, mndst_pers_t2_score, mndst_stress_t2_score, ffmq15_5f, MetAwa, cmm_t2_score_6, selfefficacy_score, posaff_sum, negaff_sum, cmm_t2_score_4)
cor.df <- cor(cor.df) ## CMM has med-strong correlations for intelligence, failure,pers, ffmq, (neg association with pos/neg affect)
print(cor.df)# correlations between variables **
## cmm_t2_score mndst_intelligence_t2_score
## cmm_t2_score 1.000000000 0.4980558
## mndst_intelligence_t2_score 0.498055810 1.0000000
## mndst_process_t2_score -0.094740700 0.1810352
## mndst_exercise_t2_score 0.131160900 0.2499219
## mndst_fail_t2_score 0.667283008 0.4320036
## mndst_pers_t2_score 0.564614591 0.6684287
## mndst_stress_t2_score 0.206082087 0.2630046
## ffmq15_5f 0.618308306 0.3819139
## MetAwa -0.005256606 0.1258818
## cmm_t2_score_6 0.952440527 0.4322670
## selfefficacy_score 0.287431561 0.2737648
## posaff_sum -0.130889122 0.1151058
## negaff_sum -0.635583384 -0.2721320
## cmm_t2_score_4 0.944059574 0.4214614
## mndst_process_t2_score mndst_exercise_t2_score
## cmm_t2_score -0.0947407 0.13116090
## mndst_intelligence_t2_score 0.1810352 0.24992194
## mndst_process_t2_score 1.0000000 0.53762085
## mndst_exercise_t2_score 0.5376208 1.00000000
## mndst_fail_t2_score 0.1161936 0.19133976
## mndst_pers_t2_score 0.1364244 0.18528674
## mndst_stress_t2_score 0.2638673 0.19276511
## ffmq15_5f 0.2093272 0.35009636
## MetAwa 0.1807367 0.10518023
## cmm_t2_score_6 -0.2039079 0.04436655
## selfefficacy_score 0.3775149 0.35701330
## posaff_sum 0.5857798 0.49644524
## negaff_sum -0.1206436 -0.34669977
## cmm_t2_score_4 -0.1981307 0.04900776
## mndst_fail_t2_score mndst_pers_t2_score
## cmm_t2_score 0.66728301 0.56461459
## mndst_intelligence_t2_score 0.43200355 0.66842872
## mndst_process_t2_score 0.11619360 0.13642443
## mndst_exercise_t2_score 0.19133976 0.18528674
## mndst_fail_t2_score 1.00000000 0.38026763
## mndst_pers_t2_score 0.38026763 1.00000000
## mndst_stress_t2_score 0.39500577 0.20535604
## ffmq15_5f 0.53206639 0.38638805
## MetAwa 0.08867452 0.04213356
## cmm_t2_score_6 0.61276266 0.47969513
## selfefficacy_score 0.34144717 0.25067094
## posaff_sum 0.08139726 0.02478875
## negaff_sum -0.52414531 -0.26671057
## cmm_t2_score_4 0.61162301 0.46878145
## mndst_stress_t2_score ffmq15_5f MetAwa
## cmm_t2_score 0.20608209 0.6183083 -0.005256606
## mndst_intelligence_t2_score 0.26300457 0.3819139 0.125881813
## mndst_process_t2_score 0.26386728 0.2093272 0.180736671
## mndst_exercise_t2_score 0.19276511 0.3500964 0.105180233
## mndst_fail_t2_score 0.39500577 0.5320664 0.088674522
## mndst_pers_t2_score 0.20535604 0.3863880 0.042133559
## mndst_stress_t2_score 1.00000000 0.1628913 0.027343666
## ffmq15_5f 0.16289126 1.0000000 0.236757434
## MetAwa 0.02734367 0.2367574 1.000000000
## cmm_t2_score_6 0.15816946 0.5523426 -0.107135029
## selfefficacy_score 0.12576554 0.4773617 0.392697705
## posaff_sum 0.13865123 0.1784645 0.401485553
## negaff_sum -0.14315856 -0.5561133 0.166435584
## cmm_t2_score_4 0.14009778 0.5535466 -0.109644666
## cmm_t2_score_6 selfefficacy_score posaff_sum
## cmm_t2_score 0.95244053 0.2874316 -0.13088912
## mndst_intelligence_t2_score 0.43226703 0.2737648 0.11510584
## mndst_process_t2_score -0.20390785 0.3775149 0.58577976
## mndst_exercise_t2_score 0.04436655 0.3570133 0.49644524
## mndst_fail_t2_score 0.61276266 0.3414472 0.08139726
## mndst_pers_t2_score 0.47969513 0.2506709 0.02478875
## mndst_stress_t2_score 0.15816946 0.1257655 0.13865123
## ffmq15_5f 0.55234262 0.4773617 0.17846455
## MetAwa -0.10713503 0.3926977 0.40148555
## cmm_t2_score_6 1.00000000 0.1156522 -0.29773353
## selfefficacy_score 0.11565215 1.0000000 0.52252851
## posaff_sum -0.29773353 0.5225285 1.00000000
## negaff_sum -0.66160617 -0.1643181 0.07395620
## cmm_t2_score_4 0.98589374 0.1191795 -0.29273330
## negaff_sum cmm_t2_score_4
## cmm_t2_score -0.6355834 0.94405957
## mndst_intelligence_t2_score -0.2721320 0.42146141
## mndst_process_t2_score -0.1206436 -0.19813067
## mndst_exercise_t2_score -0.3466998 0.04900776
## mndst_fail_t2_score -0.5241453 0.61162301
## mndst_pers_t2_score -0.2667106 0.46878145
## mndst_stress_t2_score -0.1431586 0.14009778
## ffmq15_5f -0.5561133 0.55354656
## MetAwa 0.1664356 -0.10964467
## cmm_t2_score_6 -0.6616062 0.98589374
## selfefficacy_score -0.1643181 0.11917955
## posaff_sum 0.0739562 -0.29273330
## negaff_sum 1.0000000 -0.65322463
## cmm_t2_score_4 -0.6532246 1.00000000
#cor matrix with sig levels
library(Hmisc)
## Loading required package: lattice
## Loading required package: survival
## Loading required package: Formula
##
## Attaching package: 'Hmisc'
## The following object is masked from 'package:psych':
##
## describe
## The following objects are masked from 'package:dplyr':
##
## src, summarize
## The following objects are masked from 'package:base':
##
## format.pval, units
cor.df.2 <- rcorr(as.matrix(cor.df))
print(cor.df.2) # s approaching or significant when looking a pvalues-process, fail, ffmq, and perapproach --intelligence not signifcant - pvales - sig values **
## cmm_t2_score mndst_intelligence_t2_score
## cmm_t2_score 1.00 0.72
## mndst_intelligence_t2_score 0.72 1.00
## mndst_process_t2_score -0.49 -0.17
## mndst_exercise_t2_score -0.05 0.13
## mndst_fail_t2_score 0.90 0.68
## mndst_pers_t2_score 0.78 0.90
## mndst_stress_t2_score 0.19 0.26
## ffmq15_5f 0.82 0.61
## MetAwa -0.50 -0.35
## cmm_t2_score_6 0.99 0.69
## selfefficacy_score 0.04 0.11
## posaff_sum -0.66 -0.38
## negaff_sum -0.92 -0.68
## cmm_t2_score_4 0.99 0.69
## mndst_process_t2_score mndst_exercise_t2_score
## cmm_t2_score -0.49 -0.05
## mndst_intelligence_t2_score -0.17 0.13
## mndst_process_t2_score 1.00 0.75
## mndst_exercise_t2_score 0.75 1.00
## mndst_fail_t2_score -0.27 0.10
## mndst_pers_t2_score -0.28 0.02
## mndst_stress_t2_score 0.17 0.18
## ffmq15_5f -0.09 0.32
## MetAwa 0.31 0.07
## cmm_t2_score_6 -0.55 -0.11
## selfefficacy_score 0.50 0.54
## posaff_sum 0.84 0.61
## negaff_sum 0.14 -0.32
## cmm_t2_score_4 -0.55 -0.11
## mndst_fail_t2_score mndst_pers_t2_score
## cmm_t2_score 0.90 0.78
## mndst_intelligence_t2_score 0.68 0.90
## mndst_process_t2_score -0.27 -0.28
## mndst_exercise_t2_score 0.10 0.02
## mndst_fail_t2_score 1.00 0.67
## mndst_pers_t2_score 0.67 1.00
## mndst_stress_t2_score 0.41 0.18
## ffmq15_5f 0.82 0.62
## MetAwa -0.40 -0.45
## cmm_t2_score_6 0.87 0.76
## selfefficacy_score 0.19 0.04
## posaff_sum -0.45 -0.50
## negaff_sum -0.91 -0.70
## cmm_t2_score_4 0.87 0.76
## mndst_stress_t2_score ffmq15_5f MetAwa
## cmm_t2_score 0.19 0.82 -0.50
## mndst_intelligence_t2_score 0.26 0.61 -0.35
## mndst_process_t2_score 0.17 -0.09 0.31
## mndst_exercise_t2_score 0.18 0.32 0.07
## mndst_fail_t2_score 0.41 0.82 -0.40
## mndst_pers_t2_score 0.18 0.62 -0.45
## mndst_stress_t2_score 1.00 0.14 -0.31
## ffmq15_5f 0.14 1.00 -0.17
## MetAwa -0.31 -0.17 1.00
## cmm_t2_score_6 0.18 0.78 -0.54
## selfefficacy_score -0.05 0.44 0.44
## posaff_sum -0.06 -0.24 0.59
## negaff_sum -0.31 -0.90 0.45
## cmm_t2_score_4 0.17 0.78 -0.54
## cmm_t2_score_6 selfefficacy_score posaff_sum
## cmm_t2_score 0.99 0.04 -0.66
## mndst_intelligence_t2_score 0.69 0.11 -0.38
## mndst_process_t2_score -0.55 0.50 0.84
## mndst_exercise_t2_score -0.11 0.54 0.61
## mndst_fail_t2_score 0.87 0.19 -0.45
## mndst_pers_t2_score 0.76 0.04 -0.50
## mndst_stress_t2_score 0.18 -0.05 -0.06
## ffmq15_5f 0.78 0.44 -0.24
## MetAwa -0.54 0.44 0.59
## cmm_t2_score_6 1.00 -0.05 -0.73
## selfefficacy_score -0.05 1.00 0.59
## posaff_sum -0.73 0.59 1.00
## negaff_sum -0.89 -0.23 0.39
## cmm_t2_score_4 1.00 -0.05 -0.72
## negaff_sum cmm_t2_score_4
## cmm_t2_score -0.92 0.99
## mndst_intelligence_t2_score -0.68 0.69
## mndst_process_t2_score 0.14 -0.55
## mndst_exercise_t2_score -0.32 -0.11
## mndst_fail_t2_score -0.91 0.87
## mndst_pers_t2_score -0.70 0.76
## mndst_stress_t2_score -0.31 0.17
## ffmq15_5f -0.90 0.78
## MetAwa 0.45 -0.54
## cmm_t2_score_6 -0.89 1.00
## selfefficacy_score -0.23 -0.05
## posaff_sum 0.39 -0.72
## negaff_sum 1.00 -0.89
## cmm_t2_score_4 -0.89 1.00
##
## n= 14
##
##
## P
## cmm_t2_score mndst_intelligence_t2_score
## cmm_t2_score 0.0037
## mndst_intelligence_t2_score 0.0037
## mndst_process_t2_score 0.0739 0.5585
## mndst_exercise_t2_score 0.8638 0.6631
## mndst_fail_t2_score 0.0000 0.0077
## mndst_pers_t2_score 0.0009 0.0000
## mndst_stress_t2_score 0.5238 0.3789
## ffmq15_5f 0.0003 0.0201
## MetAwa 0.0682 0.2131
## cmm_t2_score_6 0.0000 0.0062
## selfefficacy_score 0.8853 0.7138
## posaff_sum 0.0102 0.1858
## negaff_sum 0.0000 0.0071
## cmm_t2_score_4 0.0000 0.0067
## mndst_process_t2_score mndst_exercise_t2_score
## cmm_t2_score 0.0739 0.8638
## mndst_intelligence_t2_score 0.5585 0.6631
## mndst_process_t2_score 0.0021
## mndst_exercise_t2_score 0.0021
## mndst_fail_t2_score 0.3575 0.7442
## mndst_pers_t2_score 0.3313 0.9348
## mndst_stress_t2_score 0.5518 0.5485
## ffmq15_5f 0.7659 0.2670
## MetAwa 0.2797 0.8109
## cmm_t2_score_6 0.0413 0.7049
## selfefficacy_score 0.0672 0.0474
## posaff_sum 0.0002 0.0210
## negaff_sum 0.6363 0.2629
## cmm_t2_score_4 0.0415 0.7097
## mndst_fail_t2_score mndst_pers_t2_score
## cmm_t2_score 0.0000 0.0009
## mndst_intelligence_t2_score 0.0077 0.0000
## mndst_process_t2_score 0.3575 0.3313
## mndst_exercise_t2_score 0.7442 0.9348
## mndst_fail_t2_score 0.0088
## mndst_pers_t2_score 0.0088
## mndst_stress_t2_score 0.1493 0.5312
## ffmq15_5f 0.0003 0.0182
## MetAwa 0.1571 0.1026
## cmm_t2_score_6 0.0000 0.0016
## selfefficacy_score 0.5118 0.8949
## posaff_sum 0.1077 0.0685
## negaff_sum 0.0000 0.0056
## cmm_t2_score_4 0.0000 0.0018
## mndst_stress_t2_score ffmq15_5f MetAwa
## cmm_t2_score 0.5238 0.0003 0.0682
## mndst_intelligence_t2_score 0.3789 0.0201 0.2131
## mndst_process_t2_score 0.5518 0.7659 0.2797
## mndst_exercise_t2_score 0.5485 0.2670 0.8109
## mndst_fail_t2_score 0.1493 0.0003 0.1571
## mndst_pers_t2_score 0.5312 0.0182 0.1026
## mndst_stress_t2_score 0.6257 0.2885
## ffmq15_5f 0.6257 0.5571
## MetAwa 0.2885 0.5571
## cmm_t2_score_6 0.5389 0.0011 0.0448
## selfefficacy_score 0.8585 0.1131 0.1148
## posaff_sum 0.8338 0.4145 0.0249
## negaff_sum 0.2866 0.0000 0.1082
## cmm_t2_score_4 0.5609 0.0010 0.0448
## cmm_t2_score_6 selfefficacy_score posaff_sum
## cmm_t2_score 0.0000 0.8853 0.0102
## mndst_intelligence_t2_score 0.0062 0.7138 0.1858
## mndst_process_t2_score 0.0413 0.0672 0.0002
## mndst_exercise_t2_score 0.7049 0.0474 0.0210
## mndst_fail_t2_score 0.0000 0.5118 0.1077
## mndst_pers_t2_score 0.0016 0.8949 0.0685
## mndst_stress_t2_score 0.5389 0.8585 0.8338
## ffmq15_5f 0.0011 0.1131 0.4145
## MetAwa 0.0448 0.1148 0.0249
## cmm_t2_score_6 0.8535 0.0033
## selfefficacy_score 0.8535 0.0276
## posaff_sum 0.0033 0.0276
## negaff_sum 0.0000 0.4353 0.1716
## cmm_t2_score_4 0.0000 0.8602 0.0034
## negaff_sum cmm_t2_score_4
## cmm_t2_score 0.0000 0.0000
## mndst_intelligence_t2_score 0.0071 0.0067
## mndst_process_t2_score 0.6363 0.0415
## mndst_exercise_t2_score 0.2629 0.7097
## mndst_fail_t2_score 0.0000 0.0000
## mndst_pers_t2_score 0.0056 0.0018
## mndst_stress_t2_score 0.2866 0.5609
## ffmq15_5f 0.0000 0.0010
## MetAwa 0.1082 0.0448
## cmm_t2_score_6 0.0000 0.0000
## selfefficacy_score 0.4353 0.8602
## posaff_sum 0.1716 0.0034
## negaff_sum 0.0000
## cmm_t2_score_4 0.0000
symnum(cor.df)
## cm_2_ mndst_n_2_ mndst_prc_2_ mndst_x_2_ mndst_f_2_
## cmm_t2_score 1
## mndst_intelligence_t2_score . 1
## mndst_process_t2_score 1
## mndst_exercise_t2_score . 1
## mndst_fail_t2_score , . 1
## mndst_pers_t2_score . , .
## mndst_stress_t2_score .
## ffmq15_5f , . . .
## MetAwa
## cmm_t2_score_6 B . ,
## selfefficacy_score . . .
## posaff_sum . .
## negaff_sum , . .
## cmm_t2_score_4 * . ,
## mndst_prs_2_ mndst_s_2_ f M c_2__6 s p n c_2__4
## cmm_t2_score
## mndst_intelligence_t2_score
## mndst_process_t2_score
## mndst_exercise_t2_score
## mndst_fail_t2_score
## mndst_pers_t2_score 1
## mndst_stress_t2_score 1
## ffmq15_5f . 1
## MetAwa 1
## cmm_t2_score_6 . . 1
## selfefficacy_score . . 1
## posaff_sum . . 1
## negaff_sum . , 1
## cmm_t2_score_4 . . B , 1
## attr(,"legend")
## [1] 0 ' ' 0.3 '.' 0.6 ',' 0.8 '+' 0.9 '*' 0.95 'B' 1
#correlogram
library(corrplot)
## corrplot 0.84 loaded
corrplot(cor.df) #visualize variable relations **
print(cor.df)
## cmm_t2_score mndst_intelligence_t2_score
## cmm_t2_score 1.000000000 0.4980558
## mndst_intelligence_t2_score 0.498055810 1.0000000
## mndst_process_t2_score -0.094740700 0.1810352
## mndst_exercise_t2_score 0.131160900 0.2499219
## mndst_fail_t2_score 0.667283008 0.4320036
## mndst_pers_t2_score 0.564614591 0.6684287
## mndst_stress_t2_score 0.206082087 0.2630046
## ffmq15_5f 0.618308306 0.3819139
## MetAwa -0.005256606 0.1258818
## cmm_t2_score_6 0.952440527 0.4322670
## selfefficacy_score 0.287431561 0.2737648
## posaff_sum -0.130889122 0.1151058
## negaff_sum -0.635583384 -0.2721320
## cmm_t2_score_4 0.944059574 0.4214614
## mndst_process_t2_score mndst_exercise_t2_score
## cmm_t2_score -0.0947407 0.13116090
## mndst_intelligence_t2_score 0.1810352 0.24992194
## mndst_process_t2_score 1.0000000 0.53762085
## mndst_exercise_t2_score 0.5376208 1.00000000
## mndst_fail_t2_score 0.1161936 0.19133976
## mndst_pers_t2_score 0.1364244 0.18528674
## mndst_stress_t2_score 0.2638673 0.19276511
## ffmq15_5f 0.2093272 0.35009636
## MetAwa 0.1807367 0.10518023
## cmm_t2_score_6 -0.2039079 0.04436655
## selfefficacy_score 0.3775149 0.35701330
## posaff_sum 0.5857798 0.49644524
## negaff_sum -0.1206436 -0.34669977
## cmm_t2_score_4 -0.1981307 0.04900776
## mndst_fail_t2_score mndst_pers_t2_score
## cmm_t2_score 0.66728301 0.56461459
## mndst_intelligence_t2_score 0.43200355 0.66842872
## mndst_process_t2_score 0.11619360 0.13642443
## mndst_exercise_t2_score 0.19133976 0.18528674
## mndst_fail_t2_score 1.00000000 0.38026763
## mndst_pers_t2_score 0.38026763 1.00000000
## mndst_stress_t2_score 0.39500577 0.20535604
## ffmq15_5f 0.53206639 0.38638805
## MetAwa 0.08867452 0.04213356
## cmm_t2_score_6 0.61276266 0.47969513
## selfefficacy_score 0.34144717 0.25067094
## posaff_sum 0.08139726 0.02478875
## negaff_sum -0.52414531 -0.26671057
## cmm_t2_score_4 0.61162301 0.46878145
## mndst_stress_t2_score ffmq15_5f MetAwa
## cmm_t2_score 0.20608209 0.6183083 -0.005256606
## mndst_intelligence_t2_score 0.26300457 0.3819139 0.125881813
## mndst_process_t2_score 0.26386728 0.2093272 0.180736671
## mndst_exercise_t2_score 0.19276511 0.3500964 0.105180233
## mndst_fail_t2_score 0.39500577 0.5320664 0.088674522
## mndst_pers_t2_score 0.20535604 0.3863880 0.042133559
## mndst_stress_t2_score 1.00000000 0.1628913 0.027343666
## ffmq15_5f 0.16289126 1.0000000 0.236757434
## MetAwa 0.02734367 0.2367574 1.000000000
## cmm_t2_score_6 0.15816946 0.5523426 -0.107135029
## selfefficacy_score 0.12576554 0.4773617 0.392697705
## posaff_sum 0.13865123 0.1784645 0.401485553
## negaff_sum -0.14315856 -0.5561133 0.166435584
## cmm_t2_score_4 0.14009778 0.5535466 -0.109644666
## cmm_t2_score_6 selfefficacy_score posaff_sum
## cmm_t2_score 0.95244053 0.2874316 -0.13088912
## mndst_intelligence_t2_score 0.43226703 0.2737648 0.11510584
## mndst_process_t2_score -0.20390785 0.3775149 0.58577976
## mndst_exercise_t2_score 0.04436655 0.3570133 0.49644524
## mndst_fail_t2_score 0.61276266 0.3414472 0.08139726
## mndst_pers_t2_score 0.47969513 0.2506709 0.02478875
## mndst_stress_t2_score 0.15816946 0.1257655 0.13865123
## ffmq15_5f 0.55234262 0.4773617 0.17846455
## MetAwa -0.10713503 0.3926977 0.40148555
## cmm_t2_score_6 1.00000000 0.1156522 -0.29773353
## selfefficacy_score 0.11565215 1.0000000 0.52252851
## posaff_sum -0.29773353 0.5225285 1.00000000
## negaff_sum -0.66160617 -0.1643181 0.07395620
## cmm_t2_score_4 0.98589374 0.1191795 -0.29273330
## negaff_sum cmm_t2_score_4
## cmm_t2_score -0.6355834 0.94405957
## mndst_intelligence_t2_score -0.2721320 0.42146141
## mndst_process_t2_score -0.1206436 -0.19813067
## mndst_exercise_t2_score -0.3466998 0.04900776
## mndst_fail_t2_score -0.5241453 0.61162301
## mndst_pers_t2_score -0.2667106 0.46878145
## mndst_stress_t2_score -0.1431586 0.14009778
## ffmq15_5f -0.5561133 0.55354656
## MetAwa 0.1664356 -0.10964467
## cmm_t2_score_6 -0.6616062 0.98589374
## selfefficacy_score -0.1643181 0.11917955
## posaff_sum 0.0739562 -0.29273330
## negaff_sum 1.0000000 -0.65322463
## cmm_t2_score_4 -0.6532246 1.00000000
#scatterplot with fitted line cmm x ffmq
ggplot(df, aes(x = cmm_t2_score_4, y = ffmq15_5f)) +
geom_point() +
stat_smooth()
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
#scatterplot with fitted line cmm x mindset
ggplot(df, aes(x = cmm_t2_score_4, y = sfmm_all9_t2_score)) +
geom_point() +
stat_smooth()
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
df.lm.4.ffmq <- lm(ffmq15_5f ~ cmm_t2_score_4, data=df) # build linear regression model on full data
print(df.lm.4.ffmq)
##
## Call:
## lm(formula = ffmq15_5f ~ cmm_t2_score_4, data = df)
##
## Coefficients:
## (Intercept) cmm_t2_score_4
## 32.084 2.052
ggplot(df, aes(cmm_t2_score_4, ffmq15_5f)) +
geom_point() +
stat_smooth(method = lm)
## `geom_smooth()` using formula 'y ~ x'
summary(df.lm.4.ffmq)
##
## Call:
## lm(formula = ffmq15_5f ~ cmm_t2_score_4, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -14.0634 -2.7395 0.1322 2.4069 13.9366
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 32.0838 0.5800 55.32 <2e-16 ***
## cmm_t2_score_4 2.0522 0.1721 11.93 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.449 on 322 degrees of freedom
## Multiple R-squared: 0.3064, Adjusted R-squared: 0.3043
## F-statistic: 142.3 on 1 and 322 DF, p-value: < 2.2e-16
df.lm.4.ex <- lm(cmm_t2_score_4 ~ mndst_exercise_t2_score, data=df) # build linear regression model on full data
#EFA - looking for theoretically meaningful subdimensions of latent construct optimally - using principle components analysis
df.CMM.4.pca <- princomp(df.CMM.4)
summary(df.CMM.4.pca)
## Importance of components:
## Comp.1 Comp.2 Comp.3 Comp.4
## Standard deviation 2.8737674 0.91540784 0.76143123 0.72041275
## Proportion of Variance 0.8100353 0.08219208 0.05686723 0.05090536
## Cumulative Proportion 0.8100353 0.89222741 0.94909464 1.00000000
plot(df.CMM.4.pca) #scree plot
cor(df.CMM.4)
## t2_cmm_2_reversed t2_cmm_7_reversed t2_cmm_9_reversed
## t2_cmm_2_reversed 1.0000000 0.8000453 0.7239716
## t2_cmm_7_reversed 0.8000453 1.0000000 0.7015721
## t2_cmm_9_reversed 0.7239716 0.7015721 1.0000000
## t2_cmm_10_reversed 0.7498984 0.7412374 0.7598499
## t2_cmm_10_reversed
## t2_cmm_2_reversed 0.7498984
## t2_cmm_7_reversed 0.7412374
## t2_cmm_9_reversed 0.7598499
## t2_cmm_10_reversed 1.0000000
#summary suggest one factor lookin at variances PCA - adds little to variance continuing past maybe 2 - control and change (#check varimax - oblimique) - assumes factors are orthogonal - factanal uses max likelihood
CMM.4.fa1 <- factanal(df.CMM.4, factors = 1)
print(CMM.4.fa1) #test hypothesis that 1 factor is sufficient - factanal uses max likelihood, not recommended for efa - yes
##
## Call:
## factanal(x = df.CMM.4, factors = 1)
##
## Uniquenesses:
## t2_cmm_2_reversed t2_cmm_7_reversed t2_cmm_9_reversed t2_cmm_10_reversed
## 0.212 0.238 0.310 0.255
##
## Loadings:
## Factor1
## t2_cmm_2_reversed 0.888
## t2_cmm_7_reversed 0.873
## t2_cmm_9_reversed 0.831
## t2_cmm_10_reversed 0.863
##
## Factor1
## SS loadings 2.986
## Proportion Var 0.746
##
## Test of the hypothesis that 1 factor is sufficient.
## The chi square statistic is 16.15 on 2 degrees of freedom.
## The p-value is 0.000312
#summary suggest one factor lookin at variances PCA - adds little to variance continuing past maybe 2 - control and change (#check oblique) - factors correlated? - asssumes factors are orthogonal - below using promax -
CMM.4.fa1.pro <- factanal(df.CMM.4, factors = 1, rotation = "promax")
print(CMM.4.fa1.pro) #test hypothesis that 1 factor is sufficient - factanal uses max likelihood, not recommended for efa
##
## Call:
## factanal(x = df.CMM.4, factors = 1, rotation = "promax")
##
## Uniquenesses:
## t2_cmm_2_reversed t2_cmm_7_reversed t2_cmm_9_reversed t2_cmm_10_reversed
## 0.212 0.238 0.310 0.255
##
## Loadings:
## Factor1
## t2_cmm_2_reversed 0.888
## t2_cmm_7_reversed 0.873
## t2_cmm_9_reversed 0.831
## t2_cmm_10_reversed 0.863
##
## Factor1
## SS loadings 2.986
## Proportion Var 0.746
##
## Test of the hypothesis that 1 factor is sufficient.
## The chi square statistic is 16.15 on 2 degrees of freedom.
## The p-value is 0.000312
#summary suggest one factor lookin at variances PCA - adds little to variance continuing past maybe 2 - control and change (#check oblique) - factors correlated? - factors are orthogonal - below using promax - an oblique rotation, which allows for factors to be correlated. we suggest control and changing underlying factors are correlated. #critieria reached with 2 factors Using logic like that in the preceding quote, Thurstone (1947) first proposed and argued for five # criteria that needed to be met for simple structure to be achieved: # 1. Each variable should produce at least one zero loading on some factor. # 2. Each factor should have at least as many zero loadings as there are factors. # 3. Each pair of factors should have variables with significant loadings on one # and zero loadings on the other. # 4. Each pair of factors should have a large proportion of zero loadings on both factors # (if there are say four or more factors total). # 5. Each pair of factors should have only a few complex variables.
#Items suggested retaining with factor loading above .8, were all the reverse scored items -2 factor structure (hints at the theoretical and conceptual approach to phenomena, a metamindset getting at control and change of mindsets) #Factor 2 - lower but all above .52 # 1. No matter what kind of mindset I have, I can always change it. # 3. I can develop my ability to control my mindsets. # 4. I could learn to have more control over my mindsets. # 5. When it is necessary to, I have a considerable amount of control over my mindset.
#Factor 1- principical component - most variance explained al l load .8+ # 2.To be honest, you can’t really change your mindsets. (R) # 6. You can learn about new mindsets, but you can’t really change your basic ability to control your mindset. (R) # 7. As much as I hate to admit it, you can’t teach an old dog new tricks. You can’t really change your mindsets about things in the world. (R) # 8. You have certain mindsets about the world, and there is not much that can be done to really change that.(R) # 9. Even in moments when it really matters, I can’t do much to change my mindset. (R) # 10. How much I can control my mindset is something about me that I can’t change very much. (R)
#using Princial Axis Factor analysis w psych package continue exploring this should be doneusing CFA in new sample
#maximizes variance from factors
CMM.PAF.4 <- factor.pa(df.CMM.4, nfactors = 1, rotate = "promax")
## Warning: factor.pa is deprecated. Please use the fa function with fm=pa
print(CMM.PAF.4)
## Factor Analysis using method = pa
## Call: factor.pa(r = df.CMM.4, nfactors = 1, rotate = "promax")
## Unstandardized loadings (pattern matrix) based upon covariance matrix
## PA1 h2 u2 H2 U2
## t2_cmm_2_reversed 0.88 0.78 0.22 0.78 0.22
## t2_cmm_7_reversed 0.87 0.75 0.25 0.75 0.25
## t2_cmm_9_reversed 0.83 0.69 0.31 0.69 0.31
## t2_cmm_10_reversed 0.87 0.76 0.24 0.76 0.24
##
## PA1
## SS loadings 2.99
## Proportion Var 0.75
##
## Standardized loadings (pattern matrix)
## V PA1 h2 u2
## t2_cmm_2_reversed 1 0.88 0.78 0.22
## t2_cmm_7_reversed 2 0.87 0.75 0.25
## t2_cmm_9_reversed 3 0.83 0.69 0.31
## t2_cmm_10_reversed 4 0.87 0.76 0.24
##
## PA1
## SS loadings 2.98
## Proportion Var 0.75
##
## Mean item complexity = 1
## Test of the hypothesis that 1 factor is sufficient.
##
## The degrees of freedom for the null model are 6 and the objective function was 3.01 with Chi Square of 964.56
## The degrees of freedom for the model are 2 and the objective function was 0.05
##
## The root mean square of the residuals (RMSR) is 0.02
## The df corrected root mean square of the residuals is 0.04
##
## The harmonic number of observations is 324 with the empirical chi square 2.26 with prob < 0.32
## The total number of observations was 324 with Likelihood Chi Square = 16.44 with prob < 0.00027
##
## Tucker Lewis Index of factoring reliability = 0.955
## RMSEA index = 0.149 and the 90 % confidence intervals are 0.088 0.22
## BIC = 4.87
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy
## PA1
## Correlation of (regression) scores with factors 0.96
## Multiple R square of scores with factors 0.92
## Minimum correlation of possible factor scores 0.85
#other EFA using minsres
EFA.model.CMM.4 <- fa(df.CMM.4)
EFA.model.CMM.4$loadings
##
## Loadings:
## MR1
## t2_cmm_2_reversed 0.885
## t2_cmm_7_reversed 0.867
## t2_cmm_9_reversed 0.833
## t2_cmm_10_reversed 0.870
##
## MR1
## SS loadings 2.986
## Proportion Var 0.747
#factor loadings
fa.diagram(EFA.model.CMM.4)
head(df.CMM.4)
## # A tibble: 6 x 4
## t2_cmm_2_reversed t2_cmm_7_reversed t2_cmm_9_reversed t2_cmm_10_reversed
## <dbl> <dbl> <dbl> <dbl>
## 1 3 3 1 2
## 2 2 2 2 3
## 3 1 2 2 3
## 4 1 2 2 2
## 5 1 1 2 1
## 6 3 3 2 3
#this function shows individuals scores on factor
EFA.model.CMM.4$scores
## MR1
## [1,] -0.480961809
## [2,] -0.520250325
## [3,] -0.710337968
## [4,] -0.892304416
## [5,] -1.236821254
## [6,] -0.167612291
## [7,] -0.733384093
## [8,] -0.833599842
## [9,] -1.054854806
## [10,] -0.825478647
## [11,] -0.249362989
## [12,] 0.629758330
## [13,] 0.713731689
## [14,] -0.520250325
## [15,] 0.366992191
## [16,] -0.733384093
## [17,] -0.996150232
## [18,] -0.861137096
## [19,] 0.780557458
## [20,] 0.230166985
## [21,] -0.861137096
## [22,] 1.961733433
## [23,] 0.343946066
## [24,] -0.729754026
## [25,] 1.961733433
## [26,] 1.295745882
## [27,] -0.864767163
## [28,] 0.629758330
## [29,] -0.520250325
## [30,] -0.005061901
## [31,] 1.304818084
## [32,] -1.015566290
## [33,] -1.074270864
## [34,] -0.884183221
## [35,] -0.570833703
## [36,] -1.186237876
## [37,] -0.453424555
## [38,] 1.961733433
## [39,] -0.368994797
## [40,] 1.295745882
## [41,] -0.520250325
## [42,] 0.710558022
## [43,] -0.520250325
## [44,] 0.943107848
## [45,] 1.164362812
## [46,] 1.295745882
## [47,] 1.961733433
## [48,] 1.164362812
## [49,] -0.884183221
## [50,] -0.307116556
## [51,] -0.036229221
## [52,] -0.520250325
## [53,] -0.662928257
## [54,] -0.643512199
## [55,] -0.520250325
## [56,] 1.961733433
## [57,] 0.126321169
## [58,] -0.167612291
## [59,] -0.349578739
## [60,] -0.380746059
## [61,] 1.771645789
## [62,] 0.041891411
## [63,] 1.830350363
## [64,] 1.485833525
## [65,] 0.176904547
## [66,] 0.203490794
## [67,] -1.186237876
## [68,] -0.833599842
## [69,] -0.218195669
## [70,] 0.375113386
## [71,] 1.295745882
## [72,] -1.236821254
## [73,] 0.428375824
## [74,] -0.547787578
## [75,] -0.833599842
## [76,] 1.648383915
## [77,] -1.186237876
## [78,] -0.539666383
## [79,] -1.015566290
## [80,] -0.570833703
## [81,] 1.961733433
## [82,] 0.265825434
## [83,] -1.186237876
## [84,] -0.864767163
## [85,] 1.961733433
## [86,] -0.884183221
## [87,] -0.721632831
## [88,] 1.477712330
## [89,] 0.176904547
## [90,] -1.046733611
## [91,] -0.884183221
## [92,] -0.814183784
## [93,] -1.205653934
## [94,] 0.819845974
## [95,] -0.450250888
## [96,] -0.662928257
## [97,] -1.236821254
## [98,] -0.702216773
## [99,] 1.648383915
## [100,] -0.702216773
## [101,] 1.961733433
## [102,] 0.529542581
## [103,] -0.059275346
## [104,] -0.408283313
## [105,] 1.133195492
## [106,] -0.988029037
## [107,] -0.884183221
## [108,] -0.032599155
## [109,] 1.295745882
## [110,] -0.694095577
## [111,] -0.218195669
## [112,] 0.652804455
## [113,] -0.512129129
## [114,] -0.694095577
## [115,] -0.996150232
## [116,] 1.961733433
## [117,] 0.257704239
## [118,] -0.036229221
## [119,] -0.055645279
## [120,] 1.617216595
## [121,] -0.167612291
## [122,] -1.186237876
## [123,] -0.388867255
## [124,] 1.102484571
## [125,] 0.629758330
## [126,] -0.702216773
## [127,] -0.598370956
## [128,] -0.290874165
## [129,] -0.911720474
## [130,] -0.911720474
## [131,] -1.023687486
## [132,] -1.368204324
## [133,] -0.923471736
## [134,] -0.911720474
## [135,] -0.167612291
## [136,] -1.186237876
## [137,] -0.547787578
## [138,] 0.792308720
## [139,] -0.167612291
## [140,] 0.204441801
## [141,] -1.015566290
## [142,] -0.702216773
## [143,] -0.721632831
## [144,] -0.718002764
## [145,] -0.671049452
## [146,] -0.140075037
## [147,] 1.295745882
## [148,] 1.295745882
## [149,] -0.915350541
## [150,] 1.961733433
## [151,] -0.094933795
## [152,] -0.539666383
## [153,] 1.295745882
## [154,] -1.236821254
## [155,] -0.570833703
## [156,] -0.780337405
## [157,] -1.236821254
## [158,] -0.257484185
## [159,] 0.467207940
## [160,] -0.752800151
## [161,] -0.330162681
## [162,] -0.229946931
## [163,] -0.195149545
## [164,] -0.036229221
## [165,] 1.295745882
## [166,] -1.186237876
## [167,] -0.760921346
## [168,] -0.702216773
## [169,] -0.512129129
## [170,] -0.590249761
## [171,] 1.164362812
## [172,] -0.388867255
## [173,] 0.394985844
## [174,] -0.892304416
## [175,] -0.547787578
## [176,] 1.609095399
## [177,] -0.598370956
## [178,] -1.023687486
## [179,] -1.368204324
## [180,] -1.046733611
## [181,] 1.164362812
## [182,] -0.036229221
## [183,] -1.074270864
## [184,] -1.368204324
## [185,] -0.694095577
## [186,] 1.961733433
## [187,] -0.856645967
## [188,] -0.570833703
## [189,] -0.872888358
## [190,] -0.884183221
## [191,] -0.131953842
## [192,] -0.028108026
## [193,] -1.368204324
## [194,] -0.330162681
## [195,] 0.819845974
## [196,] -0.036229221
## [197,] 0.285241492
## [198,] -1.004271428
## [199,] 1.295745882
## [200,] -1.046733611
## [201,] 1.961733433
## [202,] 1.295745882
## [203,] 1.164362812
## [204,] -0.298995361
## [205,] -0.198779611
## [206,] 0.223857859
## [207,] -0.357699935
## [208,] -0.598370956
## [209,] -1.023687486
## [210,] -0.643512199
## [211,] -0.067396541
## [212,] 1.295745882
## [213,] 1.071317251
## [214,] -0.570833703
## [215,] -0.539666383
## [216,] 0.153858422
## [217,] 1.133195492
## [218,] 0.475329136
## [219,] 1.648383915
## [220,] -0.733384093
## [221,] 0.394529444
## [222,] -0.520250325
## [223,] -0.702216773
## [224,] -0.117028913
## [225,] 0.145737227
## [226,] 1.771645789
## [227,] -0.187028349
## [228,] 0.629758330
## [229,] -0.996150232
## [230,] -0.702216773
## [231,] -0.067396541
## [232,] 1.961733433
## [233,] -0.298995361
## [234,] 1.961733433
## [235,] 1.295745882
## [236,] 1.961733433
## [237,] -0.218195669
## [238,] 1.961733433
## [239,] -0.179363553
## [240,] 0.629758330
## [241,] 1.961733433
## [242,] -0.570833703
## [243,] -0.167612291
## [244,] -0.923471736
## [245,] -0.198779611
## [246,] 0.224314258
## [247,] -0.710337968
## [248,] -0.570833703
## [249,] 1.295745882
## [250,] 1.779766985
## [251,] 1.961733433
## [252,] 1.458296271
## [253,] -0.005061901
## [254,] 0.185025743
## [255,] 0.304657550
## [256,] 1.427128951
## [257,] 1.295745882
## [258,] 1.961733433
## [259,] 1.961733433
## [260,] 0.181395676
## [261,] 1.295745882
## [262,] -0.047524084
## [263,] 0.095153849
## [264,] 0.288871559
## [265,] -0.539666383
## [266,] -0.044350417
## [267,] 0.249583043
## [268,] 0.355697328
## [269,] -0.380746059
## [270,] -0.067396541
## [271,] -0.679170648
## [272,] -0.570833703
## [273,] 1.961733433
## [274,] -0.294504232
## [275,] -0.520250325
## [276,] -0.349578739
## [277,] 1.779766985
## [278,] -0.702216773
## [279,] 0.394985844
## [280,] -0.923471736
## [281,] 1.961733433
## [282,] -0.923471736
## [283,] -1.186237876
## [284,] 1.961733433
## [285,] 0.819845974
## [286,] 0.022475353
## [287,] -0.682800714
## [288,] -0.539666383
## [289,] -0.131953842
## [290,] -0.578954898
## [291,] -0.520250325
## [292,] -0.276900243
## [293,] -0.408283313
## [294,] 1.427128951
## [295,] -0.721632831
## [296,] -1.074270864
## [297,] 1.001812422
## [298,] -0.547787578
## [299,] 1.295745882
## [300,] 0.475329136
## [301,] -0.492713071
## [302,] -0.861137096
## [303,] 1.961733433
## [304,] -0.884183221
## [305,] -0.036229221
## [306,] -0.915350541
## [307,] -0.988029037
## [308,] -1.074270864
## [309,] -1.074270864
## [310,] -0.198779611
## [311,] 0.347576132
## [312,] 0.982396364
## [313,] 0.041891411
## [314,] -0.671049452
## [315,] -0.520250325
## [316,] -0.660705597
## [317,] -0.996150232
## [318,] -0.671049452
## [319,] -0.733384093
## [320,] -0.543296449
## [321,] 0.145737227
## [322,] 1.961733433
## [323,] -0.721632831
## [324,] 0.629758330
summary(EFA.model.CMM.4$scores)
## MR1
## Min. :-1.3682
## 1st Qu.:-0.7216
## Median :-0.2927
## Mean : 0.0000
## 3rd Qu.: 0.6298
## Max. : 1.9617
#feel for distribution of factor scores
summary(df.CMM.4)
## t2_cmm_2_reversed t2_cmm_7_reversed t2_cmm_9_reversed t2_cmm_10_reversed
## Min. :1.00 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:2.00 1st Qu.:2.000 1st Qu.:2.000 1st Qu.:2.000
## Median :3.00 Median :3.000 Median :2.500 Median :3.000
## Mean :3.12 Mean :3.108 Mean :2.972 Mean :2.997
## 3rd Qu.:5.00 3rd Qu.:4.000 3rd Qu.:4.000 3rd Qu.:4.000
## Max. :6.00 Max. :6.000 Max. :6.000 Max. :6.000
plot(density(EFA.model.CMM.4$scores))
describe(df.CMM.4)
## df.CMM.4
##
## 4 Variables 324 Observations
## --------------------------------------------------------------------------------
## t2_cmm_2_reversed
## n missing distinct Info Mean Gmd
## 324 0 6 0.962 3.12 1.845
##
## lowest : 1 2 3 4 5, highest: 2 3 4 5 6
##
## Value 1 2 3 4 5 6
## Frequency 57 87 63 32 47 38
## Proportion 0.176 0.269 0.194 0.099 0.145 0.117
## --------------------------------------------------------------------------------
## t2_cmm_7_reversed
## n missing distinct Info Mean Gmd
## 324 0 6 0.959 3.108 1.784
##
## lowest : 1 2 3 4 5, highest: 2 3 4 5 6
##
## Value 1 2 3 4 5 6
## Frequency 51 89 75 30 41 38
## Proportion 0.157 0.275 0.231 0.093 0.127 0.117
## --------------------------------------------------------------------------------
## t2_cmm_9_reversed
## n missing distinct Info Mean Gmd
## 324 0 6 0.95 2.972 1.754
##
## lowest : 1 2 3 4 5, highest: 2 3 4 5 6
##
## Value 1 2 3 4 5 6
## Frequency 55 107 58 37 30 37
## Proportion 0.170 0.330 0.179 0.114 0.093 0.114
## --------------------------------------------------------------------------------
## t2_cmm_10_reversed
## n missing distinct Info Mean Gmd
## 324 0 6 0.954 2.997 1.731
##
## lowest : 1 2 3 4 5, highest: 2 3 4 5 6
##
## Value 1 2 3 4 5 6
## Frequency 54 97 73 28 40 32
## Proportion 0.167 0.299 0.225 0.086 0.123 0.099
## --------------------------------------------------------------------------------
describe(df$cmm_t2_score_4)
## df$cmm_t2_score_4
## n missing distinct Info Mean Gmd .05 .10
## 324 0 21 0.994 3.049 1.587 1.25 1.50
## .25 .50 .75 .90 .95
## 2.00 2.50 4.00 5.50 6.00
##
## lowest : 1.00 1.25 1.50 1.75 2.00, highest: 5.00 5.25 5.50 5.75 6.00
#does CMM differ by condition? CMM data does not seem normally distributed so will use Kruskal-Wallis test suggested for comparison of means using continuous and categorical data - non par
str(df)
## tibble [324 × 22] (S3: tbl_df/tbl/data.frame)
## $ ffmq15_5f : num [1:324] 37.7 35 37 32.7 38.3 ...
## $ ffmq_obs : num [1:324] 10.67 8.33 8.33 9.67 9.33 ...
## $ ffmq_des : num [1:324] 6.33 8 8 7.33 6.33 ...
## $ ffmq_awa : num [1:324] 4.33 6.67 4.67 3.33 8.67 ...
## $ ffmq_nj : num [1:324] 5.67 5 7 3.67 7.67 ...
## $ ffmq_nr : num [1:324] 10.67 7 9 8.67 6.33 ...
## $ MetAwa : num [1:324] 16.8 14.8 15.6 16.8 18 12.6 16.8 19 18 7.2 ...
## $ cmm_t2_score : num [1:324] 3.4 3.2 3.2 3.2 3.3 3.4 3.1 3.3 3 3.2 ...
## $ mndst_intelligence_t2_score: num [1:324] 3.25 3.5 3.25 3.75 3.62 ...
## $ mndst_process_t2_score : num [1:324] 2.86 2.43 2.29 3.43 3.86 ...
## $ mndst_exercise_t2_score : num [1:324] 3.6 4.24 4.24 4.32 7 3.64 4.92 5.2 5 4.8 ...
## $ mndst_fail_t2_score : num [1:324] 3.67 3.5 3.5 3.83 3.5 ...
## $ mndst_pers_t2_score : num [1:324] 4 3.75 3.75 4 4 ...
## $ mndst_stress_t2_score : num [1:324] 2.25 2.5 2.12 2.5 3.12 ...
## $ subid_final : num [1:324] 12 14 286 96 118 4 36 227 7 1 ...
## $ condition : chr [1:324] "full_intervention" "abr_intervention" "active_control" "active_control" ...
## $ sfmm_all9_t2_score : num [1:324] 5.11 4.22 5 5.22 6 ...
## $ cmm_t2_score_6 : num [1:324] 2.17 2.5 2.17 1.83 1.5 ...
## $ selfefficacy_score : num [1:324] 35 25 29 35 40 26 30 37 34 31 ...
## $ posaff_sum : num [1:324] 37 26 33 39 42 16 37 39 40 43 ...
## $ negaff_sum : num [1:324] 40 28 38 46 10 18 33 44 42 14 ...
## $ cmm_t2_score_4 : num [1:324] 2.25 2.25 2 1.75 1.25 2.75 2 1.75 1.5 1.75 ...
#changing data to factors and proper contrasts for conditions in CMM
Let’s tidy the data
d.cmm.4 <- df %>%
select(subid_final, condition, cmm_t2_score_4)%>%
gather(item, score, contains("cmm"))%>%
separate(item, sep = "_", into = c("construct_name", "type", "time", "score_name"))%>%
select(-construct_name, -score_name, -type)
Let’s change data to be numeric & factors (and appropriate contrasts)
#Make Rating Numeric
d.cmm.4$score <- as.numeric(df$cmm_t2_score_4)
#Factor Condition
d.cmm.4$condition <- as.factor(d.cmm.4$condition)
contrasts(d.cmm.4$condition)
## active_control full_intervention
## abr_intervention 0 0
## active_control 1 0
## full_intervention 0 1
contrasts(d.cmm.4$condition) = cbind(dummy_full_vs_control = c(0,0,1), dummy_abridged_vs_control = c(1,0,0))
contrasts(d.cmm.4$condition)
## dummy_full_vs_control dummy_abridged_vs_control
## abr_intervention 0 1
## active_control 0 0
## full_intervention 1 0
#Factor subject id
d.cmm.4$subid_final <- as.factor(d.cmm.4$subid_final)
levels(d.cmm.4$condition)
## [1] "abr_intervention" "active_control" "full_intervention"
library(dplyr)
#summary by condition - for CMM.4
group_by(d.cmm.4, condition) %>%
summarise( count = n(), mean = mean(score),
sd = sd(score),
median = median(score),
IQR = IQR(score))
## `summarise()` ungrouping output (override with `.groups` argument)
## # A tibble: 3 x 6
## condition count mean sd median IQR
## <fct> <int> <dbl> <dbl> <dbl> <dbl>
## 1 abr_intervention 112 3.16 1.50 2.75 2.25
## 2 active_control 107 3.00 1.42 2.5 2.25
## 3 full_intervention 105 2.98 1.40 2.5 1.5
##mean for full intervention is lowest
##use lm to determine if there is a difference in cmm by condition - evidence suggests - no?
cmm.lm <- lm(d.cmm.4$score ~ d.cmm.4$condition)
summary(cmm.lm)
##
## Call:
## lm(formula = d.cmm.4$score ~ d.cmm.4$condition)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.0023 -1.1607 -0.4786 0.8789 3.0214
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.00234 0.13928 21.556 <2e-16
## d.cmm.4$conditiondummy_full_vs_control -0.02377 0.19791 -0.120 0.904
## d.cmm.4$conditiondummy_abridged_vs_control 0.15838 0.19476 0.813 0.417
##
## (Intercept) ***
## d.cmm.4$conditiondummy_full_vs_control
## d.cmm.4$conditiondummy_abridged_vs_control
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.441 on 321 degrees of freedom
## Multiple R-squared: 0.003219, Adjusted R-squared: -0.002992
## F-statistic: 0.5183 on 2 and 321 DF, p-value: 0.5961
#non parametric model diff between condition on cmm? - NO
kruskal.test(cmm_t2_score_4 ~ condition, data = df)
##
## Kruskal-Wallis rank sum test
##
## data: cmm_t2_score_4 by condition
## Kruskal-Wallis chi-squared = 0.89637, df = 2, p-value = 0.6388
kruskal.test(score ~ condition, data = d.cmm.4)
##
## Kruskal-Wallis rank sum test
##
## data: score by condition
## Kruskal-Wallis chi-squared = 0.89637, df = 2, p-value = 0.6388
#variable correlations - CMM strong cor with intelligence, failure, personality, and ffmq, .2 for stress, strong 10 item and 6 item as expected, strong correlations with same 6 item but little les
library(corrplot)
library(corrr)
cor.df <- df %>% select(cmm_t2_score, mndst_intelligence_t2_score, mndst_process_t2_score, mndst_exercise_t2_score, mndst_fail_t2_score, mndst_pers_t2_score, mndst_stress_t2_score, ffmq15_5f, MetAwa, cmm_t2_score_6, cmm_t2_score_4, selfefficacy_score, posaff_sum, negaff_sum)
cor.df <- cor(cor.df, method = "pearson")
print(cor.df)# correlations between variables ** #strong cor with int, pers, mindfulness, pos and neg aff
## cmm_t2_score mndst_intelligence_t2_score
## cmm_t2_score 1.000000000 0.4980558
## mndst_intelligence_t2_score 0.498055810 1.0000000
## mndst_process_t2_score -0.094740700 0.1810352
## mndst_exercise_t2_score 0.131160900 0.2499219
## mndst_fail_t2_score 0.667283008 0.4320036
## mndst_pers_t2_score 0.564614591 0.6684287
## mndst_stress_t2_score 0.206082087 0.2630046
## ffmq15_5f 0.618308306 0.3819139
## MetAwa -0.005256606 0.1258818
## cmm_t2_score_6 0.952440527 0.4322670
## cmm_t2_score_4 0.944059574 0.4214614
## selfefficacy_score 0.287431561 0.2737648
## posaff_sum -0.130889122 0.1151058
## negaff_sum -0.635583384 -0.2721320
## mndst_process_t2_score mndst_exercise_t2_score
## cmm_t2_score -0.0947407 0.13116090
## mndst_intelligence_t2_score 0.1810352 0.24992194
## mndst_process_t2_score 1.0000000 0.53762085
## mndst_exercise_t2_score 0.5376208 1.00000000
## mndst_fail_t2_score 0.1161936 0.19133976
## mndst_pers_t2_score 0.1364244 0.18528674
## mndst_stress_t2_score 0.2638673 0.19276511
## ffmq15_5f 0.2093272 0.35009636
## MetAwa 0.1807367 0.10518023
## cmm_t2_score_6 -0.2039079 0.04436655
## cmm_t2_score_4 -0.1981307 0.04900776
## selfefficacy_score 0.3775149 0.35701330
## posaff_sum 0.5857798 0.49644524
## negaff_sum -0.1206436 -0.34669977
## mndst_fail_t2_score mndst_pers_t2_score
## cmm_t2_score 0.66728301 0.56461459
## mndst_intelligence_t2_score 0.43200355 0.66842872
## mndst_process_t2_score 0.11619360 0.13642443
## mndst_exercise_t2_score 0.19133976 0.18528674
## mndst_fail_t2_score 1.00000000 0.38026763
## mndst_pers_t2_score 0.38026763 1.00000000
## mndst_stress_t2_score 0.39500577 0.20535604
## ffmq15_5f 0.53206639 0.38638805
## MetAwa 0.08867452 0.04213356
## cmm_t2_score_6 0.61276266 0.47969513
## cmm_t2_score_4 0.61162301 0.46878145
## selfefficacy_score 0.34144717 0.25067094
## posaff_sum 0.08139726 0.02478875
## negaff_sum -0.52414531 -0.26671057
## mndst_stress_t2_score ffmq15_5f MetAwa
## cmm_t2_score 0.20608209 0.6183083 -0.005256606
## mndst_intelligence_t2_score 0.26300457 0.3819139 0.125881813
## mndst_process_t2_score 0.26386728 0.2093272 0.180736671
## mndst_exercise_t2_score 0.19276511 0.3500964 0.105180233
## mndst_fail_t2_score 0.39500577 0.5320664 0.088674522
## mndst_pers_t2_score 0.20535604 0.3863880 0.042133559
## mndst_stress_t2_score 1.00000000 0.1628913 0.027343666
## ffmq15_5f 0.16289126 1.0000000 0.236757434
## MetAwa 0.02734367 0.2367574 1.000000000
## cmm_t2_score_6 0.15816946 0.5523426 -0.107135029
## cmm_t2_score_4 0.14009778 0.5535466 -0.109644666
## selfefficacy_score 0.12576554 0.4773617 0.392697705
## posaff_sum 0.13865123 0.1784645 0.401485553
## negaff_sum -0.14315856 -0.5561133 0.166435584
## cmm_t2_score_6 cmm_t2_score_4 selfefficacy_score
## cmm_t2_score 0.95244053 0.94405957 0.2874316
## mndst_intelligence_t2_score 0.43226703 0.42146141 0.2737648
## mndst_process_t2_score -0.20390785 -0.19813067 0.3775149
## mndst_exercise_t2_score 0.04436655 0.04900776 0.3570133
## mndst_fail_t2_score 0.61276266 0.61162301 0.3414472
## mndst_pers_t2_score 0.47969513 0.46878145 0.2506709
## mndst_stress_t2_score 0.15816946 0.14009778 0.1257655
## ffmq15_5f 0.55234262 0.55354656 0.4773617
## MetAwa -0.10713503 -0.10964467 0.3926977
## cmm_t2_score_6 1.00000000 0.98589374 0.1156522
## cmm_t2_score_4 0.98589374 1.00000000 0.1191795
## selfefficacy_score 0.11565215 0.11917955 1.0000000
## posaff_sum -0.29773353 -0.29273330 0.5225285
## negaff_sum -0.66160617 -0.65322463 -0.1643181
## posaff_sum negaff_sum
## cmm_t2_score -0.13088912 -0.6355834
## mndst_intelligence_t2_score 0.11510584 -0.2721320
## mndst_process_t2_score 0.58577976 -0.1206436
## mndst_exercise_t2_score 0.49644524 -0.3466998
## mndst_fail_t2_score 0.08139726 -0.5241453
## mndst_pers_t2_score 0.02478875 -0.2667106
## mndst_stress_t2_score 0.13865123 -0.1431586
## ffmq15_5f 0.17846455 -0.5561133
## MetAwa 0.40148555 0.1664356
## cmm_t2_score_6 -0.29773353 -0.6616062
## cmm_t2_score_4 -0.29273330 -0.6532246
## selfefficacy_score 0.52252851 -0.1643181
## posaff_sum 1.00000000 0.0739562
## negaff_sum 0.07395620 1.0000000
corrplot(cor.df) #visualize variable relations **
corrplot(cor.df, method="number", type="lower")
corrplot.mixed(cor.df)
#diff cor method, rounded
cor.r.df <-round(cor(cor.df),2)
cor.r.df ## pay attention to cmm4
## cmm_t2_score mndst_intelligence_t2_score
## cmm_t2_score 1.00 0.72
## mndst_intelligence_t2_score 0.72 1.00
## mndst_process_t2_score -0.49 -0.17
## mndst_exercise_t2_score -0.05 0.13
## mndst_fail_t2_score 0.90 0.68
## mndst_pers_t2_score 0.78 0.90
## mndst_stress_t2_score 0.19 0.26
## ffmq15_5f 0.82 0.61
## MetAwa -0.50 -0.35
## cmm_t2_score_6 0.99 0.69
## cmm_t2_score_4 0.99 0.69
## selfefficacy_score 0.04 0.11
## posaff_sum -0.66 -0.38
## negaff_sum -0.92 -0.68
## mndst_process_t2_score mndst_exercise_t2_score
## cmm_t2_score -0.49 -0.05
## mndst_intelligence_t2_score -0.17 0.13
## mndst_process_t2_score 1.00 0.75
## mndst_exercise_t2_score 0.75 1.00
## mndst_fail_t2_score -0.27 0.10
## mndst_pers_t2_score -0.28 0.02
## mndst_stress_t2_score 0.17 0.18
## ffmq15_5f -0.09 0.32
## MetAwa 0.31 0.07
## cmm_t2_score_6 -0.55 -0.11
## cmm_t2_score_4 -0.55 -0.11
## selfefficacy_score 0.50 0.54
## posaff_sum 0.84 0.61
## negaff_sum 0.14 -0.32
## mndst_fail_t2_score mndst_pers_t2_score
## cmm_t2_score 0.90 0.78
## mndst_intelligence_t2_score 0.68 0.90
## mndst_process_t2_score -0.27 -0.28
## mndst_exercise_t2_score 0.10 0.02
## mndst_fail_t2_score 1.00 0.67
## mndst_pers_t2_score 0.67 1.00
## mndst_stress_t2_score 0.41 0.18
## ffmq15_5f 0.82 0.62
## MetAwa -0.40 -0.45
## cmm_t2_score_6 0.87 0.76
## cmm_t2_score_4 0.87 0.76
## selfefficacy_score 0.19 0.04
## posaff_sum -0.45 -0.50
## negaff_sum -0.91 -0.70
## mndst_stress_t2_score ffmq15_5f MetAwa
## cmm_t2_score 0.19 0.82 -0.50
## mndst_intelligence_t2_score 0.26 0.61 -0.35
## mndst_process_t2_score 0.17 -0.09 0.31
## mndst_exercise_t2_score 0.18 0.32 0.07
## mndst_fail_t2_score 0.41 0.82 -0.40
## mndst_pers_t2_score 0.18 0.62 -0.45
## mndst_stress_t2_score 1.00 0.14 -0.31
## ffmq15_5f 0.14 1.00 -0.17
## MetAwa -0.31 -0.17 1.00
## cmm_t2_score_6 0.18 0.78 -0.54
## cmm_t2_score_4 0.17 0.78 -0.54
## selfefficacy_score -0.05 0.44 0.44
## posaff_sum -0.06 -0.24 0.59
## negaff_sum -0.31 -0.90 0.45
## cmm_t2_score_6 cmm_t2_score_4 selfefficacy_score
## cmm_t2_score 0.99 0.99 0.04
## mndst_intelligence_t2_score 0.69 0.69 0.11
## mndst_process_t2_score -0.55 -0.55 0.50
## mndst_exercise_t2_score -0.11 -0.11 0.54
## mndst_fail_t2_score 0.87 0.87 0.19
## mndst_pers_t2_score 0.76 0.76 0.04
## mndst_stress_t2_score 0.18 0.17 -0.05
## ffmq15_5f 0.78 0.78 0.44
## MetAwa -0.54 -0.54 0.44
## cmm_t2_score_6 1.00 1.00 -0.05
## cmm_t2_score_4 1.00 1.00 -0.05
## selfefficacy_score -0.05 -0.05 1.00
## posaff_sum -0.73 -0.72 0.59
## negaff_sum -0.89 -0.89 -0.23
## posaff_sum negaff_sum
## cmm_t2_score -0.66 -0.92
## mndst_intelligence_t2_score -0.38 -0.68
## mndst_process_t2_score 0.84 0.14
## mndst_exercise_t2_score 0.61 -0.32
## mndst_fail_t2_score -0.45 -0.91
## mndst_pers_t2_score -0.50 -0.70
## mndst_stress_t2_score -0.06 -0.31
## ffmq15_5f -0.24 -0.90
## MetAwa 0.59 0.45
## cmm_t2_score_6 -0.73 -0.89
## cmm_t2_score_4 -0.72 -0.89
## selfefficacy_score 0.59 -0.23
## posaff_sum 1.00 0.39
## negaff_sum 0.39 1.00
#pmatrix
library(ggcorrplot)
p.mat.df <- cor_pmat(cor.df)
ggcorrplot(cor.df)
ggcorrplot(cor.df, p.mat = p.mat.df) ##pmatrix of correllogram - X = nonsig at <.05 -
#CMM4 sig relationship with intel, process, fail, pers, mindfulness, metaAwa,pos, neg aff
#use corrplot for p-matrix, last coeff seemd high using ggplot
corp3 <- cor.mtest(cor.df, conf.level = .95)
corrplot(cor.df, p.mat = corp3$p, sig.level = .05)
#scatter plots with fitted lines - simple linear models with mindfulness and mindsets (Y ~ X=CMM)
#scatterplot with fitted line cmm x ffmq
ggplot(df, aes(x = cmm_t2_score_4, y = ffmq15_5f)) +
geom_point() +
stat_smooth()
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
#scatterplot with fitted line cmm x sfmm mindset
ggplot(df, aes(x = cmm_t2_score_4, y = sfmm_all9_t2_score)) +
geom_point() +
stat_smooth()
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
#intelligence
ggplot(df, aes(x = cmm_t2_score_4, y = mndst_intelligence_t2_score)) +
geom_point() +
stat_smooth()
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
#exercise
ggplot(df, aes(x = cmm_t2_score_4, y = mndst_exercise_t2_score)) +
geom_point() +
stat_smooth()
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
#fail
ggplot(df, aes(x = cmm_t2_score_4, y = mndst_fail_t2_score)) +
geom_point() +
stat_smooth()
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
#pers
ggplot(df, aes(x = cmm_t2_score_4, y = mndst_pers_t2_score)) +
geom_point() +
stat_smooth()
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
#stress
ggplot(df, aes(x = cmm_t2_score_4, y = mndst_stress_t2_score)) +
geom_point() +
stat_smooth()
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
#process
ggplot(df, aes(x = cmm_t2_score_4, y = mndst_process_t2_score)) +
geom_point() +
stat_smooth()
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
#Metawareness
ggplot(df, aes(x = cmm_t2_score_4, y = MetAwa)) +
geom_point() +
stat_smooth()
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
#self-eff
ggplot(df, aes(x = cmm_t2_score_4, y = selfefficacy_score)) +
geom_point() +
stat_smooth()
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
#pos aff
ggplot(df, aes(x = cmm_t2_score_4, y = posaff_sum)) +
geom_point() +
stat_smooth()
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
#neg aff
ggplot(df, aes(x = cmm_t2_score_4, y = negaff_sum)) +
geom_point() +
stat_smooth()
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
#simple linear models with mindfulness and mindsets and other variables
##build linear regression variables for summary statistics -
#mindfulness
df.lm.4.ffmq <- lm(ffmq15_5f ~ cmm_t2_score_4, data=df)
#failure
df.lm.4.fail<- lm(mndst_fail_t2_score ~ cmm_t2_score_4, data=df)
#intelligence
df.lm.4.int<- lm(mndst_intelligence_t2_score ~ cmm_t2_score_4, data=df)
#persistence
df.lm.4.pers<- lm(mndst_pers_t2_score ~ cmm_t2_score_4, data=df)
#process
df.lm.4.proc<- lm(mndst_process_t2_score ~ cmm_t2_score_4, data=df)
#exercise
df.lm.4.exer<- lm(mndst_exercise_t2_score ~ cmm_t2_score_4, data=df)
#stress
df.lm.4.str<- lm(mndst_stress_t2_score ~ cmm_t2_score_4, data=df)
#sfmm
df.lm.4.sfmm <- lm(sfmm_all9_t2_score ~ cmm_t2_score_4, data=df)
#metaawa
df.lm.4.met <- lm(MetAwa ~ cmm_t2_score_4, data=df)
#self-eff
df.lm.4.eff <- lm(selfefficacy_score ~ cmm_t2_score_4, data=df)
#posaff
df.lm.4.pos <- lm(posaff_sum ~ cmm_t2_score_4, data=df)
#negaff
df.lm.4.neg <- lm(negaff_sum ~ cmm_t2_score_4, data=df)
#summary of models - sig predictor linear models CMM predicts ffmq, fail, int, pers, proc, str, metAwa, self-eff
#sig
summary(df.lm.4.ffmq)
##
## Call:
## lm(formula = ffmq15_5f ~ cmm_t2_score_4, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -14.0634 -2.7395 0.1322 2.4069 13.9366
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 32.0838 0.5800 55.32 <2e-16 ***
## cmm_t2_score_4 2.0522 0.1721 11.93 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.449 on 322 degrees of freedom
## Multiple R-squared: 0.3064, Adjusted R-squared: 0.3043
## F-statistic: 142.3 on 1 and 322 DF, p-value: < 2.2e-16
summary(df.lm.4.fail)
##
## Call:
## lm(formula = mndst_fail_t2_score ~ cmm_t2_score_4, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.88909 -0.36720 -0.03387 0.29947 2.21750
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.85626 0.08232 34.70 <2e-16 ***
## cmm_t2_score_4 0.33881 0.02442 13.87 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6314 on 322 degrees of freedom
## Multiple R-squared: 0.3741, Adjusted R-squared: 0.3721
## F-statistic: 192.4 on 1 and 322 DF, p-value: < 2.2e-16
summary(df.lm.4.int)
##
## Call:
## lm(formula = mndst_intelligence_t2_score ~ cmm_t2_score_4, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3739 -0.2493 0.0010 0.3756 2.1883
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.93710 0.10100 29.08 < 2e-16 ***
## cmm_t2_score_4 0.24988 0.02996 8.34 2.2e-15 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7747 on 322 degrees of freedom
## Multiple R-squared: 0.1776, Adjusted R-squared: 0.1751
## F-statistic: 69.55 on 1 and 322 DF, p-value: 2.202e-15
summary(df.lm.4.pers)
##
## Call:
## lm(formula = mndst_pers_t2_score ~ cmm_t2_score_4, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1527 -0.3021 0.0805 0.4143 2.5881
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.25947 0.11654 27.968 <2e-16 ***
## cmm_t2_score_4 0.32926 0.03457 9.523 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8939 on 322 degrees of freedom
## Multiple R-squared: 0.2198, Adjusted R-squared: 0.2173
## F-statistic: 90.69 on 1 and 322 DF, p-value: < 2.2e-16
summary(df.lm.4.proc)
##
## Call:
## lm(formula = mndst_process_t2_score ~ cmm_t2_score_4, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.31301 -0.38885 -0.04165 0.34901 1.27830
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.19885 0.07390 43.286 < 2e-16 ***
## cmm_t2_score_4 -0.07952 0.02192 -3.627 0.000333 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5668 on 322 degrees of freedom
## Multiple R-squared: 0.03926, Adjusted R-squared: 0.03627
## F-statistic: 13.16 on 1 and 322 DF, p-value: 0.000333
summary(df.lm.4.str)
##
## Call:
## lm(formula = mndst_stress_t2_score ~ cmm_t2_score_4, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.28656 -0.27528 0.02818 0.31885 1.83692
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.88899 0.08797 21.474 <2e-16 ***
## cmm_t2_score_4 0.06626 0.02610 2.539 0.0116 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6747 on 322 degrees of freedom
## Multiple R-squared: 0.01963, Adjusted R-squared: 0.01658
## F-statistic: 6.447 on 1 and 322 DF, p-value: 0.01159
summary(df.lm.4.met)
##
## Call:
## lm(formula = MetAwa ~ cmm_t2_score_4, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -9.1900 -1.8541 0.0931 1.7553 6.1384
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 16.1296 0.3599 44.822 <2e-16 ***
## cmm_t2_score_4 -0.2113 0.1068 -1.979 0.0486 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.76 on 322 degrees of freedom
## Multiple R-squared: 0.01202, Adjusted R-squared: 0.008954
## F-statistic: 3.918 on 1 and 322 DF, p-value: 0.04862
summary(df.lm.4.eff)
##
## Call:
## lm(formula = selfefficacy_score ~ cmm_t2_score_4, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -12.097 -3.092 -0.183 3.183 9.183
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 30.3604 0.5721 53.064 <2e-16 ***
## cmm_t2_score_4 0.3656 0.1697 2.154 0.032 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.389 on 322 degrees of freedom
## Multiple R-squared: 0.0142, Adjusted R-squared: 0.01114
## F-statistic: 4.64 on 1 and 322 DF, p-value: 0.03199
summary(df.lm.4.pos)
##
## Call:
## lm(formula = posaff_sum ~ cmm_t2_score_4, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -20.180 -4.300 0.334 4.466 15.820
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 38.3605 0.9389 40.858 < 2e-16 ***
## cmm_t2_score_4 -1.5302 0.2785 -5.494 8.01e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 7.202 on 322 degrees of freedom
## Multiple R-squared: 0.08569, Adjusted R-squared: 0.08285
## F-statistic: 30.18 on 1 and 322 DF, p-value: 8.012e-08
summary(df.lm.4.neg)
##
## Call:
## lm(formula = negaff_sum ~ cmm_t2_score_4, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -25.4406 -5.5408 0.5393 6.5960 16.7659
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 42.0739 1.1554 36.41 <2e-16 ***
## cmm_t2_score_4 -5.3066 0.3428 -15.48 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8.863 on 322 degrees of freedom
## Multiple R-squared: 0.4267, Adjusted R-squared: 0.4249
## F-statistic: 239.7 on 1 and 322 DF, p-value: < 2.2e-16
#nonsig - interesting that only variables cmm did not significantly predict was exercise and sfmm
summary(df.lm.4.exer)
##
## Call:
## lm(formula = mndst_exercise_t2_score ~ cmm_t2_score_4, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.2946 -0.6702 -0.1503 0.7572 2.3744
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.58593 0.15204 30.16 <2e-16 ***
## cmm_t2_score_4 0.03971 0.04511 0.88 0.379
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.166 on 322 degrees of freedom
## Multiple R-squared: 0.002402, Adjusted R-squared: -0.0006964
## F-statistic: 0.7752 on 1 and 322 DF, p-value: 0.3793
summary(df.lm.4.sfmm)
##
## Call:
## lm(formula = sfmm_all9_t2_score ~ cmm_t2_score_4, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.42687 -0.50363 0.03594 0.48038 1.27041
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.69898 0.08782 53.51 <2e-16 ***
## cmm_t2_score_4 0.02449 0.02605 0.94 0.348
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6736 on 322 degrees of freedom
## Multiple R-squared: 0.002737, Adjusted R-squared: -0.0003604
## F-statistic: 0.8836 on 1 and 322 DF, p-value: 0.3479
##looking at data descriptives again by cond
describe.by(df, df$condition) #outcome variables by condition # abr > active control > full intervention
## Warning: describe.by is deprecated. Please use the describeBy function
##
## Descriptive statistics by group
## group: abr_intervention
## vars n mean sd median trimmed mad min
## ffmq15_5f 1 112 38.58 4.94 37.67 38.05 3.95 30.67
## ffmq_obs 2 112 8.49 1.78 8.33 8.49 1.98 3.67
## ffmq_des 3 112 8.01 1.64 7.67 7.90 1.48 4.33
## ffmq_awa 4 112 7.29 2.40 7.00 7.29 2.47 2.33
## ffmq_nj 5 112 6.60 2.22 6.33 6.46 2.47 2.33
## ffmq_nr 6 112 8.18 1.81 8.33 8.22 1.98 2.33
## MetAwa 7 112 15.41 2.76 15.00 15.48 2.67 7.20
## cmm_t2_score 8 112 3.86 0.99 3.40 3.72 0.59 2.80
## mndst_intelligence_t2_score 9 112 3.67 0.88 3.50 3.65 0.56 1.00
## mndst_process_t2_score 10 112 2.96 0.56 3.00 2.96 0.64 1.71
## mndst_exercise_t2_score 11 112 4.76 1.28 4.62 4.78 1.16 1.48
## mndst_fail_t2_score 12 112 3.90 0.85 3.67 3.80 0.49 1.67
## mndst_pers_t2_score 13 112 4.39 1.06 4.12 4.31 0.56 1.38
## mndst_stress_t2_score 14 112 2.18 0.68 2.12 2.16 0.46 0.00
## subid_final 15 112 157.51 95.02 159.50 156.89 123.80 1.00
## condition* 16 112 1.00 0.00 1.00 1.00 0.00 1.00
## sfmm_all9_t2_score 17 112 4.85 0.62 4.89 4.85 0.66 3.33
## cmm_t2_score_6 18 112 3.15 1.48 2.67 3.00 1.24 1.17
## selfefficacy_score 19 112 31.68 4.49 30.50 31.74 3.71 20.00
## posaff_sum 20 112 33.31 7.56 34.50 33.87 6.67 11.00
## negaff_sum 21 112 24.68 11.58 25.00 24.09 16.31 10.00
## cmm_t2_score_4 22 112 3.16 1.50 2.75 3.03 1.11 1.25
## max range skew kurtosis se
## ffmq15_5f 58.33 27.67 1.18 1.81 0.47
## ffmq_obs 11.67 8.00 -0.06 -0.53 0.17
## ffmq_des 11.67 7.33 0.53 -0.23 0.16
## ffmq_awa 11.67 9.33 0.02 -0.70 0.23
## ffmq_nj 11.67 9.33 0.47 -0.39 0.21
## ffmq_nr 11.67 9.33 -0.41 0.73 0.17
## MetAwa 21.00 13.80 -0.36 0.40 0.26
## cmm_t2_score 6.00 3.20 1.09 -0.23 0.09
## mndst_intelligence_t2_score 6.00 5.00 0.21 1.17 0.08
## mndst_process_t2_score 4.00 2.29 -0.03 -0.58 0.05
## mndst_exercise_t2_score 7.00 5.52 -0.13 -0.20 0.12
## mndst_fail_t2_score 6.00 4.33 0.85 0.73 0.08
## mndst_pers_t2_score 7.00 5.62 0.65 0.58 0.10
## mndst_stress_t2_score 4.00 4.00 0.07 1.98 0.06
## subid_final 320.00 319.00 0.04 -1.21 8.98
## condition* 1.00 0.00 NaN NaN 0.00
## sfmm_all9_t2_score 6.00 2.67 -0.07 -0.57 0.06
## cmm_t2_score_6 6.00 4.83 0.80 -0.74 0.14
## selfefficacy_score 40.00 20.00 -0.07 -0.39 0.42
## posaff_sum 45.00 34.00 -0.68 0.07 0.71
## negaff_sum 48.00 38.00 0.24 -1.25 1.09
## cmm_t2_score_4 6.00 4.75 0.74 -0.80 0.14
## ------------------------------------------------------------
## group: active_control
## vars n mean sd median trimmed mad min
## ffmq15_5f 1 107 38.40 5.47 37.33 37.87 4.45 27.33
## ffmq_obs 2 107 8.63 1.69 8.67 8.70 1.48 4.33
## ffmq_des 3 107 7.71 1.81 7.67 7.65 1.98 3.33
## ffmq_awa 4 107 7.25 2.53 7.00 7.20 2.97 2.33
## ffmq_nj 5 107 6.59 2.77 6.00 6.48 2.97 2.33
## ffmq_nr 6 107 8.22 2.09 8.00 8.27 2.47 2.33
## MetAwa 7 107 15.61 2.71 15.60 15.67 2.97 8.00
## cmm_t2_score 8 107 3.73 0.84 3.30 3.60 0.44 2.80
## mndst_intelligence_t2_score 9 107 3.69 0.85 3.62 3.62 0.56 1.00
## mndst_process_t2_score 10 107 2.93 0.60 2.86 2.93 0.64 1.43
## mndst_exercise_t2_score 11 107 4.57 1.19 4.52 4.58 0.89 1.68
## mndst_fail_t2_score 12 107 3.87 0.75 3.67 3.78 0.49 2.17
## mndst_pers_t2_score 13 107 4.13 1.03 4.00 4.09 0.37 1.00
## mndst_stress_t2_score 14 107 1.83 0.67 1.88 1.88 0.56 0.00
## subid_final 15 107 168.17 95.72 165.00 169.05 127.50 3.00
## condition* 16 107 1.00 0.00 1.00 1.00 0.00 1.00
## sfmm_all9_t2_score 17 107 4.72 0.67 4.78 4.75 0.82 2.33
## cmm_t2_score_6 18 107 2.98 1.39 2.50 2.83 1.24 1.17
## selfefficacy_score 19 107 31.86 4.25 32.00 31.97 4.45 21.00
## posaff_sum 20 107 34.09 7.98 35.00 34.83 7.41 9.00
## negaff_sum 21 107 26.38 12.14 27.00 26.11 14.83 10.00
## cmm_t2_score_4 22 107 3.00 1.42 2.50 2.86 1.11 1.00
## max range skew kurtosis se
## ffmq15_5f 56.67 29.33 1.05 1.23 0.53
## ffmq_obs 11.67 7.33 -0.35 -0.45 0.16
## ffmq_des 11.67 8.33 0.31 -0.13 0.18
## ffmq_awa 11.67 9.33 0.18 -0.96 0.24
## ffmq_nj 11.67 9.33 0.43 -0.90 0.27
## ffmq_nr 11.67 9.33 -0.29 -0.33 0.20
## MetAwa 21.00 13.00 -0.17 -0.60 0.26
## cmm_t2_score 6.00 3.20 1.28 0.50 0.08
## mndst_intelligence_t2_score 6.00 5.00 0.60 2.08 0.08
## mndst_process_t2_score 4.00 2.57 -0.16 -0.43 0.06
## mndst_exercise_t2_score 7.00 5.32 -0.05 -0.08 0.12
## mndst_fail_t2_score 6.00 3.83 1.14 0.98 0.07
## mndst_pers_t2_score 7.00 6.00 0.36 2.28 0.10
## mndst_stress_t2_score 4.00 4.00 -0.51 1.04 0.07
## subid_final 323.00 320.00 -0.06 -1.38 9.25
## condition* 1.00 0.00 NaN NaN 0.00
## sfmm_all9_t2_score 6.00 3.67 -0.52 0.28 0.06
## cmm_t2_score_6 6.00 4.83 0.82 -0.59 0.13
## selfefficacy_score 40.00 19.00 -0.27 -0.37 0.41
## posaff_sum 45.00 36.00 -0.81 0.20 0.77
## negaff_sum 50.00 40.00 0.01 -1.39 1.17
## cmm_t2_score_4 6.00 5.00 0.72 -0.72 0.14
## ------------------------------------------------------------
## group: full_intervention
## vars n mean sd median trimmed mad min
## ffmq15_5f 1 105 38.03 5.62 37.00 37.38 4.45 27.67
## ffmq_obs 2 105 8.63 1.48 8.33 8.64 1.48 4.67
## ffmq_des 3 105 7.60 1.75 7.67 7.51 1.98 3.67
## ffmq_awa 4 105 7.08 2.26 6.67 7.04 2.97 2.33
## ffmq_nj 5 105 6.64 2.47 6.00 6.51 2.47 2.33
## ffmq_nr 6 105 8.08 1.89 8.00 8.11 1.98 2.33
## MetAwa 7 105 15.43 2.87 15.80 15.56 2.97 6.20
## cmm_t2_score 8 105 3.74 0.92 3.40 3.60 0.44 2.70
## mndst_intelligence_t2_score 9 105 3.73 0.84 3.62 3.63 0.56 1.00
## mndst_process_t2_score 10 105 2.99 0.58 3.00 2.98 0.64 1.71
## mndst_exercise_t2_score 11 105 4.79 1.00 4.52 4.72 0.89 1.88
## mndst_fail_t2_score 12 105 3.89 0.79 3.67 3.77 0.25 2.83
## mndst_pers_t2_score 13 105 4.26 0.92 4.12 4.15 0.56 2.25
## mndst_stress_t2_score 14 105 2.27 0.61 2.12 2.20 0.37 1.00
## subid_final 15 105 162.05 90.66 167.00 161.49 111.19 4.00
## condition* 16 105 1.00 0.00 1.00 1.00 0.00 1.00
## sfmm_all9_t2_score 17 105 4.75 0.73 4.78 4.76 0.66 2.56
## cmm_t2_score_6 18 105 3.01 1.36 2.50 2.87 0.99 1.00
## selfefficacy_score 19 105 30.87 4.47 30.00 30.78 5.93 22.00
## posaff_sum 20 105 33.70 7.03 34.00 33.91 7.41 16.00
## negaff_sum 21 105 26.69 11.33 28.00 26.48 13.34 10.00
## cmm_t2_score_4 22 105 2.98 1.40 2.50 2.84 1.11 1.00
## max range skew kurtosis se
## ffmq15_5f 58.33 30.67 1.31 2.29 0.55
## ffmq_obs 11.67 7.00 0.00 -0.27 0.14
## ffmq_des 11.67 8.00 0.41 0.06 0.17
## ffmq_awa 11.67 9.33 0.17 -0.76 0.22
## ffmq_nj 11.67 9.33 0.39 -0.59 0.24
## ffmq_nr 11.67 9.33 -0.21 -0.36 0.18
## MetAwa 21.00 14.80 -0.45 -0.02 0.28
## cmm_t2_score 6.00 3.30 1.33 0.52 0.09
## mndst_intelligence_t2_score 6.00 5.00 1.04 2.25 0.08
## mndst_process_t2_score 4.00 2.29 0.11 -0.72 0.06
## mndst_exercise_t2_score 7.00 5.12 0.48 0.16 0.10
## mndst_fail_t2_score 6.00 3.17 1.39 1.07 0.08
## mndst_pers_t2_score 7.00 4.75 1.26 1.77 0.09
## mndst_stress_t2_score 4.00 3.00 1.03 1.17 0.06
## subid_final 324.00 320.00 0.02 -1.09 8.85
## condition* 1.00 0.00 NaN NaN 0.00
## sfmm_all9_t2_score 6.00 3.44 -0.33 0.00 0.07
## cmm_t2_score_6 6.00 5.00 0.89 -0.30 0.13
## selfefficacy_score 40.00 18.00 0.12 -0.78 0.44
## posaff_sum 45.00 29.00 -0.34 -0.55 0.69
## negaff_sum 47.00 37.00 -0.02 -1.23 1.11
## cmm_t2_score_4 6.00 5.00 0.82 -0.41 0.14
describe.by(d.cmm.4, d.cmm.4$condition) ##cmm score by condition
## Warning: describe.by is deprecated. Please use the describeBy function
##
## Descriptive statistics by group
## group: abr_intervention
## vars n mean sd median trimmed mad min max range skew
## subid_final* 1 112 157.51 95.02 159.50 156.89 123.80 1.00 320 319.00 0.04
## condition* 2 112 1.00 0.00 1.00 1.00 0.00 1.00 1 0.00 NaN
## time* 3 112 1.00 0.00 1.00 1.00 0.00 1.00 1 0.00 NaN
## score 4 112 3.16 1.50 2.75 3.03 1.11 1.25 6 4.75 0.74
## kurtosis se
## subid_final* -1.21 8.98
## condition* NaN 0.00
## time* NaN 0.00
## score -0.80 0.14
## ------------------------------------------------------------
## group: active_control
## vars n mean sd median trimmed mad min max range skew
## subid_final* 1 107 168.17 95.72 165.0 169.05 127.50 3 323 320 -0.06
## condition* 2 107 2.00 0.00 2.0 2.00 0.00 2 2 0 NaN
## time* 3 107 1.00 0.00 1.0 1.00 0.00 1 1 0 NaN
## score 4 107 3.00 1.42 2.5 2.86 1.11 1 6 5 0.72
## kurtosis se
## subid_final* -1.38 9.25
## condition* NaN 0.00
## time* NaN 0.00
## score -0.72 0.14
## ------------------------------------------------------------
## group: full_intervention
## vars n mean sd median trimmed mad min max range skew
## subid_final* 1 105 162.05 90.66 167.0 161.49 111.19 4 324 320 0.02
## condition* 2 105 3.00 0.00 3.0 3.00 0.00 3 3 0 NaN
## time* 3 105 1.00 0.00 1.0 1.00 0.00 1 1 0 NaN
## score 4 105 2.98 1.40 2.5 2.84 1.11 1 6 5 0.82
## kurtosis se
## subid_final* -1.09 8.85
## condition* NaN 0.00
## time* NaN 0.00
## score -0.41 0.14
##boxplots by condition for CMM
boxplot( score ~ condition, data = d.cmm.4)
boxplot(cmm_t2_score_4 ~ condition, data = df)
boxplot(df$cmm_t2_score_4 ~ df$condition, main = "Boxplot", xlab = "Group condition", ylab = "CMM")
#looking at different mediation models --really this is just controlling for next variable?
model_sfmx <- lm(sfmm_all9_t2_score ~ cmm_t2_score_4, data = df)
model_mx <- lm(MetAwa ~ cmm_t2_score_4, data = df)
model_mxmm <- lm(ffmq15_5f ~ cmm_t2_score_4, data = df)
model_sfxm <- lm(sfmm_all9_t2_score ~ cmm_t2_score_4 + MetAwa, data = df) ##or high MA moderates the predictino of cmm to sfmm?
model_sfxmm <- lm(sfmm_all9_t2_score ~ cmm_t2_score_4 + ffmq15_5f, data = df) ## the impact of cmm on sfmm is mediated by mindfulness
summary(model_sfmx)
##
## Call:
## lm(formula = sfmm_all9_t2_score ~ cmm_t2_score_4, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.42687 -0.50363 0.03594 0.48038 1.27041
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.69898 0.08782 53.51 <2e-16 ***
## cmm_t2_score_4 0.02449 0.02605 0.94 0.348
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6736 on 322 degrees of freedom
## Multiple R-squared: 0.002737, Adjusted R-squared: -0.0003604
## F-statistic: 0.8836 on 1 and 322 DF, p-value: 0.3479
summary(model_mx)
##
## Call:
## lm(formula = MetAwa ~ cmm_t2_score_4, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -9.1900 -1.8541 0.0931 1.7553 6.1384
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 16.1296 0.3599 44.822 <2e-16 ***
## cmm_t2_score_4 -0.2113 0.1068 -1.979 0.0486 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.76 on 322 degrees of freedom
## Multiple R-squared: 0.01202, Adjusted R-squared: 0.008954
## F-statistic: 3.918 on 1 and 322 DF, p-value: 0.04862
summary(model_mxmm)
##
## Call:
## lm(formula = ffmq15_5f ~ cmm_t2_score_4, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -14.0634 -2.7395 0.1322 2.4069 13.9366
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 32.0838 0.5800 55.32 <2e-16 ***
## cmm_t2_score_4 2.0522 0.1721 11.93 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.449 on 322 degrees of freedom
## Multiple R-squared: 0.3064, Adjusted R-squared: 0.3043
## F-statistic: 142.3 on 1 and 322 DF, p-value: < 2.2e-16
summary(model_sfxm)
##
## Call:
## lm(formula = sfmm_all9_t2_score ~ cmm_t2_score_4 + MetAwa, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.15737 -0.38741 0.02108 0.38119 1.65434
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.02789 0.21427 14.131 < 2e-16 ***
## cmm_t2_score_4 0.04639 0.02377 1.951 0.0519 .
## MetAwa 0.10360 0.01233 8.401 1.45e-15 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6109 on 321 degrees of freedom
## Multiple R-squared: 0.1825, Adjusted R-squared: 0.1774
## F-statistic: 35.82 on 2 and 321 DF, p-value: 9.053e-15
summary(model_sfxmm)
##
## Call:
## lm(formula = sfmm_all9_t2_score ~ cmm_t2_score_4 + ffmq15_5f,
## data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.43103 -0.44074 0.05335 0.46897 1.49210
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.579505 0.277401 12.904 < 2e-16 ***
## cmm_t2_score_4 -0.047113 0.030490 -1.545 0.123
## ffmq15_5f 0.034892 0.008224 4.243 2.89e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6565 on 321 degrees of freedom
## Multiple R-squared: 0.05569, Adjusted R-squared: 0.0498
## F-statistic: 9.465 on 2 and 321 DF, p-value: 0.0001014
#looking at different mediation models
model_yxi <- lm(mndst_intelligence_t2_score ~ cmm_t2_score_4, data = df)
model_mxi <- lm(MetAwa ~ cmm_t2_score_4, data = df)
model_yxmi <- lm(mndst_intelligence_t2_score ~ cmm_t2_score_4 + MetAwa, data = df)
model_yxmmi <- lm(mndst_intelligence_t2_score~ cmm_t2_score_4 + ffmq15_5f, data = df)
summary(model_yxi)
##
## Call:
## lm(formula = mndst_intelligence_t2_score ~ cmm_t2_score_4, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3739 -0.2493 0.0010 0.3756 2.1883
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.93710 0.10100 29.08 < 2e-16 ***
## cmm_t2_score_4 0.24988 0.02996 8.34 2.2e-15 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7747 on 322 degrees of freedom
## Multiple R-squared: 0.1776, Adjusted R-squared: 0.1751
## F-statistic: 69.55 on 1 and 322 DF, p-value: 2.202e-15
summary(model_mxi)
##
## Call:
## lm(formula = MetAwa ~ cmm_t2_score_4, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -9.1900 -1.8541 0.0931 1.7553 6.1384
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 16.1296 0.3599 44.822 <2e-16 ***
## cmm_t2_score_4 -0.2113 0.1068 -1.979 0.0486 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.76 on 322 degrees of freedom
## Multiple R-squared: 0.01202, Adjusted R-squared: 0.008954
## F-statistic: 3.918 on 1 and 322 DF, p-value: 0.04862
summary(model_yxmi)
##
## Call:
## lm(formula = mndst_intelligence_t2_score ~ cmm_t2_score_4 + MetAwa,
## data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4749 -0.2793 0.0459 0.3426 2.1235
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.07284 0.26715 7.759 1.15e-13 ***
## cmm_t2_score_4 0.26120 0.02964 8.814 < 2e-16 ***
## MetAwa 0.05358 0.01538 3.485 0.000561 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7616 on 321 degrees of freedom
## Multiple R-squared: 0.2076, Adjusted R-squared: 0.2027
## F-statistic: 42.05 on 2 and 321 DF, p-value: < 2.2e-16
summary(model_yxmmi)
##
## Call:
## lm(formula = mndst_intelligence_t2_score ~ cmm_t2_score_4 + ffmq15_5f,
## data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.7777 -0.2644 0.0137 0.3360 2.4602
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.837682 0.321424 5.717 2.48e-08 ***
## cmm_t2_score_4 0.179557 0.035329 5.082 6.34e-07 ***
## ffmq15_5f 0.034267 0.009529 3.596 0.000374 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7607 on 321 degrees of freedom
## Multiple R-squared: 0.2095, Adjusted R-squared: 0.2045
## F-statistic: 42.53 on 2 and 321 DF, p-value: < 2.2e-16
#looking at different moderation models
model_sfxc <- lm(sfmm_all9_t2_score ~ condition, data = df)
model_sfmxc <- lm(cmm_t2_score_4 ~ condition, data = df)
model_sfmcxc <- lm(sfmm_all9_t2_score ~ condition + cmm_t2_score_4, data = df)
summary(model_sfxc)
##
## Call:
## lm(formula = sfmm_all9_t2_score ~ condition, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.38318 -0.49429 0.03472 0.47619 1.28349
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.85417 0.06359 76.341 <2e-16 ***
## conditionactive_control -0.13766 0.09097 -1.513 0.131
## conditionfull_intervention -0.10813 0.09141 -1.183 0.238
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6729 on 321 degrees of freedom
## Multiple R-squared: 0.007887, Adjusted R-squared: 0.001705
## F-statistic: 1.276 on 2 and 321 DF, p-value: 0.2806
summary(model_sfmxc)
##
## Call:
## lm(formula = cmm_t2_score_4 ~ condition, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.0023 -1.1607 -0.4786 0.8789 3.0214
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.1607 0.1361 23.217 <2e-16 ***
## conditionactive_control -0.1584 0.1948 -0.813 0.417
## conditionfull_intervention -0.1821 0.1957 -0.931 0.353
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.441 on 321 degrees of freedom
## Multiple R-squared: 0.003219, Adjusted R-squared: -0.002992
## F-statistic: 0.5183 on 2 and 321 DF, p-value: 0.5961
summary(model_sfmcxc)
##
## Call:
## lm(formula = sfmm_all9_t2_score ~ condition + cmm_t2_score_4,
## data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.37196 -0.49005 0.04423 0.49385 1.27238
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.78361 0.10412 45.942 <2e-16 ***
## conditionactive_control -0.13412 0.09110 -1.472 0.142
## conditionfull_intervention -0.10407 0.09157 -1.136 0.257
## cmm_t2_score_4 0.02232 0.02608 0.856 0.393
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6732 on 320 degrees of freedom
## Multiple R-squared: 0.01015, Adjusted R-squared: 0.0008734
## F-statistic: 1.094 on 3 and 320 DF, p-value: 0.3517
does CMM moderate the effect of condition on mindsets (sfmm main +)?
Compute the interaction term XZ=X*Z. Fit a multiple regression model with X, Z, and XZ as predictors. Test whether the regression coefficient for XZ is significant or not. Interpret the moderation effect. Display the moderation effect graphically.
#computer interaction term XZ=X*Z
xz<- df$sfmm_all9_t2_score * df$cmm_t2_score_4 #interaction term using x = sfmm z (moderator) = cmm
summary(lm(df$mndst_intelligence_t2_score ~ df$sfmm_all9_t2_score + df$cmm_t2_score_4 + xz)) #using x, z, and xz as predictors
##
## Call:
## lm(formula = df$mndst_intelligence_t2_score ~ df$sfmm_all9_t2_score +
## df$cmm_t2_score_4 + xz)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4284 -0.2498 0.0367 0.3420 2.5953
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.99000 0.81262 4.910 1.45e-06 ***
## df$sfmm_all9_t2_score -0.18745 0.16072 -1.166 0.24436
## df$cmm_t2_score_4 -0.47105 0.23232 -2.028 0.04343 *
## xz 0.13968 0.04508 3.098 0.00212 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7439 on 320 degrees of freedom
## Multiple R-squared: 0.2464, Adjusted R-squared: 0.2394
## F-statistic: 34.88 on 3 and 320 DF, p-value: < 2.2e-16
# p <.01 suggests there is a sig moderation effect - in other words there is a significant relationship such that sf is moderated by cmm to predict intelligence mindset - the relation between sfmm and int mindset significantly depends on different levels of CMM
#plug in some other mindsets for same model does CMM moderate relationship of SFMM and mindsets?
#computer interaction term XZ=X*Z
xzmi <- df$sfmm_all9_t2_score * df$cmm_t2_score_4 #interaction term using x = sfmm z (moderator) = cmm
summary(lm(df$mndst_stress_t2_score~ df$sfmm_all9_t2_score + df$cmm_t2_score_4 + xzmi)) #using x, z, and xz as predictors
##
## Call:
## lm(formula = df$mndst_stress_t2_score ~ df$sfmm_all9_t2_score +
## df$cmm_t2_score_4 + xzmi)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.6149 -0.3212 0.0230 0.3241 1.7569
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.48866 0.67644 6.636 1.38e-10 ***
## df$sfmm_all9_t2_score -0.49342 0.13379 -3.688 0.000265 ***
## df$cmm_t2_score_4 -1.10680 0.19339 -5.723 2.40e-08 ***
## xzmi 0.22816 0.03753 6.080 3.42e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6192 on 320 degrees of freedom
## Multiple R-squared: 0.1795, Adjusted R-squared: 0.1718
## F-statistic: 23.33 on 3 and 320 DF, p-value: 1.103e-13
# the relationship between sfmm and mindsets (process, exercise, fail, pers, stress) significantly depends on different levels of CMM
#computer interaction term XZ=X*Z
xzm<- df$cmm_t2_score * df$ffmq15_5f #interaction term using x = sfmm z (moderator) = cmm
summary(lm(df$sfmm_all9_t2_score ~ df$cmm_t2_score_4 + df$ffmq15_5f + xzm)) #using x, z, and xz as predictors
##
## Call:
## lm(formula = df$sfmm_all9_t2_score ~ df$cmm_t2_score_4 + df$ffmq15_5f +
## xzm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.52471 -0.35698 0.06422 0.36317 1.93081
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.50386 0.40254 16.157 < 2e-16 ***
## df$cmm_t2_score_4 -0.54987 0.06101 -9.012 < 2e-16 ***
## df$ffmq15_5f -0.08843 0.01527 -5.790 1.68e-08 ***
## xzm 0.02254 0.00245 9.202 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5847 on 320 degrees of freedom
## Multiple R-squared: 0.2533, Adjusted R-squared: 0.2463
## F-statistic: 36.18 on 3 and 320 DF, p-value: < 2.2e-16
# p <.0001 suggests there is a sig moderation effect - in other words there is a significant relationship such that the relationship between CMM and mindset (intelligence, process, exercise, fail, pers, stress, sfmm ) significantly depends on different levels of mindfulness
#plug in some other mindsets for same model does mindfulness moderate relationship of CMM and mindsets?