This week, we will be using George Leckie’s (2009) scotland
dataset, which includes 2,310 students, nested within 17 schools and separately nested within 500+ neighborhoods.
suppressPackageStartupMessages(library(tidyverse))
library(lme4)
library(Hmisc)
scotland <- haven::read_dta("scotland.dta")
glimpse(scotland)
Rows: 2,310
Columns: 11
$ neighid <dbl> 26, 26, 26, 26, 26, 27, 29, 29, 29, 29, 29, 29, 29, 2…
$ schid <dbl> 20, 20, 20, 20, 20, 20, 18, 20, 20, 20, 20, 20, 20, 2…
$ attain <dbl> 1.5177, -1.3276, 0.5610, 1.5177, -1.3276, -0.1325, 0.…
$ p7vrq <dbl> 17.972, -10.028, 2.972, 1.972, -1.028, 3.972, 8.972, …
$ p7read <dbl> 17.134, -27.866, 6.134, 11.134, -0.866, -0.866, 6.134…
$ dadocc <dbl> 16.196, -3.454, 2.316, -9.094, -3.454, -3.454, 16.196…
$ dadunemp <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
$ daded <dbl> 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1,…
$ momed <dbl> 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,…
$ male <dbl> 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1,…
$ deprive <dbl> -0.551, -0.551, -0.551, -0.551, -0.551, 0.147, -0.083…
describe
function from Hmisc
is a great codebook…describe(scotland)
scotland
11 Variables 2310 Observations
-------------------------------------------------------------------------
neighid Format:%12.0g
n missing distinct Info Mean Gmd .05 .10
2310 0 524 1 495.3 305.5 61.0 143.9
.25 .50 .75 .90 .95
240.2 530.0 707.0 808.0 861.0
lowest : 26 27 29 30 31, highest: 1092 1095 1096 1097 1098
-------------------------------------------------------------------------
schid Format:%12.0g
n missing distinct Info Mean Gmd .05 .10
2310 0 17 0.995 10.01 7.174 0 2
.25 .50 .75 .90 .95
5 9 16 19 20
lowest : 0 1 2 3 5, highest: 16 17 18 19 20
Value 0 1 2 3 5 6 7 8 9 10
Frequency 146 22 146 159 155 101 286 112 136 133
Proportion 0.063 0.010 0.063 0.069 0.067 0.044 0.124 0.048 0.059 0.058
Value 13 15 16 17 18 19 20
Frequency 92 190 111 154 91 102 174
Proportion 0.040 0.082 0.048 0.067 0.039 0.044 0.075
-------------------------------------------------------------------------
attain Format:%12.0g
n missing distinct Info Mean Gmd .05 .10
2310 0 14 0.987 0.0934 1.124 -1.3276 -1.3276
.25 .50 .75 .90 .95
-0.5812 0.1582 0.7350 1.5177 1.5177
lowest : -1.3276 -0.5812 -0.3600 -0.1325 0.0293
highest: 0.7350 0.9127 1.1405 1.5177 2.4151
-------------------------------------------------------------------------
p7vrq Format:%12.0g
n missing distinct Info Mean Gmd .05 .10
2310 0 68 0.999 0.5058 11.95 -17.028 -13.028
.25 .50 .75 .90 .95
-7.028 -0.028 7.972 13.972 16.972
lowest : -27.028 -26.028 -25.028 -24.028 -23.028
highest: 35.972 36.972 40.972 41.972 42.972
-------------------------------------------------------------------------
p7read Format:%12.0g
n missing distinct Info Mean Gmd .05 .10
2310 0 61 1 -0.04435 15.8 -23.866 -17.866
.25 .50 .75 .90 .95
-9.866 -0.866 9.134 19.134 24.134
lowest : -31.866 -30.866 -29.866 -28.866 -27.866
highest: 24.134 25.134 26.134 27.134 28.134
-------------------------------------------------------------------------
dadocc Format:%12.0g
n missing distinct Info Mean Gmd
2310 0 7 0.933 -0.4642 12.33
lowest : -23.454 -11.494 -9.094 -3.454 2.316
highest: -9.094 -3.454 2.316 16.196 29.226
Value -23.454 -11.494 -9.094 -3.454 2.316 16.196 29.226
Frequency 91 285 303 884 242 397 108
Proportion 0.039 0.123 0.131 0.383 0.105 0.172 0.047
-------------------------------------------------------------------------
dadunemp Format:%12.0g
n missing distinct Info Sum Mean Gmd
2310 0 2 0.292 252 0.1091 0.1945
-------------------------------------------------------------------------
daded Format:%12.0g
n missing distinct Info Sum Mean Gmd
2310 0 2 0.507 497 0.2152 0.3379
-------------------------------------------------------------------------
momed Format:%12.0g
n missing distinct Info Sum Mean Gmd
2310 0 2 0.56 574 0.2485 0.3736
-------------------------------------------------------------------------
male Format:%12.0g
n missing distinct Info Sum Mean Gmd
2310 0 2 0.749 1109 0.4801 0.4994
-------------------------------------------------------------------------
deprive Format:%12.0g
n missing distinct Info Mean Gmd .05 .10
2310 0 458 1 0.02167 0.6664 -0.8250 -0.6930
.25 .50 .75 .90 .95
-0.3970 -0.0620 0.2957 0.8410 1.1400
lowest : -1.082 -1.048 -1.030 -0.983 -0.975, highest: 2.330 2.419 2.438 2.498 2.959
-------------------------------------------------------------------------
label
functionlabel(scotland$neighid)="Neighborhood ID"
label(scotland$schid)="School ID"
label(scotland$attain)="Student Measure of Educational Attainment"
label(scotland$p7vrq)="Primary 7 Verbal Reasoning Quotient"
label(scotland$p7read)="Primary 7 Reading Test Scores"
label(scotland$dadocc)="School Mean of Dad's Occupation Score on Hope-Goldthorpe Scale"
label(scotland$dadunemp)="Dad Currently Unemployed"
label(scotland$daded)="Dad School After Age 15"
label(scotland$momed)="Mom School After Age 15"
label(scotland$male)="Male"
label(scotland$deprive)="Neighborhood Deprivation Score (Poverty, Health, and Housing)"
glimpse(scot.clean)
Rows: 2,310
Columns: 15
$ neighid <labelled> 26, 26, 26, 26, 26, 27, 29, 29, 29, 29, 29, …
$ schid <labelled> 20, 20, 20, 20, 20, 20, 18, 20, 20, 20, 20, …
$ attain <labelled> 1.5177, -1.3276, 0.5610, 1.5177, -1.3276, -0…
$ p7vrq <labelled> 17.972, -10.028, 2.972, 1.972, -1.028, 3.972…
$ p7read <labelled> 17.134, -27.866, 6.134, 11.134, -0.866, -0.8…
$ dadocc <labelled> 16.196, -3.454, 2.316, -9.094, -3.454, -3.45…
$ dadunemp <labelled> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
$ daded <labelled> 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,…
$ momed <labelled> 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0,…
$ male <labelled> 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1,…
$ deprive <labelled> -0.551, -0.551, -0.551, -0.551, -0.551, 0.14…
$ dadunemp.fac <fct> No, No, No, No, No, No, No, No, No, No, No, No, N…
$ daded.fac <fct> No, No, No, No, No, No, Yes, No, No, No, No, No, …
$ momed.fac <fct> No, No, No, No, No, Yes, Yes, No, No, No, No, No,…
$ male.fac <fct> Yes, No, No, No, Yes, No, Yes, No, Yes, No, No, N…
describe(scot.clean)
scot.clean
15 Variables 2310 Observations
-------------------------------------------------------------------------
neighid : Neighborhood ID Format:%12.0g
n missing distinct Info Mean Gmd .05 .10
2310 0 524 1 495.3 305.5 61.0 143.9
.25 .50 .75 .90 .95
240.2 530.0 707.0 808.0 861.0
lowest : 26 27 29 30 31, highest: 1092 1095 1096 1097 1098
-------------------------------------------------------------------------
schid : School ID Format:%12.0g
n missing distinct Info Mean Gmd .05 .10
2310 0 17 0.995 10.01 7.174 0 2
.25 .50 .75 .90 .95
5 9 16 19 20
lowest : 0 1 2 3 5, highest: 16 17 18 19 20
Value 0 1 2 3 5 6 7 8 9 10
Frequency 146 22 146 159 155 101 286 112 136 133
Proportion 0.063 0.010 0.063 0.069 0.067 0.044 0.124 0.048 0.059 0.058
Value 13 15 16 17 18 19 20
Frequency 92 190 111 154 91 102 174
Proportion 0.040 0.082 0.048 0.067 0.039 0.044 0.075
-------------------------------------------------------------------------
attain : Student Measure of Educational Attainment Format:%12.0g
n missing distinct Info Mean Gmd .05 .10
2310 0 14 0.987 0.0934 1.124 -1.3276 -1.3276
.25 .50 .75 .90 .95
-0.5812 0.1582 0.7350 1.5177 1.5177
lowest : -1.3276 -0.5812 -0.3600 -0.1325 0.0293
highest: 0.7350 0.9127 1.1405 1.5177 2.4151
-------------------------------------------------------------------------
p7vrq : Primary 7 Verbal Reasoning Quotient Format:%12.0g
n missing distinct Info Mean Gmd .05 .10
2310 0 68 0.999 0.5058 11.95 -17.028 -13.028
.25 .50 .75 .90 .95
-7.028 -0.028 7.972 13.972 16.972
lowest : -27.028 -26.028 -25.028 -24.028 -23.028
highest: 35.972 36.972 40.972 41.972 42.972
-------------------------------------------------------------------------
p7read : Primary 7 Reading Test Scores Format:%12.0g
n missing distinct Info Mean Gmd .05 .10
2310 0 61 1 -0.04435 15.8 -23.866 -17.866
.25 .50 .75 .90 .95
-9.866 -0.866 9.134 19.134 24.134
lowest : -31.866 -30.866 -29.866 -28.866 -27.866
highest: 24.134 25.134 26.134 27.134 28.134
-------------------------------------------------------------------------
dadocc : School Mean of Dad's Occupation Score on Hope-Goldthorpe Scale Format:%12.0g
n missing distinct Info Mean Gmd
2310 0 7 0.933 -0.4642 12.33
lowest : -23.454 -11.494 -9.094 -3.454 2.316
highest: -9.094 -3.454 2.316 16.196 29.226
Value -23.454 -11.494 -9.094 -3.454 2.316 16.196 29.226
Frequency 91 285 303 884 242 397 108
Proportion 0.039 0.123 0.131 0.383 0.105 0.172 0.047
-------------------------------------------------------------------------
dadunemp : Dad Currently Unemployed Format:%12.0g
n missing distinct Info Sum Mean Gmd
2310 0 2 0.292 252 0.1091 0.1945
-------------------------------------------------------------------------
daded : Dad School After Age 15 Format:%12.0g
n missing distinct Info Sum Mean Gmd
2310 0 2 0.507 497 0.2152 0.3379
-------------------------------------------------------------------------
momed : Mom School After Age 15 Format:%12.0g
n missing distinct Info Sum Mean Gmd
2310 0 2 0.56 574 0.2485 0.3736
-------------------------------------------------------------------------
male : Male Format:%12.0g
n missing distinct Info Sum Mean Gmd
2310 0 2 0.749 1109 0.4801 0.4994
-------------------------------------------------------------------------
deprive : Neighborhood Deprivation Score (Poverty, Health, and Housing) Format:%12.0g
n missing distinct Info Mean Gmd .05 .10
2310 0 458 1 0.02167 0.6664 -0.8250 -0.6930
.25 .50 .75 .90 .95
-0.3970 -0.0620 0.2957 0.8410 1.1400
lowest : -1.082 -1.048 -1.030 -0.983 -0.975, highest: 2.330 2.419 2.438 2.498 2.959
-------------------------------------------------------------------------
dadunemp.fac : Dad Currently Unemployed
n missing distinct
2310 0 2
Value No Yes
Frequency 2058 252
Proportion 0.891 0.109
-------------------------------------------------------------------------
daded.fac : Dad School After Age 15
n missing distinct
2310 0 2
Value No Yes
Frequency 1813 497
Proportion 0.785 0.215
-------------------------------------------------------------------------
momed.fac : Mom School After Age 15
n missing distinct
2310 0 2
Value No Yes
Frequency 1736 574
Proportion 0.752 0.248
-------------------------------------------------------------------------
male.fac : Male
n missing distinct
2310 0 2
Value No Yes
Frequency 1201 1109
Proportion 0.52 0.48
-------------------------------------------------------------------------
attain
ggplot(data = scot.clean, mapping = aes(x = attain)) +
geom_histogram(bins = 20) +
labs(title = "Distribution of Educational Attainment Scores",
x = "Standardized Educational Attainment Score") +
theme_minimal()
ggplot(data = scot.clean, mapping = aes(x = dadocc)) +
geom_histogram(bins = 30) +
labs(title = "Distribution of (School Mean) of Dad's Occupation Scores",
x = "Standardized Educational Attainment Score") +
theme_minimal()
ggplot(data = scot.clean, mapping = aes(x = deprive)) +
geom_histogram(bins = 50) +
labs(title = "Distribution of Neighborhood Context Scores",
x = "Standardized Neighborhood Deprivation Score") +
theme_minimal()
model.null.school <- lmer(attain ~ (1|schid), REML = FALSE, data = scot.clean)
summary(model.null.school)
Linear mixed model fit by maximum likelihood ['lmerMod']
Formula: attain ~ (1 | schid)
Data: scot.clean
AIC BIC logLik deviance df.resid
6448.2 6465.4 -3221.1 6442.2 2307
Scaled residuals:
Min 1Q Median 3Q Max
-2.12306 -0.70227 0.00178 0.60966 2.81884
Random effects:
Groups Name Variance Std.Dev.
schid (Intercept) 0.08874 0.2979
Residual 0.93441 0.9666
Number of obs: 2310, groups: schid, 17
Fixed effects:
Estimate Std. Error t value
(Intercept) 0.08227 0.07568 1.087
icc.school <- 0.08874/(0.08874 + 0.93441)
icc.school
[1] 0.08673215
model.null.neigh <- lmer(attain ~ (1|neighid), REML = FALSE, data = scot.clean)
summary(model.null.neigh)
Linear mixed model fit by maximum likelihood ['lmerMod']
Formula: attain ~ (1 | neighid)
Data: scot.clean
AIC BIC logLik deviance df.resid
6422.0 6439.2 -3208.0 6416.0 2307
Scaled residuals:
Min 1Q Median 3Q Max
-2.33164 -0.65532 0.01513 0.58177 2.96174
Random effects:
Groups Name Variance Std.Dev.
neighid (Intercept) 0.2015 0.4489
Residual 0.8044 0.8969
Number of obs: 2310, groups: neighid, 524
Fixed effects:
Estimate Std. Error t value
(Intercept) 0.08202 0.02844 2.885
model.null.crossed <- lmer(attain ~ (1|schid) + (1|neighid), REML = FALSE, data = scot.clean)
summary(model.null.crossed)
Linear mixed model fit by maximum likelihood ['lmerMod']
Formula: attain ~ (1 | schid) + (1 | neighid)
Data: scot.clean
AIC BIC logLik deviance df.resid
6364.7 6387.7 -3178.4 6356.7 2306
Scaled residuals:
Min 1Q Median 3Q Max
-2.36115 -0.69814 0.01345 0.58371 2.92697
Random effects:
Groups Name Variance Std.Dev.
neighid (Intercept) 0.14122 0.3758
schid (Intercept) 0.07545 0.2747
Residual 0.79902 0.8939
Number of obs: 2310, groups: neighid, 524; schid, 17
Fixed effects:
Estimate Std. Error t value
(Intercept) 0.07535 0.07222 1.043
icc.neigh.crossed <- 0.14122/(0.14122 + 0.07545 + 0.79902)
icc.neigh.crossed
[1] 0.1390385
icc.school.crossed <- 0.07545/(0.14122 + 0.07545 + 0.79902)
icc.school.crossed
[1] 0.07428448
model.1 <- lmer(attain ~ male.fac + (1|schid) + (1|neighid), REML = FALSE, data = scot.clean)
summary(model.1)
Linear mixed model fit by maximum likelihood ['lmerMod']
Formula: attain ~ male.fac + (1 | schid) + (1 | neighid)
Data: scot.clean
AIC BIC logLik deviance df.resid
6360.6 6389.3 -3175.3 6350.6 2305
Scaled residuals:
Min 1Q Median 3Q Max
-2.41396 -0.69992 0.00977 0.58312 2.97855
Random effects:
Groups Name Variance Std.Dev.
neighid (Intercept) 0.14113 0.3757
schid (Intercept) 0.07439 0.2727
Residual 0.79681 0.8926
Number of obs: 2310, groups: neighid, 524; schid, 17
Fixed effects:
Estimate Std. Error t value
(Intercept) 0.12206 0.07421 1.645
male.facYes -0.09656 0.03898 -2.477
Correlation of Fixed Effects:
(Intr)
male.facYes -0.254
dadocc
)…model.2 <- lmer(attain ~ male.fac + dadocc + (1|schid) + (1|neighid), REML = FALSE, data = scot.clean)
summary(model.2)
Linear mixed model fit by maximum likelihood ['lmerMod']
Formula: attain ~ male.fac + dadocc + (1 | schid) + (1 | neighid)
Data: scot.clean
AIC BIC logLik deviance df.resid
6146.5 6181.0 -3067.2 6134.5 2304
Scaled residuals:
Min 1Q Median 3Q Max
-2.48797 -0.69407 0.01097 0.59325 3.10701
Random effects:
Groups Name Variance Std.Dev.
neighid (Intercept) 0.07413 0.2723
schid (Intercept) 0.04277 0.2068
Residual 0.76119 0.8725
Number of obs: 2310, groups: neighid, 524; schid, 17
Fixed effects:
Estimate Std. Error t value
(Intercept) 0.139052 0.058591 2.373
male.facYes -0.093390 0.037575 -2.485
dadocc 0.025708 0.001662 15.472
Correlation of Fixed Effects:
(Intr) ml.fcY
male.facYes -0.309
dadocc 0.012 0.008
deprive
)…model.3 <- lmer(attain ~ male.fac + deprive + (1|schid) + (1|neighid), REML = FALSE, data = scot.clean)
summary(model.3)
Linear mixed model fit by maximum likelihood ['lmerMod']
Formula: attain ~ male.fac + deprive + (1 | schid) + (1 | neighid)
Data: scot.clean
AIC BIC logLik deviance df.resid
6238.1 6272.5 -3113.0 6226.1 2304
Scaled residuals:
Min 1Q Median 3Q Max
-2.4480 -0.6746 0.0031 0.5900 3.5529
Random effects:
Groups Name Variance Std.Dev.
neighid (Intercept) 0.06053 0.2460
schid (Intercept) 0.03840 0.1960
Residual 0.80436 0.8969
Number of obs: 2310, groups: neighid, 524; schid, 17
Fixed effects:
Estimate Std. Error t value
(Intercept) 0.14566 0.05638 2.584
male.facYes -0.10269 0.03843 -2.672
deprive -0.46836 0.03820 -12.260
Correlation of Fixed Effects:
(Intr) ml.fcY
male.facYes -0.329
deprive -0.023 0.009
model.4 <- lmer(attain ~ male.fac + deprive + dadocc + (1|schid) + (1|neighid), REML = FALSE, data = scot.clean)
summary(model.4)
Linear mixed model fit by maximum likelihood ['lmerMod']
Formula:
attain ~ male.fac + deprive + dadocc + (1 | schid) + (1 | neighid)
Data: scot.clean
AIC BIC logLik deviance df.resid
6055.3 6095.6 -3020.7 6041.3 2303
Scaled residuals:
Min 1Q Median 3Q Max
-2.6406 -0.6716 0.0152 0.6010 3.5775
Random effects:
Groups Name Variance Std.Dev.
neighid (Intercept) 0.03005 0.1733
schid (Intercept) 0.02313 0.1521
Residual 0.76444 0.8743
Number of obs: 2310, groups: neighid, 524; schid, 17
Fixed effects:
Estimate Std. Error t value
(Intercept) 0.15565 0.04635 3.358
male.facYes -0.09836 0.03709 -2.652
deprive -0.36485 0.03540 -10.306
dadocc 0.02330 0.00166 14.037
Correlation of Fixed Effects:
(Intr) ml.fcY depriv
male.facYes -0.386
deprive -0.022 0.010
dadocc 0.008 0.011 0.224
male.fac
at neighborhood level and at school level…model.5 <- lmer(attain ~ male.fac + deprive + dadocc + (male.fac|schid) + (male.fac|neighid), REML = FALSE, data = scot.clean)
Model failed to converge with max|grad| = 0.00226165 (tol = 0.002, component 1)
summary(model.5)
Linear mixed model fit by maximum likelihood ['lmerMod']
Formula:
attain ~ male.fac + deprive + dadocc + (male.fac | schid) + (male.fac |
neighid)
Data: scot.clean
AIC BIC logLik deviance df.resid
6061.9 6125.1 -3020.0 6039.9 2299
Scaled residuals:
Min 1Q Median 3Q Max
-2.6547 -0.6662 0.0194 0.6131 3.5925
Random effects:
Groups Name Variance Std.Dev. Corr
neighid (Intercept) 0.035545 0.18853
male.facYes 0.014163 0.11901 -0.37
schid (Intercept) 0.030597 0.17492
male.facYes 0.008165 0.09036 -0.60
Residual 0.758356 0.87084
Number of obs: 2310, groups: neighid, 524; schid, 17
Fixed effects:
Estimate Std. Error t value
(Intercept) 0.154424 0.051225 3.015
male.facYes -0.095600 0.043996 -2.173
deprive -0.364446 0.035435 -10.285
dadocc 0.023301 0.001659 14.042
Correlation of Fixed Effects:
(Intr) ml.fcY depriv
male.facYes -0.568
deprive -0.022 0.011
dadocc 0.005 0.013 0.225
optimizer (nloptwrap) convergence code: 0 (OK)
Model failed to converge with max|grad| = 0.00226165 (tol = 0.002, component 1)
lmerTest::rand(model.5)
ANOVA-like table for random-effects: Single term deletions
Model:
attain ~ male.fac + deprive + dadocc + (male.fac | schid) + (male.fac | neighid)
npar logLik AIC LRT Df
<none> 11 -3020.0 6061.9
male.fac in (male.fac | schid) 9 -3020.5 6059.1 1.11528 2
male.fac in (male.fac | neighid) 9 -3020.0 6058.1 0.11791 2
Pr(>Chisq)
<none>
male.fac in (male.fac | schid) 0.5726
male.fac in (male.fac | neighid) 0.9427
model.6 <- lmer(attain ~ male.fac + deprive + dadocc + deprive:dadocc + (1|schid) + (1|neighid), REML = FALSE, data = scot.clean)
summary(model.6)
Linear mixed model fit by maximum likelihood ['lmerMod']
Formula: attain ~ male.fac + deprive + dadocc + deprive:dadocc + (1 |
schid) + (1 | neighid)
Data: scot.clean
AIC BIC logLik deviance df.resid
6046.5 6092.5 -3015.3 6030.5 2302
Scaled residuals:
Min 1Q Median 3Q Max
-2.7227 -0.6989 0.0235 0.6097 3.5774
Random effects:
Groups Name Variance Std.Dev.
neighid (Intercept) 0.02719 0.1649
schid (Intercept) 0.02192 0.1481
Residual 0.76333 0.8737
Number of obs: 2310, groups: neighid, 524; schid, 17
Fixed effects:
Estimate Std. Error t value
(Intercept) 0.140420 0.045710 3.072
male.facYes -0.105781 0.037087 -2.852
deprive -0.374940 0.035199 -10.652
dadocc 0.022321 0.001686 13.243
deprive:dadocc -0.009277 0.002808 -3.303
Correlation of Fixed Effects:
(Intr) ml.fcY depriv dadocc
male.facYes -0.383
deprive -0.013 0.014
dadocc 0.027 0.022 0.237
depriv:ddcc 0.104 0.060 0.082 0.187
library(modelsummary)
library(broom.mixed)
models <- list(model.null.neigh, model.null.school, model.null.crossed, model.1, model.2, model.3, model.4, model.5, model.6)
modelsummary(models, output = "markdown")
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | Model 7 | Model 8 | Model 9 | |
---|---|---|---|---|---|---|---|---|---|
(Intercept) | 0.082 | 0.082 | 0.075 | 0.122 | 0.139 | 0.146 | 0.156 | 0.154 | 0.140 |
(0.028) | (0.076) | (0.072) | (0.074) | (0.059) | (0.056) | (0.046) | (0.051) | (0.046) | |
sd__(Intercept) | 0.449 | 0.298 | |||||||
sd__Observation | 0.897 | 0.967 | |||||||
neighid sd__(Intercept) | 0.376 | 0.376 | 0.272 | 0.246 | 0.173 | 0.189 | 0.165 | ||
schid sd__(Intercept) | 0.275 | 0.273 | 0.207 | 0.196 | 0.152 | 0.175 | 0.148 | ||
Residual sd__Observation | 0.894 | 0.893 | 0.872 | 0.897 | 0.874 | 0.871 | 0.874 | ||
male.facYes | -0.097 | -0.093 | -0.103 | -0.098 | -0.096 | -0.106 | |||
(0.039) | (0.038) | (0.038) | (0.037) | (0.044) | (0.037) | ||||
dadocc | 0.026 | 0.023 | 0.023 | 0.022 | |||||
(0.002) | (0.002) | (0.002) | (0.002) | ||||||
deprive | -0.468 | -0.365 | -0.364 | -0.375 | |||||
(0.038) | (0.035) | (0.035) | (0.035) | ||||||
neighid cor__(Intercept).male.facYes | -0.375 | ||||||||
neighid sd__male.facYes | 0.119 | ||||||||
schid cor__(Intercept).male.facYes | -0.602 | ||||||||
schid sd__male.facYes | 0.090 | ||||||||
deprive × dadocc | -0.009 | ||||||||
(0.003) | |||||||||
AIC | 6422.0 | 6448.2 | 6364.7 | 6360.6 | 6146.5 | 6238.1 | 6055.3 | 6061.9 | 6046.5 |
BIC | 6439.2 | 6465.4 | 6387.7 | 6389.3 | 6181.0 | 6272.5 | 6095.6 | 6125.1 | 6092.5 |
Log.Lik. | -3207.985 | -3221.082 | -3178.356 | -3175.291 | -3067.244 | -3113.035 | -3020.674 | -3019.968 | -3015.257 |