IS415-Geospatial Analytics and Applications: Take Home Ex3
Harvey Lauw
Note: Recommend to use Navigation bar on the left as code chunkz may be too long for scrolling.
Overview
Objectives
Brazil is the world’s fifth-largest country by area and the sixth most populous. Brazil is classified as an upper-middle income economy by the World Bank and a developing country, with the largest share of global wealth in Latin America. It is considered an advanced emerging economy.
It has the ninth largest GDP in the world by nominal, and eighth by PPP measures. Behind all this impressive figures, the spatial development of Brazil is highly unequal as shown in the figure on the right. In 2016, the GDP per capita of the poorest municipality is R$3,190.6. On the other hand, the GDP per capita of the richest municipality is R$314,638. Half of the municipalities have GDP per capita less than R$16,000 and the top 25% municipalities earn R$26,155 and above.
Installing and Launching R Packages
Importing data
Initial Data preparation and Analysis
Preparing a series of choropleth maps showing the distribution of spatial specialisation by industry type, 2016 at municipality level.
Referencing to https://en.wikipedia.org/wiki/Greater_S%C3%A3o_Paulo#Metropolitan_Area for the list of Municipals listed under São Paulo Macrometropolis.
Download Sao Paulo’s State Boundary with geobr package.
##
|
| | 0%
|
|======================================================================| 100%
##
Downloading: 770 B
Downloading: 770 B
Downloading: 1.9 kB
Downloading: 1.9 kB
Downloading: 12 kB
Downloading: 12 kB
Downloading: 28 kB
Downloading: 28 kB
Downloading: 44 kB
Downloading: 44 kB
Downloading: 61 kB
Downloading: 61 kB
Downloading: 77 kB
Downloading: 77 kB
Downloading: 77 kB
Downloading: 77 kB
Downloading: 85 kB
Downloading: 85 kB
Downloading: 93 kB
Downloading: 93 kB
Downloading: 100 kB
Downloading: 100 kB
Downloading: 110 kB
Downloading: 110 kB
Downloading: 110 kB
Downloading: 110 kB
Downloading: 110 kB
Downloading: 110 kB
Downloading: 110 kB
Downloading: 110 kB
Downloading: 120 kB
Downloading: 120 kB
Downloading: 130 kB
Downloading: 130 kB
Downloading: 140 kB
Downloading: 140 kB
Downloading: 160 kB
Downloading: 160 kB
Downloading: 170 kB
Downloading: 170 kB
Downloading: 170 kB
Downloading: 170 kB
Downloading: 170 kB
Downloading: 170 kB
Downloading: 180 kB
Downloading: 180 kB
Downloading: 190 kB
Downloading: 190 kB
Downloading: 200 kB
Downloading: 200 kB
Downloading: 210 kB
Downloading: 210 kB
Downloading: 210 kB
Downloading: 210 kB
Downloading: 220 kB
Downloading: 220 kB
Downloading: 240 kB
Downloading: 240 kB
Downloading: 240 kB
Downloading: 240 kB
Downloading: 250 kB
Downloading: 250 kB
Downloading: 250 kB
Downloading: 250 kB
Downloading: 250 kB
Downloading: 250 kB
Downloading: 250 kB
Downloading: 250 kB
Downloading: 260 kB
Downloading: 260 kB
Downloading: 260 kB
Downloading: 260 kB
Downloading: 280 kB
Downloading: 280 kB
Downloading: 280 kB
Downloading: 280 kB
Downloading: 280 kB
Downloading: 280 kB
Downloading: 290 kB
Downloading: 290 kB
Downloading: 290 kB
Downloading: 290 kB
Downloading: 300 kB
Downloading: 300 kB
Downloading: 320 kB
Downloading: 320 kB
Downloading: 340 kB
Downloading: 340 kB
Downloading: 350 kB
Downloading: 350 kB
Downloading: 370 kB
Downloading: 370 kB
Downloading: 380 kB
Downloading: 380 kB
Downloading: 400 kB
Downloading: 400 kB
Downloading: 420 kB
Downloading: 420 kB
Downloading: 430 kB
Downloading: 430 kB
Downloading: 450 kB
Downloading: 450 kB
Downloading: 470 kB
Downloading: 470 kB
Downloading: 480 kB
Downloading: 480 kB
Downloading: 490 kB
Downloading: 490 kB
Downloading: 510 kB
Downloading: 510 kB
Downloading: 520 kB
Downloading: 520 kB
Downloading: 540 kB
Downloading: 540 kB
Downloading: 550 kB
Downloading: 550 kB
Downloading: 570 kB
Downloading: 570 kB
Downloading: 590 kB
Downloading: 590 kB
Downloading: 600 kB
Downloading: 600 kB
Downloading: 620 kB
Downloading: 620 kB
Downloading: 640 kB
Downloading: 640 kB
Downloading: 650 kB
Downloading: 650 kB
Downloading: 650 kB
Downloading: 650 kB
Downloading: 650 kB
Downloading: 650 kB
Downloading: 660 kB
Downloading: 660 kB
Downloading: 660 kB
Downloading: 660 kB
Downloading: 660 kB
Downloading: 660 kB
Downloading: 660 kB
Downloading: 660 kB
Downloading: 660 kB
Downloading: 660 kB
Downloading: 660 kB
Downloading: 660 kB
Downloading: 670 kB
Downloading: 670 kB
Downloading: 670 kB
Downloading: 670 kB
Downloading: 670 kB
Downloading: 670 kB
Downloading: 680 kB
Downloading: 680 kB
Downloading: 680 kB
Downloading: 680 kB
Downloading: 680 kB
Downloading: 680 kB
Downloading: 680 kB
Downloading: 680 kB
Downloading: 680 kB
Downloading: 680 kB
Downloading: 680 kB
Downloading: 680 kB
Downloading: 680 kB
Downloading: 680 kB
Downloading: 680 kB
Downloading: 680 kB
Downloading: 700 kB
Downloading: 700 kB
Downloading: 720 kB
Downloading: 720 kB
Downloading: 730 kB
Downloading: 730 kB
Downloading: 750 kB
Downloading: 750 kB
Downloading: 760 kB
Downloading: 760 kB
Downloading: 780 kB
Downloading: 780 kB
Downloading: 800 kB
Downloading: 800 kB
Downloading: 810 kB
Downloading: 810 kB
Downloading: 830 kB
Downloading: 830 kB
Downloading: 850 kB
Downloading: 850 kB
Downloading: 860 kB
Downloading: 860 kB
Downloading: 860 kB
Downloading: 860 kB
Downloading: 860 kB
Downloading: 860 kB
Downloading: 860 kB
Downloading: 860 kB
Downloading: 860 kB
Downloading: 860 kB
Downloading: 880 kB
Downloading: 880 kB
Downloading: 890 kB
Downloading: 890 kB
Downloading: 910 kB
Downloading: 910 kB
Downloading: 930 kB
Downloading: 930 kB
Downloading: 940 kB
Downloading: 940 kB
Downloading: 960 kB
Downloading: 960 kB
Downloading: 980 kB
Downloading: 980 kB
Downloading: 990 kB
Downloading: 990 kB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
##
|
| | 0%
|
|======================================================================| 100%
##
Downloading: 1.6 kB
Downloading: 1.6 kB
Downloading: 2 kB
Downloading: 2 kB
Downloading: 2.1 kB
Downloading: 2.1 kB
Downloading: 3.9 kB
Downloading: 3.9 kB
Downloading: 12 kB
Downloading: 12 kB
Downloading: 20 kB
Downloading: 20 kB
Downloading: 20 kB
Downloading: 20 kB
Downloading: 28 kB
Downloading: 28 kB
Downloading: 28 kB
Downloading: 28 kB
Downloading: 44 kB
Downloading: 44 kB
Downloading: 61 kB
Downloading: 61 kB
Downloading: 69 kB
Downloading: 69 kB
Downloading: 85 kB
Downloading: 85 kB
Downloading: 93 kB
Downloading: 93 kB
Downloading: 93 kB
Downloading: 93 kB
Downloading: 100 kB
Downloading: 100 kB
Downloading: 100 kB
Downloading: 100 kB
Downloading: 100 kB
Downloading: 100 kB
Downloading: 100 kB
Downloading: 100 kB
Downloading: 110 kB
Downloading: 110 kB
Downloading: 110 kB
Downloading: 110 kB
Downloading: 110 kB
Downloading: 110 kB
Downloading: 110 kB
Downloading: 110 kB
Downloading: 110 kB
Downloading: 110 kB
Downloading: 110 kB
Downloading: 110 kB
Downloading: 120 kB
Downloading: 120 kB
Downloading: 120 kB
Downloading: 120 kB
Downloading: 120 kB
Downloading: 120 kB
Downloading: 130 kB
Downloading: 130 kB
Downloading: 130 kB
Downloading: 130 kB
Downloading: 130 kB
Downloading: 130 kB
Downloading: 130 kB
Downloading: 130 kB
Downloading: 130 kB
Downloading: 130 kB
Downloading: 130 kB
Downloading: 130 kB
Downloading: 130 kB
Downloading: 130 kB
Downloading: 130 kB
Downloading: 130 kB
Downloading: 130 kB
Downloading: 130 kB
Downloading: 130 kB
Downloading: 130 kB
Downloading: 140 kB
Downloading: 140 kB
Downloading: 140 kB
Downloading: 140 kB
Downloading: 140 kB
Downloading: 140 kB
Downloading: 150 kB
Downloading: 150 kB
Downloading: 150 kB
Downloading: 150 kB
Downloading: 160 kB
Downloading: 160 kB
Downloading: 160 kB
Downloading: 160 kB
Downloading: 170 kB
Downloading: 170 kB
Downloading: 170 kB
Downloading: 170 kB
Downloading: 180 kB
Downloading: 180 kB
Downloading: 180 kB
Downloading: 180 kB
Downloading: 180 kB
Downloading: 180 kB
Downloading: 190 kB
Downloading: 190 kB
Downloading: 190 kB
Downloading: 190 kB
Downloading: 190 kB
Downloading: 190 kB
Downloading: 200 kB
Downloading: 200 kB
Downloading: 200 kB
Downloading: 200 kB
Downloading: 200 kB
Downloading: 200 kB
Downloading: 210 kB
Downloading: 210 kB
Downloading: 210 kB
Downloading: 210 kB
Downloading: 210 kB
Downloading: 210 kB
Downloading: 210 kB
Downloading: 210 kB
Downloading: 210 kB
Downloading: 210 kB
Downloading: 210 kB
Downloading: 210 kB
Downloading: 210 kB
Downloading: 210 kB
Downloading: 210 kB
Downloading: 210 kB
Downloading: 210 kB
Downloading: 210 kB
Downloading: 220 kB
Downloading: 220 kB
Downloading: 220 kB
Downloading: 220 kB
Downloading: 220 kB
Downloading: 220 kB
Downloading: 220 kB
Downloading: 220 kB
Downloading: 230 kB
Downloading: 230 kB
Downloading: 230 kB
Downloading: 230 kB
Downloading: 230 kB
Downloading: 230 kB
Downloading: 240 kB
Downloading: 240 kB
Downloading: 240 kB
Downloading: 240 kB
Downloading: 240 kB
Downloading: 240 kB
Downloading: 240 kB
Downloading: 240 kB
Downloading: 250 kB
Downloading: 250 kB
Downloading: 250 kB
Downloading: 250 kB
Downloading: 250 kB
Downloading: 250 kB
Downloading: 250 kB
Downloading: 250 kB
Downloading: 250 kB
Downloading: 250 kB
Downloading: 250 kB
Downloading: 250 kB
Downloading: 250 kB
Downloading: 250 kB
Downloading: 260 kB
Downloading: 260 kB
Downloading: 260 kB
Downloading: 260 kB
Downloading: 260 kB
Downloading: 260 kB
Downloading: 270 kB
Downloading: 270 kB
Downloading: 270 kB
Downloading: 270 kB
Downloading: 270 kB
Downloading: 270 kB
Downloading: 270 kB
Downloading: 270 kB
Downloading: 280 kB
Downloading: 280 kB
Downloading: 280 kB
Downloading: 280 kB
Downloading: 300 kB
Downloading: 300 kB
Downloading: 300 kB
Downloading: 300 kB
Downloading: 320 kB
Downloading: 320 kB
Downloading: 330 kB
Downloading: 330 kB
Downloading: 340 kB
Downloading: 340 kB
Downloading: 340 kB
Downloading: 340 kB
Downloading: 360 kB
Downloading: 360 kB
Downloading: 360 kB
Downloading: 360 kB
Downloading: 360 kB
Downloading: 360 kB
Downloading: 360 kB
Downloading: 360 kB
Downloading: 370 kB
Downloading: 370 kB
Downloading: 380 kB
Downloading: 380 kB
Downloading: 380 kB
Downloading: 380 kB
Downloading: 390 kB
Downloading: 390 kB
Downloading: 390 kB
Downloading: 390 kB
Downloading: 400 kB
Downloading: 400 kB
Downloading: 420 kB
Downloading: 420 kB
Downloading: 420 kB
Downloading: 420 kB
Downloading: 440 kB
Downloading: 440 kB
Downloading: 460 kB
Downloading: 460 kB
Downloading: 460 kB
Downloading: 460 kB
Downloading: 460 kB
Downloading: 460 kB
Downloading: 460 kB
Downloading: 460 kB
Downloading: 470 kB
Downloading: 470 kB
Downloading: 470 kB
Downloading: 470 kB
Downloading: 470 kB
Downloading: 470 kB
Downloading: 470 kB
Downloading: 470 kB
Downloading: 490 kB
Downloading: 490 kB
Downloading: 510 kB
Downloading: 510 kB
Downloading: 520 kB
Downloading: 520 kB
Downloading: 530 kB
Downloading: 530 kB
Downloading: 550 kB
Downloading: 550 kB
Downloading: 550 kB
Downloading: 550 kB
Downloading: 550 kB
Downloading: 550 kB
Downloading: 550 kB
Downloading: 550 kB
Downloading: 550 kB
Downloading: 550 kB
Downloading: 550 kB
Downloading: 550 kB
Downloading: 560 kB
Downloading: 560 kB
Downloading: 560 kB
Downloading: 560 kB
Downloading: 560 kB
Downloading: 560 kB
Downloading: 560 kB
Downloading: 560 kB
Downloading: 570 kB
Downloading: 570 kB
Downloading: 570 kB
Downloading: 570 kB
Downloading: 570 kB
Downloading: 570 kB
Downloading: 580 kB
Downloading: 580 kB
Downloading: 580 kB
Downloading: 580 kB
Downloading: 590 kB
Downloading: 590 kB
Downloading: 600 kB
Downloading: 600 kB
Downloading: 620 kB
Downloading: 620 kB
Downloading: 640 kB
Downloading: 640 kB
Downloading: 640 kB
Downloading: 640 kB
Downloading: 640 kB
Downloading: 640 kB
Downloading: 640 kB
Downloading: 640 kB
Downloading: 640 kB
Downloading: 640 kB
Downloading: 650 kB
Downloading: 650 kB
Downloading: 660 kB
Downloading: 660 kB
Downloading: 660 kB
Downloading: 660 kB
Downloading: 660 kB
Downloading: 660 kB
Downloading: 660 kB
Downloading: 660 kB
Downloading: 670 kB
Downloading: 670 kB
Downloading: 670 kB
Downloading: 670 kB
Downloading: 670 kB
Downloading: 670 kB
Downloading: 680 kB
Downloading: 680 kB
Downloading: 680 kB
Downloading: 680 kB
Downloading: 680 kB
Downloading: 680 kB
Downloading: 680 kB
Downloading: 680 kB
Downloading: 680 kB
Downloading: 680 kB
Downloading: 680 kB
Downloading: 680 kB
Downloading: 700 kB
Downloading: 700 kB
Downloading: 720 kB
Downloading: 720 kB
Downloading: 720 kB
Downloading: 720 kB
Downloading: 740 kB
Downloading: 740 kB
Downloading: 740 kB
Downloading: 740 kB
Downloading: 740 kB
Downloading: 740 kB
Downloading: 750 kB
Downloading: 750 kB
Downloading: 750 kB
Downloading: 750 kB
Downloading: 750 kB
Downloading: 750 kB
Downloading: 760 kB
Downloading: 760 kB
Downloading: 760 kB
Downloading: 760 kB
Downloading: 760 kB
Downloading: 760 kB
Downloading: 760 kB
Downloading: 760 kB
Downloading: 760 kB
Downloading: 760 kB
Downloading: 760 kB
Downloading: 760 kB
Downloading: 760 kB
Downloading: 760 kB
Downloading: 770 kB
Downloading: 770 kB
Downloading: 780 kB
Downloading: 780 kB
Downloading: 780 kB
Downloading: 780 kB
Downloading: 790 kB
Downloading: 790 kB
Downloading: 800 kB
Downloading: 800 kB
Downloading: 800 kB
Downloading: 800 kB
Downloading: 810 kB
Downloading: 810 kB
Downloading: 810 kB
Downloading: 810 kB
Downloading: 810 kB
Downloading: 810 kB
Downloading: 810 kB
Downloading: 810 kB
Downloading: 830 kB
Downloading: 830 kB
Downloading: 830 kB
Downloading: 830 kB
Downloading: 840 kB
Downloading: 840 kB
Downloading: 840 kB
Downloading: 840 kB
Downloading: 850 kB
Downloading: 850 kB
Downloading: 850 kB
Downloading: 850 kB
Downloading: 850 kB
Downloading: 850 kB
Downloading: 850 kB
Downloading: 850 kB
Downloading: 850 kB
Downloading: 850 kB
Downloading: 850 kB
Downloading: 850 kB
Downloading: 850 kB
Downloading: 850 kB
Downloading: 850 kB
Downloading: 850 kB
Downloading: 860 kB
Downloading: 860 kB
Downloading: 860 kB
Downloading: 860 kB
Downloading: 870 kB
Downloading: 870 kB
Downloading: 880 kB
Downloading: 880 kB
Downloading: 890 kB
Downloading: 890 kB
Downloading: 890 kB
Downloading: 890 kB
Downloading: 890 kB
Downloading: 890 kB
Downloading: 890 kB
Downloading: 890 kB
Downloading: 910 kB
Downloading: 910 kB
Downloading: 930 kB
Downloading: 930 kB
Downloading: 930 kB
Downloading: 930 kB
Downloading: 930 kB
Downloading: 930 kB
Downloading: 940 kB
Downloading: 940 kB
Downloading: 940 kB
Downloading: 940 kB
Downloading: 940 kB
Downloading: 940 kB
Downloading: 940 kB
Downloading: 940 kB
Downloading: 950 kB
Downloading: 950 kB
Downloading: 950 kB
Downloading: 950 kB
Downloading: 960 kB
Downloading: 960 kB
Downloading: 970 kB
Downloading: 970 kB
Downloading: 980 kB
Downloading: 980 kB
Downloading: 980 kB
Downloading: 980 kB
Downloading: 980 kB
Downloading: 980 kB
Downloading: 980 kB
Downloading: 980 kB
Downloading: 980 kB
Downloading: 980 kB
Downloading: 980 kB
Downloading: 980 kB
Downloading: 990 kB
Downloading: 990 kB
Downloading: 990 kB
Downloading: 990 kB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.1 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.2 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.3 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.4 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.5 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.6 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.7 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.8 MB
Downloading: 1.9 MB
Downloading: 1.9 MB
Downloading: 1.9 MB
Downloading: 1.9 MB
Downloading: 1.9 MB
Downloading: 1.9 MB
Downloading: 1.9 MB
Downloading: 1.9 MB
Downloading: 1.9 MB
Downloading: 1.9 MB
Downloading: 1.9 MB
Downloading: 1.9 MB
Downloading: 1.9 MB
Downloading: 1.9 MB
Downloading: 1.9 MB
Downloading: 1.9 MB
Downloading: 1.9 MB
Downloading: 1.9 MB
Downloading: 1.9 MB
Downloading: 1.9 MB
Downloading: 1.9 MB
Downloading: 1.9 MB
Downloading: 1.9 MB
Downloading: 1.9 MB
Downloading: 1.9 MB
Downloading: 1.9 MB
Downloading: 1.9 MB
Downloading: 1.9 MB
Downloading: 1.9 MB
Downloading: 1.9 MB
Downloading: 1.9 MB
Downloading: 1.9 MB
Downloading: 1.9 MB
Downloading: 1.9 MB
Downloading: 1.9 MB
Downloading: 1.9 MB
Downloading: 1.9 MB
Downloading: 1.9 MB
Downloading: 1.9 MB
Downloading: 1.9 MB
Downloading: 1.9 MB
Downloading: 1.9 MB
Downloading: 2 MB
Downloading: 2 MB
Downloading: 2 MB
Downloading: 2 MB
Downloading: 2 MB
Downloading: 2 MB
Downloading: 2 MB
Downloading: 2 MB
Downloading: 2 MB
Downloading: 2 MB
Downloading: 2 MB
Downloading: 2 MB
Downloading: 2 MB
Downloading: 2 MB
Downloading: 2 MB
Downloading: 2 MB
Downloading: 2 MB
Downloading: 2 MB
Downloading: 2 MB
Downloading: 2 MB
Downloading: 2 MB
Downloading: 2 MB
Downloading: 2 MB
Downloading: 2 MB
Downloading: 2 MB
Downloading: 2 MB
Downloading: 2.1 MB
Downloading: 2.1 MB
Downloading: 2.1 MB
Downloading: 2.1 MB
Downloading: 2.1 MB
Downloading: 2.1 MB
Downloading: 2.1 MB
Downloading: 2.1 MB
Downloading: 2.1 MB
Downloading: 2.1 MB
Downloading: 2.1 MB
Downloading: 2.1 MB
Downloading: 2.1 MB
Downloading: 2.1 MB
Downloading: 2.1 MB
Downloading: 2.1 MB
Downloading: 2.1 MB
Downloading: 2.1 MB
Downloading: 2.1 MB
Downloading: 2.1 MB
Downloading: 2.1 MB
Downloading: 2.1 MB
Downloading: 2.1 MB
Downloading: 2.1 MB
Downloading: 2.1 MB
Downloading: 2.1 MB
Downloading: 2.1 MB
Downloading: 2.1 MB
Downloading: 2.1 MB
Downloading: 2.1 MB
Downloading: 2.2 MB
Downloading: 2.2 MB
Downloading: 2.2 MB
Downloading: 2.2 MB
Downloading: 2.2 MB
Downloading: 2.2 MB
Downloading: 2.2 MB
Downloading: 2.2 MB
Downloading: 2.2 MB
Downloading: 2.2 MB
Downloading: 2.2 MB
Downloading: 2.2 MB
Downloading: 2.2 MB
Downloading: 2.2 MB
Downloading: 2.2 MB
Downloading: 2.2 MB
Downloading: 2.2 MB
Downloading: 2.2 MB
Downloading: 2.2 MB
Downloading: 2.2 MB
Downloading: 2.2 MB
Downloading: 2.2 MB
Downloading: 2.2 MB
Downloading: 2.2 MB
Downloading: 2.2 MB
Downloading: 2.2 MB
Downloading: 2.3 MB
Downloading: 2.3 MB
Downloading: 2.3 MB
Downloading: 2.3 MB
Downloading: 2.3 MB
Downloading: 2.3 MB
Downloading: 2.3 MB
Downloading: 2.3 MB
Downloading: 2.3 MB
Downloading: 2.3 MB
Downloading: 2.3 MB
Downloading: 2.3 MB
Downloading: 2.3 MB
Downloading: 2.3 MB
Downloading: 2.3 MB
Downloading: 2.3 MB
Downloading: 2.3 MB
Downloading: 2.3 MB
Downloading: 2.3 MB
Downloading: 2.3 MB
Downloading: 2.3 MB
Downloading: 2.3 MB
Downloading: 2.3 MB
Downloading: 2.3 MB
Downloading: 2.3 MB
Downloading: 2.3 MB
Downloading: 2.3 MB
Downloading: 2.3 MB
Downloading: 2.3 MB
Downloading: 2.3 MB
Downloading: 2.3 MB
Downloading: 2.3 MB
Downloading: 2.3 MB
Downloading: 2.3 MB
Downloading: 2.3 MB
Downloading: 2.3 MB
Downloading: 2.3 MB
Downloading: 2.3 MB
Downloading: 2.3 MB
Downloading: 2.3 MB
Downloading: 2.3 MB
Downloading: 2.3 MB
Downloading: 2.3 MB
Downloading: 2.3 MB
Downloading: 2.3 MB
Downloading: 2.3 MB
Downloading: 2.4 MB
Downloading: 2.4 MB
Downloading: 2.4 MB
Downloading: 2.4 MB
Downloading: 2.4 MB
Downloading: 2.4 MB
Downloading: 2.4 MB
Downloading: 2.4 MB
Downloading: 2.4 MB
Downloading: 2.4 MB
Downloading: 2.4 MB
Downloading: 2.4 MB
Downloading: 2.4 MB
Downloading: 2.4 MB
Downloading: 2.4 MB
Downloading: 2.4 MB
Downloading: 2.4 MB
Downloading: 2.4 MB
Downloading: 2.4 MB
Downloading: 2.4 MB
Downloading: 2.4 MB
Downloading: 2.4 MB
Downloading: 2.4 MB
Downloading: 2.4 MB
Downloading: 2.4 MB
Downloading: 2.4 MB
Downloading: 2.4 MB
Downloading: 2.4 MB
Downloading: 2.4 MB
Downloading: 2.4 MB
Downloading: 2.4 MB
Downloading: 2.4 MB
Downloading: 2.4 MB
Downloading: 2.4 MB
Downloading: 2.4 MB
Downloading: 2.4 MB
Downloading: 2.5 MB
Downloading: 2.5 MB
Downloading: 2.5 MB
Downloading: 2.5 MB
Downloading: 2.5 MB
Downloading: 2.5 MB
Downloading: 2.5 MB
Downloading: 2.5 MB
Downloading: 2.5 MB
Downloading: 2.5 MB
Downloading: 2.5 MB
Downloading: 2.5 MB
Downloading: 2.5 MB
Downloading: 2.5 MB
Downloading: 2.5 MB
Downloading: 2.5 MB
Downloading: 2.5 MB
Downloading: 2.5 MB
Downloading: 2.5 MB
Downloading: 2.5 MB
Downloading: 2.5 MB
Downloading: 2.5 MB
Downloading: 2.5 MB
Downloading: 2.5 MB
Downloading: 2.5 MB
Downloading: 2.5 MB
Downloading: 2.6 MB
Downloading: 2.6 MB
Downloading: 2.6 MB
Downloading: 2.6 MB
Downloading: 2.6 MB
Downloading: 2.6 MB
Downloading: 2.6 MB
Downloading: 2.6 MB
Downloading: 2.6 MB
Downloading: 2.6 MB
Downloading: 2.6 MB
Downloading: 2.6 MB
Downloading: 2.6 MB
Downloading: 2.6 MB
Downloading: 2.6 MB
Downloading: 2.6 MB
Downloading: 2.6 MB
Downloading: 2.6 MB
Downloading: 2.6 MB
Downloading: 2.6 MB
Downloading: 2.6 MB
Downloading: 2.6 MB
Downloading: 2.6 MB
Downloading: 2.6 MB
Downloading: 2.6 MB
Downloading: 2.6 MB
Downloading: 2.6 MB
Downloading: 2.6 MB
Downloading: 2.6 MB
Downloading: 2.6 MB
Downloading: 2.6 MB
Downloading: 2.6 MB
Downloading: 2.6 MB
Downloading: 2.6 MB
Downloading: 2.6 MB
Downloading: 2.6 MB
Downloading: 2.6 MB
Downloading: 2.6 MB
Downloading: 2.6 MB
Downloading: 2.6 MB
Downloading: 2.7 MB
Downloading: 2.7 MB
Downloading: 2.7 MB
Downloading: 2.7 MB
Downloading: 2.7 MB
Downloading: 2.7 MB
Downloading: 2.7 MB
Downloading: 2.7 MB
Downloading: 2.7 MB
Downloading: 2.7 MB
Downloading: 2.7 MB
Downloading: 2.7 MB
Downloading: 2.7 MB
Downloading: 2.7 MB
Downloading: 2.7 MB
Downloading: 2.7 MB
Downloading: 2.7 MB
Downloading: 2.7 MB
Downloading: 2.7 MB
Downloading: 2.7 MB
Downloading: 2.7 MB
Downloading: 2.7 MB
Downloading: 2.7 MB
Downloading: 2.7 MB
Downloading: 2.7 MB
Downloading: 2.7 MB
Downloading: 2.7 MB
Downloading: 2.7 MB
Downloading: 2.7 MB
Downloading: 2.7 MB
Downloading: 2.7 MB
Downloading: 2.7 MB
Downloading: 2.7 MB
Downloading: 2.7 MB
Downloading: 2.7 MB
Downloading: 2.7 MB
Downloading: 2.7 MB
Downloading: 2.7 MB
Downloading: 2.7 MB
Downloading: 2.7 MB
Downloading: 2.8 MB
Downloading: 2.8 MB
Downloading: 2.8 MB
Downloading: 2.8 MB
Downloading: 2.8 MB
Downloading: 2.8 MB
Data Wrangling
a <- metro %>%
filter(name_metro %in% c("RM São Paulo","RM Campinas","RM do Vale do Paraíba e Litoral Norte","RM de Sorocaba","RM Baixada Santista"
)) %>%
select(code_muni,name_muni,geom)
# 2nd area of study area
b <- municipalities %>%
filter(code_muni %in% c(3512209,3503307,3526704,3512704,3502002,3543907,3546702,3512407,3526902,3521408,3521101,3511706,3550407,3500600,3547007,3538709,3526407,3545159,3544004,3530904,3542107,3510401,3514908,3509601,3556503,3525904,3508405,3524006,3525201,3527306,3504107,3507100,3532405,3538600,3525508,3556354,3507605,3554953,3538204,3536802,3545803)) %>%
select(code_muni,name_muni,geom)
municipalities_metro <- rbind(a,b)
municipalities_2016 <- inner_join(municipalities_metro, brazil, by=c("name_muni"="CITY"))
municipalities_2016 <- municipalities_2016[!duplicated(municipalities_2016$name_muni),] %>%
filter(name_muni != "Ilhabela")
municipalities <- municipalities_2016 %>%
mutate(INDUSTRY_A = (`COMP_A`/`COMP_TOT`)/(sum(municipalities_2016$COMP_A)/max(municipalities_2016$COMP_TOT))) %>%
mutate(INDUSTRY_B = (`COMP_B`/`COMP_TOT`)/(sum(municipalities_2016$COMP_B)/max(municipalities_2016$COMP_TOT))) %>%
mutate(INDUSTRY_C = (`COMP_C`/`COMP_TOT`)/(sum(municipalities_2016$COMP_C)/max(municipalities_2016$COMP_TOT))) %>%
mutate(INDUSTRY_D = (`COMP_D`/`COMP_TOT`)/(sum(municipalities_2016$COMP_D)/max(municipalities_2016$COMP_TOT))) %>%
mutate(INDUSTRY_E = (`COMP_E`/`COMP_TOT`)/(sum(municipalities_2016$COMP_E)/max(municipalities_2016$COMP_TOT))) %>%
mutate(INDUSTRY_F = (`COMP_F`/`COMP_TOT`)/(sum(municipalities_2016$COMP_F)/max(municipalities_2016$COMP_TOT))) %>%
mutate(INDUSTRY_G = (`COMP_G`/`COMP_TOT`)/(sum(municipalities_2016$COMP_G)/max(municipalities_2016$COMP_TOT))) %>%
mutate(INDUSTRY_H = (`COMP_H`/`COMP_TOT`)/(sum(municipalities_2016$COMP_H)/max(municipalities_2016$COMP_TOT))) %>%
mutate(INDUSTRY_I = (`COMP_I`/`COMP_TOT`)/(sum(municipalities_2016$COMP_I)/max(municipalities_2016$COMP_TOT))) %>%
mutate(INDUSTRY_J = (`COMP_J`/`COMP_TOT`)/(sum(municipalities_2016$COMP_J)/max(municipalities_2016$COMP_TOT))) %>%
mutate(INDUSTRY_K = (`COMP_K`/`COMP_TOT`)/(sum(municipalities_2016$COMP_K)/max(municipalities_2016$COMP_TOT))) %>%
mutate(INDUSTRY_L = (`COMP_L`/`COMP_TOT`)/(sum(municipalities_2016$COMP_L)/max(municipalities_2016$COMP_TOT))) %>%
mutate(INDUSTRY_M = (`COMP_M`/`COMP_TOT`)/(sum(municipalities_2016$COMP_M)/max(municipalities_2016$COMP_TOT))) %>%
mutate(INDUSTRY_N = (`COMP_N`/`COMP_TOT`)/(sum(municipalities_2016$COMP_N)/max(municipalities_2016$COMP_TOT))) %>%
mutate(INDUSTRY_O = (`COMP_O`/`COMP_TOT`)/(sum(municipalities_2016$COMP_O)/max(municipalities_2016$COMP_TOT))) %>%
mutate(INDUSTRY_P = (`COMP_P`/`COMP_TOT`)/(sum(municipalities_2016$COMP_P)/max(municipalities_2016$COMP_TOT))) %>%
mutate(INDUSTRY_Q = (`COMP_Q`/`COMP_TOT`)/(sum(municipalities_2016$COMP_Q)/max(municipalities_2016$COMP_TOT))) %>%
mutate(INDUSTRY_R = (`COMP_R`/`COMP_TOT`)/(sum(municipalities_2016$COMP_R)/max(municipalities_2016$COMP_TOT))) %>%
mutate(INDUSTRY_S = (`COMP_S`/`COMP_TOT`)/(sum(municipalities_2016$COMP_S)/max(municipalities_2016$COMP_TOT))) %>%
mutate(INDUSTRY_T = (`COMP_T`/`COMP_TOT`)/(sum(municipalities_2016$COMP_T)/max(municipalities_2016$COMP_TOT))) %>%
mutate(INDUSTRY_U = (`COMP_U`/`COMP_TOT`)/(sum(municipalities_2016$COMP_U)/max(municipalities_2016$COMP_TOT))) %>%
select(name_muni,INDUSTRY_A,INDUSTRY_B,INDUSTRY_C,INDUSTRY_D,INDUSTRY_E,INDUSTRY_F,INDUSTRY_G,INDUSTRY_H,INDUSTRY_I,INDUSTRY_J,INDUSTRY_K,INDUSTRY_L,INDUSTRY_M,INDUSTRY_N,INDUSTRY_O,INDUSTRY_P,INDUSTRY_Q,INDUSTRY_R,INDUSTRY_S,INDUSTRY_T,INDUSTRY_U)
summary(municipalities)## name_muni INDUSTRY_A INDUSTRY_B INDUSTRY_C
## Águas De São Pedro: 1 Min. : 0.0000 Min. : 0.0000 Min. :0.0000
## Alambari : 1 1st Qu.: 0.1901 1st Qu.: 0.0000 1st Qu.:0.3387
## Alumínio : 1 Median : 0.8660 Median : 0.6622 Median :0.5222
## Americana : 1 Mean : 3.3712 Mean : 2.7310 Mean :0.5841
## Analândia : 1 3rd Qu.: 3.5002 3rd Qu.: 2.4727 3rd Qu.:0.7722
## Aparecida : 1 Max. :29.7301 Max. :43.7013 Max. :1.7339
## (Other) :166
## INDUSTRY_D INDUSTRY_E INDUSTRY_F INDUSTRY_G
## Min. : 0.0000 Min. :0.0000 Min. :0.0000 Min. :0.1168
## 1st Qu.: 0.0000 1st Qu.:0.2977 1st Qu.:0.3097 1st Qu.:0.4931
## Median : 0.0000 Median :0.5529 Median :0.4307 Median :0.5486
## Mean : 0.3215 Mean :0.7086 Mean :0.4268 Mean :0.5435
## 3rd Qu.: 0.0000 3rd Qu.:0.9321 3rd Qu.:0.5289 3rd Qu.:0.6107
## Max. :22.5329 Max. :6.4510 Max. :0.9418 Max. :1.0212
##
## INDUSTRY_H INDUSTRY_I INDUSTRY_J INDUSTRY_K
## Min. :0.0000 Min. :0.1376 Min. :0.0000 Min. :0.00000
## 1st Qu.:0.3392 1st Qu.:0.4366 1st Qu.:0.1008 1st Qu.:0.09858
## Median :0.4694 Median :0.5046 Median :0.1557 Median :0.15833
## Mean :0.5549 Mean :0.5677 Mean :0.2114 Mean :0.17669
## 3rd Qu.:0.6760 3rd Qu.:0.6205 3rd Qu.:0.2254 3rd Qu.:0.23289
## Max. :1.8737 Max. :1.7086 Max. :3.7974 Max. :1.02792
##
## INDUSTRY_L INDUSTRY_M INDUSTRY_N INDUSTRY_O
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. : 0.1331
## 1st Qu.:0.1314 1st Qu.:0.1633 1st Qu.:0.1517 1st Qu.: 0.6314
## Median :0.2718 Median :0.2312 Median :0.2450 Median : 1.4798
## Mean :0.2762 Mean :0.2525 Mean :0.2731 Mean : 3.4316
## 3rd Qu.:0.3756 3rd Qu.:0.3142 3rd Qu.:0.3438 3rd Qu.: 3.5807
## Max. :0.8744 Max. :1.1689 Max. :1.2493 Max. :64.2167
##
## INDUSTRY_P INDUSTRY_Q INDUSTRY_R INDUSTRY_S
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.05842
## 1st Qu.:0.3265 1st Qu.:0.1745 1st Qu.:0.3354 1st Qu.:0.33040
## Median :0.4815 Median :0.2696 Median :0.4429 Median :0.42679
## Mean :0.4707 Mean :0.2878 Mean :0.4190 Mean :0.43197
## 3rd Qu.:0.6276 3rd Qu.:0.3686 3rd Qu.:0.5397 3rd Qu.:0.51544
## Max. :1.0403 Max. :0.8595 Max. :0.8986 Max. :1.13592
##
## INDUSTRY_T INDUSTRY_U geom
## Min. : NA Min. :0.00000 MULTIPOLYGON :172
## 1st Qu.: NA 1st Qu.:0.00000 epsg:4674 : 0
## Median : NA Median :0.00000 +proj=long...: 0
## Mean :NaN Mean :0.02169
## 3rd Qu.: NA 3rd Qu.:0.00000
## Max. : NA Max. :2.04474
## NA's :172
Exploratory Spatial Data Analysis
As seen from the summary of the municipalities above, Industry_T will be removed as it only has NA values for all 173 municipalities in the extended metropolitan of Sao Paulo.
Going by how the individual Histogram have turned out for each industry types, majority of the industry specialization are left skewed.
municipalities_2016 <- municipalities %>%
select(-INDUSTRY_T)
options(scipen=999)
ggplot_A <- ggplot(data=municipalities_2016, aes(x=`INDUSTRY_A`)) +
geom_histogram(bins=10, color="black", fill="light blue")
ggplot_B <- ggplot(data=municipalities_2016, aes(x=`INDUSTRY_B`)) +
geom_histogram(bins=10, color="black", fill="light blue")
ggplot_C <- ggplot(data=municipalities_2016, aes(x=`INDUSTRY_C`)) +
geom_histogram(bins=10, color="black", fill="light blue")
ggplot_D <- ggplot(data=municipalities_2016, aes(x=`INDUSTRY_D`)) +
geom_histogram(bins=10, color="black", fill="light blue")
ggplot_E <- ggplot(data=municipalities_2016, aes(x=`INDUSTRY_E`)) +
geom_histogram(bins=10, color="black", fill="light blue")
ggplot_F <- ggplot(data=municipalities_2016, aes(x=`INDUSTRY_F`)) +
geom_histogram(bins=10, color="black", fill="light blue")
ggplot_G <- ggplot(data=municipalities_2016, aes(x=`INDUSTRY_G`)) +
geom_histogram(bins=10, color="black", fill="light blue")
ggplot_H <- ggplot(data=municipalities_2016, aes(x=`INDUSTRY_H`)) +
geom_histogram(bins=10, color="black", fill="light blue")
ggplot_I <- ggplot(data=municipalities_2016, aes(x=`INDUSTRY_I`)) +
geom_histogram(bins=10, color="black", fill="light blue")
ggplot_J <- ggplot(data=municipalities_2016, aes(x=`INDUSTRY_J`)) +
geom_histogram(bins=10, color="black", fill="light blue")
ggplot_K <- ggplot(data=municipalities_2016, aes(x=`INDUSTRY_K`)) +
geom_histogram(bins=10, color="black", fill="light blue")
ggplot_L <- ggplot(data=municipalities_2016, aes(x=`INDUSTRY_L`)) +
geom_histogram(bins=10, color="black", fill="light blue")
ggplot_M <- ggplot(data=municipalities_2016, aes(x=`INDUSTRY_M`)) +
geom_histogram(bins=10, color="black", fill="light blue")
ggplot_N <- ggplot(data=municipalities_2016, aes(x=`INDUSTRY_N`)) +
geom_histogram(bins=10, color="black", fill="light blue")
ggplot_O <- ggplot(data=municipalities_2016, aes(x=`INDUSTRY_O`)) +
geom_histogram(bins=10, color="black", fill="light blue")
ggplot_P <- ggplot(data=municipalities_2016, aes(x=`INDUSTRY_P`)) +
geom_histogram(bins=10, color="black", fill="light blue")
ggplot_Q <- ggplot(data=municipalities_2016, aes(x=`INDUSTRY_Q`)) +
geom_histogram(bins=10, color="black", fill="light blue")
ggplot_R <- ggplot(data=municipalities_2016, aes(x=`INDUSTRY_R`)) +
geom_histogram(bins=10, color="black", fill="light blue")
ggplot_S <- ggplot(data=municipalities_2016, aes(x=`INDUSTRY_S`)) +
geom_histogram(bins=10, color="black", fill="light blue")
ggplot_U <- ggplot(data=municipalities_2016, aes(x=`INDUSTRY_U`)) +
geom_histogram(bins=10, color="black", fill="light blue")
ggarrange(ggplot_A, ggplot_B, ggplot_C, ggplot_D,
ggplot_E, ggplot_F, ggplot_G, ggplot_H,
ggplot_I, ggplot_J, ncol = 4, nrow = 3)ggarrange(ggplot_K, ggplot_L, ggplot_M, ggplot_N,
ggplot_O, ggplot_P, ggplot_Q, ggplot_R,
ggplot_S, ggplot_U, ncol = 4, nrow = 3)After plotting the choropleth maps for each industry with the same scale below, we can see that the distribution of specialisation in Industry A (Agriculture, livestock, forestry, fishing and aquaculture), B (Extractive Industries) & O (Public administration, defense and social security) are more prominent and has more contribution in terms of specialization value than the rest of the industry types.
tmap_mode("plot")
map_A <- tm_shape(municipalities_2016) +
tm_fill(col = "INDUSTRY_A",
breaks = c(0,3,6,9,12,Inf),
style = "fixed") +
tm_borders(alpha = 0.5)
map_B <- tm_shape(municipalities_2016) +
tm_fill(col = "INDUSTRY_B",
breaks = c(0,3,6,9,12,Inf),
style = "fixed") +
tm_borders(alpha = 0.5)
map_C <- tm_shape(municipalities_2016) +
tm_fill(col = "INDUSTRY_C",
breaks = c(0,3,6,9,12,Inf),
style = "fixed") +
tm_borders(alpha = 0.5)
map_D <- tm_shape(municipalities_2016) +
tm_fill(col = "INDUSTRY_D",
breaks = c(0,3,6,9,12,Inf),
style = "fixed") +
tm_borders(alpha = 0.5)
map_E <- tm_shape(municipalities_2016) +
tm_fill(col = "INDUSTRY_E",
breaks = c(0,3,6,9,12,Inf),
style = "fixed") +
tm_borders(alpha = 0.5)
map_F <- tm_shape(municipalities_2016) +
tm_fill(col = "INDUSTRY_F",
breaks = c(0,3,6,9,12,Inf),
style = "fixed") +
tm_borders(alpha = 0.5)
map_G <- tm_shape(municipalities_2016) +
tm_fill(col = "INDUSTRY_G",
breaks = c(0,3,6,9,12,Inf),
style = "fixed") +
tm_borders(alpha = 0.5)
map_H <- tm_shape(municipalities_2016) +
tm_fill(col = "INDUSTRY_H",
breaks = c(0,3,6,9,12,Inf),
style = "fixed") +
tm_borders(alpha = 0.5)
map_I <- tm_shape(municipalities_2016) +
tm_fill(col = "INDUSTRY_I",
breaks = c(0,3,6,9,12,Inf),
style = "fixed") +
tm_borders(alpha = 0.5)
map_J <- tm_shape(municipalities_2016) +
tm_fill(col = "INDUSTRY_J",
breaks = c(0,3,6,9,12,Inf),
style = "fixed") +
tm_borders(alpha = 0.5)
map_K <- tm_shape(municipalities_2016) +
tm_fill(col = "INDUSTRY_K",
breaks = c(0,3,6,9,12,Inf),
style = "fixed") +
tm_borders(alpha = 0.5)
map_L <- tm_shape(municipalities_2016) +
tm_fill(col = "INDUSTRY_L",
breaks = c(0,3,6,9,12,Inf),
style = "fixed") +
tm_borders(alpha = 0.5)
map_M <- tm_shape(municipalities_2016) +
tm_fill(col = "INDUSTRY_M",
breaks = c(0,3,6,9,12,Inf),
style = "fixed") +
tm_borders(alpha = 0.5)
map_N <- tm_shape(municipalities_2016) +
tm_fill(col = "INDUSTRY_N",
breaks = c(0,3,6,9,12,Inf),
style = "fixed") +
tm_borders(alpha = 0.5)
map_O <- tm_shape(municipalities_2016) +
tm_fill(col = "INDUSTRY_O",
breaks = c(0,3,6,9,12,Inf),
style = "fixed") +
tm_borders(alpha = 0.5)
map_P <- tm_shape(municipalities_2016) +
tm_fill(col = "INDUSTRY_P",
breaks = c(0,3,6,9,12,Inf),
style = "fixed") +
tm_borders(alpha = 0.5)
map_Q <- tm_shape(municipalities_2016) +
tm_fill(col = "INDUSTRY_Q",
breaks = c(0,3,6,9,12,Inf),
style = "fixed") +
tm_borders(alpha = 0.5)
map_R <- tm_shape(municipalities_2016) +
tm_fill(col = "INDUSTRY_R",
breaks = c(0,3,6,9,12,Inf),
style = "fixed") +
tm_borders(alpha = 0.5)
map_S <- tm_shape(municipalities_2016) +
tm_fill(col = "INDUSTRY_S",
breaks = c(0,3,6,9,12,Inf),
style = "fixed") +
tm_borders(alpha = 0.5)
map_U <- tm_shape(municipalities_2016) +
tm_fill(col = "INDUSTRY_U",
breaks = c(0,3,6,9,12,Inf),
style = "fixed") +
tm_borders(alpha = 0.5) Hierarchical Clustering
Delineating industry specialisation clusters by using hierarchical clustering method and display their distribution by using appropriate thematic mapping technique.
Data wrangling for Hierarchical clustering
cluster_vars <- municipalities_2016 %>%
st_set_geometry(NULL)
# Data wrangling on cluster df to retain municipalities name in the df index rows insead
row.names(cluster_vars) <- cluster_vars$"name_muni"
cluster_vars <- select(cluster_vars, c(2:21))
head(cluster_vars,10)## INDUSTRY_A INDUSTRY_B INDUSTRY_C INDUSTRY_D INDUSTRY_E INDUSTRY_F
## Bertioga 0.06000187 0.00000000 0.1461699 0.0000000 0.6624576 0.5628240
## Cubatão 0.00000000 0.00000000 0.2259147 0.7162923 0.9164473 0.7981820
## Guarujá 0.09238128 0.00000000 0.1709507 0.0000000 0.2677359 0.4784058
## Itanhaém 0.24053208 0.00000000 0.2140999 0.0000000 0.9294679 0.4125952
## Mongaguá 0.09790340 0.81648278 0.1345393 0.0000000 1.0809140 0.8248094
## Peruíbe 0.09466101 0.00000000 0.1773867 0.0000000 0.4703022 0.4377991
## Praia Grande 0.01483465 0.00000000 0.1769861 0.0000000 0.4585943 0.6931762
## Santos 0.06805407 0.43657611 0.1605539 0.0000000 0.3583404 0.3314533
## São Vicente 0.01301904 0.32572374 0.2061510 0.0000000 0.8624293 0.4698228
## Americana 0.07481783 0.08508498 0.9323449 0.0000000 0.8110162 0.4731829
## INDUSTRY_G INDUSTRY_H INDUSTRY_I INDUSTRY_J INDUSTRY_K INDUSTRY_L
## Bertioga 0.4717020 0.0824820 0.8730414 0.10421058 0.13684431 0.6358968
## Cubatão 0.5102022 1.2691384 0.7677175 0.10787891 0.12677085 0.1256719
## Guarujá 0.4805127 0.2108984 0.6971338 0.09168387 0.09876140 0.3337678
## Itanhaém 0.6907332 0.2302735 1.0756262 0.12930463 0.06857171 0.4518943
## Mongaguá 0.5525454 0.1634230 0.8756210 0.06477621 0.00000000 0.5093552
## Peruíbe 0.7099187 0.2370160 1.0235280 0.09394639 0.14167801 0.3967250
## Praia Grande 0.4597898 0.1849896 0.6019971 0.10305861 0.10361326 0.4259148
## Santos 0.3663554 0.7766790 0.5705721 0.27535665 0.28504675 0.3823043
## São Vicente 0.5311062 0.3106358 0.7572859 0.15504906 0.15309989 0.2859848
## Americana 0.5413902 0.3375981 0.4712196 0.22782175 0.28358307 0.6919991
## INDUSTRY_M INDUSTRY_N INDUSTRY_O INDUSTRY_P INDUSTRY_Q INDUSTRY_R
## Bertioga 0.1410770 1.1133804 1.2342632 0.3073978 0.2094547 0.5660469
## Cubatão 0.3032053 0.3453129 1.6261772 0.6234953 0.3104579 0.7043507
## Guarujá 0.1679967 1.1665901 0.4750803 0.4296903 0.2398481 0.5567971
## Itanhaém 0.1590585 0.2850620 1.2369610 0.6080324 0.2518950 0.5672842
## Mongaguá 0.1150957 0.8552946 1.3426090 0.6863625 0.1822728 0.2394527
## Peruíbe 0.1669259 0.3197292 1.4604121 0.5551532 0.3221819 0.6201494
## Praia Grande 0.1456214 1.2492556 0.2034366 0.3959997 0.1881516 0.4561250
## Santos 0.4347948 0.9821937 0.4307385 0.4015831 0.5896444 0.5340937
## São Vicente 0.2318745 0.6771243 0.5356140 0.6608400 0.2476856 0.6345663
## Americana 0.3994012 0.3727549 0.3497804 0.4208987 0.3632697 0.5204517
## INDUSTRY_S INDUSTRY_U
## Bertioga 0.4292224 0.0000000
## Cubatão 0.5728572 0.0000000
## Guarujá 0.4521874 0.0000000
## Itanhaém 0.5809961 0.0000000
## Mongaguá 0.2728638 0.0000000
## Peruíbe 0.4748886 0.0000000
## Praia Grande 0.3721071 0.0000000
## Santos 0.5417798 0.3710897
## São Vicente 0.8418119 0.0000000
## Americana 0.3601755 0.0000000
Viewing Min-max & Z-score standardization data frames
#normalizing all columns into the same scale
cluster_vars.std <- normalize(cluster_vars)
summary(cluster_vars.std)## INDUSTRY_A INDUSTRY_B INDUSTRY_C INDUSTRY_D
## Min. :0.000000 Min. :0.00000 Min. :0.0000 Min. :0.00000
## 1st Qu.:0.006395 1st Qu.:0.00000 1st Qu.:0.1953 1st Qu.:0.00000
## Median :0.029129 Median :0.01515 Median :0.3012 Median :0.00000
## Mean :0.113393 Mean :0.06249 Mean :0.3368 Mean :0.01427
## 3rd Qu.:0.117733 3rd Qu.:0.05658 3rd Qu.:0.4453 3rd Qu.:0.00000
## Max. :1.000000 Max. :1.00000 Max. :1.0000 Max. :1.00000
## INDUSTRY_E INDUSTRY_F INDUSTRY_G INDUSTRY_H
## Min. :0.00000 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:0.04615 1st Qu.:0.3288 1st Qu.:0.4161 1st Qu.:0.1810
## Median :0.08571 Median :0.4573 Median :0.4775 Median :0.2505
## Mean :0.10984 Mean :0.4531 Mean :0.4719 Mean :0.2961
## 3rd Qu.:0.14449 3rd Qu.:0.5616 3rd Qu.:0.5462 3rd Qu.:0.3608
## Max. :1.00000 Max. :1.0000 Max. :1.0000 Max. :1.0000
## INDUSTRY_I INDUSTRY_J INDUSTRY_K INDUSTRY_L
## Min. :0.0000 Min. :0.00000 Min. :0.0000 Min. :0.0000
## 1st Qu.:0.1903 1st Qu.:0.02653 1st Qu.:0.0959 1st Qu.:0.1503
## Median :0.2336 Median :0.04099 Median :0.1540 Median :0.3109
## Mean :0.2737 Mean :0.05566 Mean :0.1719 Mean :0.3159
## 3rd Qu.:0.3074 3rd Qu.:0.05936 3rd Qu.:0.2266 3rd Qu.:0.4295
## Max. :1.0000 Max. :1.00000 Max. :1.0000 Max. :1.0000
## INDUSTRY_M INDUSTRY_N INDUSTRY_O INDUSTRY_P
## Min. :0.0000 Min. :0.0000 Min. :0.000000 Min. :0.0000
## 1st Qu.:0.1397 1st Qu.:0.1214 1st Qu.:0.007775 1st Qu.:0.3139
## Median :0.1978 Median :0.1961 Median :0.021014 Median :0.4629
## Mean :0.2160 Mean :0.2186 Mean :0.051472 Mean :0.4525
## 3rd Qu.:0.2688 3rd Qu.:0.2752 3rd Qu.:0.053798 3rd Qu.:0.6033
## Max. :1.0000 Max. :1.0000 Max. :1.000000 Max. :1.0000
## INDUSTRY_Q INDUSTRY_R INDUSTRY_S INDUSTRY_U
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.00000
## 1st Qu.:0.2031 1st Qu.:0.3733 1st Qu.:0.2524 1st Qu.:0.00000
## Median :0.3136 Median :0.4928 Median :0.3419 Median :0.00000
## Mean :0.3349 Mean :0.4663 Mean :0.3467 Mean :0.01061
## 3rd Qu.:0.4288 3rd Qu.:0.6006 3rd Qu.:0.4241 3rd Qu.:0.00000
## Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.00000
## vars n mean sd median trimmed mad min max range skew
## INDUSTRY_A 1 172 0 1 -0.44 -0.25 0.20 -0.59 4.59 5.18 2.51
## INDUSTRY_B 2 172 0 1 -0.39 -0.24 0.18 -0.51 7.63 8.14 3.82
## INDUSTRY_C 3 172 0 1 -0.19 -0.08 0.89 -1.76 3.47 5.23 0.80
## INDUSTRY_D 4 172 0 1 -0.18 -0.16 0.00 -0.18 12.21 12.38 10.74
## INDUSTRY_E 5 172 0 1 -0.19 -0.15 0.63 -0.88 7.09 7.97 3.68
## INDUSTRY_F 6 172 0 1 0.02 -0.01 0.90 -2.28 2.75 5.03 0.10
## INDUSTRY_G 7 172 0 1 0.04 0.04 0.68 -3.44 3.85 7.29 -0.32
## INDUSTRY_H 8 172 0 1 -0.24 -0.14 0.67 -1.56 3.71 5.27 1.43
## INDUSTRY_I 9 172 0 1 -0.24 -0.15 0.54 -1.64 4.34 5.97 2.04
## INDUSTRY_J 10 172 0 1 -0.16 -0.15 0.25 -0.62 10.48 11.10 7.60
## INDUSTRY_K 11 172 0 1 -0.13 -0.09 0.69 -1.27 6.11 7.37 2.10
## INDUSTRY_L 12 172 0 1 -0.02 -0.05 1.06 -1.54 3.34 4.88 0.46
## INDUSTRY_M 13 172 0 1 -0.15 -0.10 0.74 -1.73 6.29 8.02 2.04
## INDUSTRY_N 14 172 0 1 -0.14 -0.14 0.73 -1.39 4.96 6.35 2.25
## INDUSTRY_O 15 172 0 1 -0.31 -0.20 0.25 -0.53 9.78 10.31 6.11
## INDUSTRY_P 16 172 0 1 0.05 -0.01 1.09 -2.31 2.80 5.11 0.09
## INDUSTRY_Q 17 172 0 1 -0.11 -0.07 0.85 -1.69 3.36 5.05 0.81
## INDUSTRY_R 18 172 0 1 0.13 0.06 0.82 -2.26 2.58 4.84 -0.46
## INDUSTRY_S 19 172 0 1 -0.03 -0.05 0.82 -2.24 4.23 6.47 0.81
## INDUSTRY_U 20 172 0 1 -0.12 -0.12 0.00 -0.12 11.53 11.66 9.84
## kurtosis se
## INDUSTRY_A 6.42 0.08
## INDUSTRY_B 20.34 0.08
## INDUSTRY_C 0.46 0.08
## INDUSTRY_D 126.44 0.08
## INDUSTRY_E 20.05 0.08
## INDUSTRY_F -0.10 0.08
## INDUSTRY_G 2.40 0.08
## INDUSTRY_H 2.08 0.08
## INDUSTRY_I 5.30 0.08
## INDUSTRY_J 70.99 0.08
## INDUSTRY_K 9.13 0.08
## INDUSTRY_L -0.05 0.08
## INDUSTRY_M 8.93 0.08
## INDUSTRY_N 7.31 0.08
## INDUSTRY_O 52.06 0.08
## INDUSTRY_P -0.15 0.08
## INDUSTRY_Q 0.86 0.08
## INDUSTRY_R 0.19 0.08
## INDUSTRY_S 2.04 0.08
## INDUSTRY_U 104.39 0.08
Observing Min-Max standardization score standardization of specialization values by different industry types.
cluster_vars.std_df <- as.data.frame(cluster_vars.std)
ggplot_A.std <- ggplot(data=cluster_vars.std_df, aes(x=`INDUSTRY_A`)) +
geom_histogram(bins=10, color="black", fill="light blue")
ggplot_B.std <- ggplot(data=cluster_vars.std_df, aes(x=`INDUSTRY_B`)) +
geom_histogram(bins=10, color="black", fill="light blue")
ggplot_C.std <- ggplot(data=cluster_vars.std_df, aes(x=`INDUSTRY_C`)) +
geom_histogram(bins=10, color="black", fill="light blue")
ggplot_D.std <- ggplot(data=cluster_vars.std_df, aes(x=`INDUSTRY_D`)) +
geom_histogram(bins=10, color="black", fill="light blue")
ggplot_E.std <- ggplot(data=cluster_vars.std_df, aes(x=`INDUSTRY_E`)) +
geom_histogram(bins=10, color="black", fill="light blue")
ggplot_F.std <- ggplot(data=cluster_vars.std_df, aes(x=`INDUSTRY_F`)) +
geom_histogram(bins=10, color="black", fill="light blue")
ggplot_G.std <- ggplot(data=cluster_vars.std_df, aes(x=`INDUSTRY_G`)) +
geom_histogram(bins=10, color="black", fill="light blue")
ggplot_H.std <- ggplot(data=cluster_vars.std_df, aes(x=`INDUSTRY_H`)) +
geom_histogram(bins=10, color="black", fill="light blue")
ggplot_I.std <- ggplot(data=cluster_vars.std_df, aes(x=`INDUSTRY_I`)) +
geom_histogram(bins=10, color="black", fill="light blue")
ggplot_J.std <- ggplot(data=cluster_vars.std_df, aes(x=`INDUSTRY_J`)) +
geom_histogram(bins=10, color="black", fill="light blue")
ggplot_K.std <- ggplot(data=cluster_vars.std_df, aes(x=`INDUSTRY_K`)) +
geom_histogram(bins=10, color="black", fill="light blue")
ggplot_L.std <- ggplot(data=cluster_vars.std_df, aes(x=`INDUSTRY_L`)) +
geom_histogram(bins=10, color="black", fill="light blue")
ggplot_M.std <- ggplot(data=cluster_vars.std_df, aes(x=`INDUSTRY_M`)) +
geom_histogram(bins=10, color="black", fill="light blue")
ggplot_N.std <- ggplot(data=cluster_vars.std_df, aes(x=`INDUSTRY_N`)) +
geom_histogram(bins=10, color="black", fill="light blue")
ggplot_O.std <- ggplot(data=cluster_vars.std_df, aes(x=`INDUSTRY_O`)) +
geom_histogram(bins=10, color="black", fill="light blue")
ggplot_P.std <- ggplot(data=cluster_vars.std_df, aes(x=`INDUSTRY_P`)) +
geom_histogram(bins=10, color="black", fill="light blue")
ggplot_Q.std <- ggplot(data=cluster_vars.std_df, aes(x=`INDUSTRY_Q`)) +
geom_histogram(bins=10, color="black", fill="light blue")
ggplot_R.std <- ggplot(data=cluster_vars.std_df, aes(x=`INDUSTRY_R`)) +
geom_histogram(bins=10, color="black", fill="light blue")
ggplot_S.std <- ggplot(data=cluster_vars.std_df, aes(x=`INDUSTRY_S`)) +
geom_histogram(bins=10, color="black", fill="light blue")
ggplot_U.std <- ggplot(data=cluster_vars.std_df, aes(x=`INDUSTRY_U`)) +
geom_histogram(bins=10, color="black", fill="light blue")
ggarrange(ggplot_A.std, ggplot_B.std, ggplot_C.std, ggplot_D.std,
ggplot_E.std, ggplot_F.std, ggplot_G.std, ggplot_H.std,
ggplot_I.std, ggplot_J.std, ncol = 4, nrow = 3)ggarrange(ggplot_K.std, ggplot_L.std, ggplot_M.std, ggplot_N.std,
ggplot_O.std, ggplot_P.std, ggplot_Q.std, ggplot_R.std,
ggplot_S.std, ggplot_U.std, ncol = 4, nrow = 3)Observing Z-score standardization of specialization values by different industry types.
cluster_vars.z_df <- as.data.frame(cluster_vars.z)
ggplot_A.z <- ggplot(data=cluster_vars.z_df, aes(x=`INDUSTRY_A`)) +
geom_histogram(bins=10, color="black", fill="light blue")
ggplot_B.z <- ggplot(data=cluster_vars.z_df, aes(x=`INDUSTRY_B`)) +
geom_histogram(bins=10, color="black", fill="light blue")
ggplot_C.z <- ggplot(data=cluster_vars.z_df, aes(x=`INDUSTRY_C`)) +
geom_histogram(bins=10, color="black", fill="light blue")
ggplot_D.z <- ggplot(data=cluster_vars.z_df, aes(x=`INDUSTRY_D`)) +
geom_histogram(bins=10, color="black", fill="light blue")
ggplot_E.z <- ggplot(data=cluster_vars.z_df, aes(x=`INDUSTRY_E`)) +
geom_histogram(bins=10, color="black", fill="light blue")
ggplot_F.z <- ggplot(data=cluster_vars.z_df, aes(x=`INDUSTRY_F`)) +
geom_histogram(bins=10, color="black", fill="light blue")
ggplot_G.z <- ggplot(data=cluster_vars.z_df, aes(x=`INDUSTRY_G`)) +
geom_histogram(bins=10, color="black", fill="light blue")
ggplot_H.z <- ggplot(data=cluster_vars.z_df, aes(x=`INDUSTRY_H`)) +
geom_histogram(bins=10, color="black", fill="light blue")
ggplot_I.z <- ggplot(data=cluster_vars.z_df, aes(x=`INDUSTRY_I`)) +
geom_histogram(bins=10, color="black", fill="light blue")
ggplot_J.z <- ggplot(data=cluster_vars.z_df, aes(x=`INDUSTRY_J`)) +
geom_histogram(bins=10, color="black", fill="light blue")
ggplot_K.z <- ggplot(data=cluster_vars.z_df, aes(x=`INDUSTRY_K`)) +
geom_histogram(bins=10, color="black", fill="light blue")
ggplot_L.z <- ggplot(data=cluster_vars.z_df, aes(x=`INDUSTRY_L`)) +
geom_histogram(bins=10, color="black", fill="light blue")
ggplot_M.z <- ggplot(data=cluster_vars.z_df, aes(x=`INDUSTRY_M`)) +
geom_histogram(bins=10, color="black", fill="light blue")
ggplot_N.z <- ggplot(data=cluster_vars.z_df, aes(x=`INDUSTRY_N`)) +
geom_histogram(bins=10, color="black", fill="light blue")
ggplot_O.z <- ggplot(data=cluster_vars.z_df, aes(x=`INDUSTRY_O`)) +
geom_histogram(bins=10, color="black", fill="light blue")
ggplot_P.z <- ggplot(data=cluster_vars.z_df, aes(x=`INDUSTRY_P`)) +
geom_histogram(bins=10, color="black", fill="light blue")
ggplot_Q.z <- ggplot(data=cluster_vars.z_df, aes(x=`INDUSTRY_Q`)) +
geom_histogram(bins=10, color="black", fill="light blue")
ggplot_R.z <- ggplot(data=cluster_vars.z_df, aes(x=`INDUSTRY_R`)) +
geom_histogram(bins=10, color="black", fill="light blue")
ggplot_S.z <- ggplot(data=cluster_vars.z_df, aes(x=`INDUSTRY_S`)) +
geom_histogram(bins=10, color="black", fill="light blue")
ggplot_U.z <- ggplot(data=cluster_vars.z_df, aes(x=`INDUSTRY_U`)) +
geom_histogram(bins=10, color="black", fill="light blue")
ggarrange(ggplot_A.z, ggplot_B.z, ggplot_C.z, ggplot_D.z,
ggplot_E.z, ggplot_F.z, ggplot_G.z, ggplot_H.z,
ggplot_I.z, ggplot_J.z, ncol = 4, nrow = 3)ggarrange(ggplot_K.z, ggplot_L.z, ggplot_M.z, ggplot_N.z,
ggplot_O.z, ggplot_P.z, ggplot_Q.z, ggplot_R.z,
ggplot_S.z, ggplot_U.z, ncol = 4, nrow = 3)Selecting the optimal clustering algorithm
Majority of the industry’s specialization values are not normal distributed, Hence, Z-score standardisation will not be used in this study.
Comparing the 2 types of standardization before choosing on one of them to be used for clustering. Standardization of of variables is performed as the specialization values for every industry types as some industries such as Industry A(Agriculture, livestock, forestry, fishing and aquaculture), B(Extractive Industries) & O(Public administration, defense and social security) can go up to a specialization value of 29,43 & 63 respectively from the summary done in the earlier stage of data analysis above.
Hence, we will use Min-Max Standardisation for this variable as the values range of the clustering variables is large. the ward method will be used for this clustering method as it provides the strongest clustering structure among the four methods assessed with the value of 0.9166987.
proxmat <- dist(cluster_vars.std_df, method = 'euclidean')
m <- c( "average", "single", "complete", "ward")
names(m) <- c( "average", "single", "complete", "ward")
ac <- function(x) {
agnes(cluster_vars.std_df, method = x)$ac
}
map_dbl(m, ac)## average single complete ward
## 0.7231876 0.6774261 0.7870491 0.9140459
Gap Statistic Method
With reference to the gap statistic graph above, the recommended number of cluster to retain is 19 with the vertical dotted line. However, it doesn’t make sense to retain 19 cluster which does not provide much insight as the map visualizations become too fragmented. Since gap statistic was inconclusive, elbow method & silhouette method is also performed to derive a common optimal number of cluster. For all these 3 methods, the hcut function will be used instead of kmeans to get a more standardized comparison.
The silhouette’s result on the recommended number of cluster to retain is 2 with the vertical dotted line is too small and the next peak on the graph are 6 clusters.Additionally, basing off Within sum-of-square values in the Elbow method, we can safely choose 6-7 clusters. In conclusion, 6 cluster is chosen for this study.
Due to the number of municipalities taken into account as well as the nature of hierarchical cluster analysis method, the cluster 6 became very fragmented. Therefore a further need to perform spatial clustering algorithm is required.
set.seed(12345)
gap_stat <- clusGap(cluster_vars.std_df, FUN = hcut, nstart = 25, K.max = 20, B = 50)
# Print the result
print(gap_stat, method = "firstmax")## Clustering Gap statistic ["clusGap"] from call:
## clusGap(x = cluster_vars.std_df, FUNcluster = hcut, K.max = 20, B = 50, nstart = 25)
## B=50 simulated reference sets, k = 1..20; spaceH0="scaledPCA"
## --> Number of clusters (method 'firstmax'): 20
## logW E.logW gap SE.sim
## [1,] 3.699753 4.369021 0.6692674 0.008950965
## [2,] 3.599271 4.315819 0.7165486 0.008187479
## [3,] 3.553173 4.283646 0.7304728 0.007819323
## [4,] 3.517790 4.258480 0.7406898 0.007917840
## [5,] 3.469169 4.236786 0.7676170 0.007854791
## [6,] 3.430929 4.217656 0.7867270 0.008153492
## [7,] 3.390177 4.199629 0.8094520 0.008292550
## [8,] 3.365923 4.182496 0.8165735 0.008360539
## [9,] 3.337953 4.166167 0.8282141 0.008598510
## [10,] 3.314654 4.150672 0.8360178 0.008589883
## [11,] 3.289819 4.135442 0.8456234 0.008739370
## [12,] 3.270656 4.120712 0.8500554 0.008668046
## [13,] 3.245447 4.106383 0.8609362 0.008552189
## [14,] 3.225107 4.092359 0.8672515 0.008347481
## [15,] 3.206219 4.078702 0.8724835 0.008391128
## [16,] 3.183868 4.065288 0.8814203 0.008508669
## [17,] 3.159863 4.052097 0.8922339 0.008514621
## [18,] 3.143274 4.039258 0.8959846 0.008597857
## [19,] 3.126591 4.026468 0.8998778 0.008652558
## [20,] 3.109562 4.013847 0.9042855 0.008700016
Viewing the clusters using a dendogram
hclust_ward <- hclust(proxmat, method = 'ward.D')
plot(hclust_ward, cex = 0.6)
rect.hclust(hclust_ward, k = 6, border = 2:5)groups <- as.factor(cutree(hclust_ward, k=6))
municipalities_2016_cluster <- cbind(municipalities_2016, as.matrix(groups)) %>%
rename(`CLUSTER`=`as.matrix.groups.`)
qtm(municipalities_2016_cluster, "CLUSTER")Spatially Constrained Clustering
Delineating industry specialisation clusters by using spatially constrained clustering method and display their distribution by using appropriate thematic mapping technique.
Data Wrangling for Spatially Constrained clustering
municipalities_2016_sp <- as_Spatial(municipalities_2016)
municipalities_2016_5641 <- spTransform(municipalities_2016_sp ,
CRS("+init=epsg:5641"))
municipalities_2016.nb <- poly2nb(municipalities_2016_5641)
summary(municipalities_2016.nb)## Neighbour list object:
## Number of regions: 172
## Number of nonzero links: 866
## Percentage nonzero weights: 2.927258
## Average number of links: 5.034884
## Link number distribution:
##
## 1 2 3 4 5 6 7 8 9 10 22
## 4 13 24 36 32 29 14 9 6 4 1
## 4 least connected regions:
## 6 133 134 168 with 1 link
## 1 most connected region:
## 129 with 22 links
Observing links between each municipalities.
plot(municipalities_2016_5641, border=grey(.5),main="São Paulo Macrometropolis")
plot(municipalities_2016.nb, coordinates(municipalities_2016_5641), col="Red", add=TRUE)Computing minimum spanning tree
lcosts <- nbcosts(municipalities_2016.nb, cluster_vars.z_df)
municipalities_2016.w <- nb2listw(municipalities_2016.nb, lcosts, style="B")
summary(municipalities_2016.w)## Characteristics of weights list object:
## Neighbour list object:
## Number of regions: 172
## Number of nonzero links: 866
## Percentage nonzero weights: 2.927258
## Average number of links: 5.034884
## Link number distribution:
##
## 1 2 3 4 5 6 7 8 9 10 22
## 4 13 24 36 32 29 14 9 6 4 1
## 4 least connected regions:
## 6 133 134 168 with 1 link
## 1 most connected region:
## 129 with 22 links
##
## Weights style: B
## Weights constants summary:
## n nn S0 S1 S2
## B 172 29584 4324.106 54370.96 642323.1
municipalities_2016.mst <- mstree(municipalities_2016.w)
plot(municipalities_2016_sp, border=gray(.5))
plot.mst(municipalities_2016.mst, coordinates(municipalities_2016_sp),
col="red", cex.lab=0.7, cex.circles=0.005, add=TRUE)clust6 <- skater(municipalities_2016.mst[,1:2], cluster_vars.std_df, method = "euclidean", 5)
ccs6 <- clust6$groups
plot(municipalities_2016_sp, border=gray(.5))
plot(clust6, coordinates(municipalities_2016_sp), cex.lab=.7,
groups.colors=c("red","green","blue","pink","yellow","black"),
cex.circles=0.005, add=TRUE)groups_mat <- as.matrix(clust6$groups)
municipalities_2016_spatialcluster <- cbind(municipalities_2016_cluster, as.factor(groups_mat)) %>% rename(`SP_CLUSTER`=`as.factor.groups_mat.`)
qtm(municipalities_2016_spatialcluster, "SP_CLUSTER")Comparison between hierarchical & spatially constrained Clustering.
The clear distinction would be that with spatially constained clustering, the clusters generated do not get fragmented and will be grouped together. As we can make a direct inference from the spatially constained clusters as well. As compared with Hierarchical clustering where there different municipalities in different clusters but they’re still side by side or even within each clusters as shown below on the left.
Although in this study we could not use gap statistic to determine the optimal number of cluster, but with the help of elbow method as well as silhouette method, the outcome of spatially constrained clustering are much clearer and more readable that that on the left which is the outcome of hierachical clustering.
From the Spatially constrained clustering choropleth, we can see that the main cluster in orange is centered around the Metropolitan Region of Sao Paulo which segments of Metropolitan region of Campinas, Metropolitan tegion of Baixada Santista, Jundaiai Urban Agglomeration & Regional Unit of Braganca Paulista city. This can be proven by the ranking in the number of population in each Region as well from the highest to the least: - Metropolitan Region of Sao Paulo - Metropolitan Region of Campinas - Metropolitan Region of Vale do Paraíba e Litoral Norte - Metropolitan Region of Sorocaba - Metropolitan Region of Baixada Santista - Piracicaba Urban Agglomeration - Jundiaí Urban Agglomeration - Regional Unit of Bragança Paulista city
tmap_mode("view")
hclust.map <- qtm(municipalities_2016_cluster,
"CLUSTER") +
tm_borders(alpha = 0.5) +
tm_basemap(server = "http://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png")
shclust.map <- qtm(municipalities_2016_spatialcluster,
"SP_CLUSTER") +
tm_borders(alpha = 0.5) +
tm_basemap(server = "http://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png")
tmap_arrange(hclust.map, shclust.map,ncol=2, sync = TRUE)