Import Data

library(rio)
library("cluster")
Fulldata <- read.csv("/Users/Lorraine/Desktop/Project 5(1).csv")
library(factoextra)
## Loading required package: ggplot2
## Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa
Uni <- subset(Fulldata, select = c(YEAR, TYPE, UNDER, VARS, NCAA, MASCOT))

Hierarchical Cluster

dist.eucl <- dist(Uni, method = "euclidean")
## Warning in dist(Uni, method = "euclidean"): NAs introduced by coercion
dist.eucl
##             1          2          3          4          5          6
## 2   31.407006                                                       
## 3   28.982753  56.794366                                            
## 4   21.661025  42.213742  17.355115                                 
## 5   28.607691   5.366563  53.171421  38.277931                      
## 6   22.636254  42.099881  23.773935  18.000000  40.114835           
## 7   69.713700  39.587877  95.912460  81.188669  44.063590  78.376017
## 8   87.963629 114.797213  59.819729  73.818697 111.509641  74.578817
## 9   27.121947   7.014271  54.254954  41.133928   9.099451  39.889848
## 10  50.414284  77.907638  21.577766  36.545862  74.215901  41.323117
## 11  14.979987  19.068298  38.930708  25.408660  14.979987  29.678275
## 12  35.445733  60.527680   9.859006  18.718974  56.423399  29.718681
## 13  20.287927  28.670542  33.424542  20.079841  26.765650  14.449913
## 14  53.001887  78.894867  25.099801  38.042082  75.569835  39.648455
## 15  29.939940  51.252317  18.428239  17.731328  48.707289  10.620734
## 16  60.329097  85.479822  34.170162  46.294708  82.595399  44.389188
## 17  21.661025  41.698921  21.661025  14.696938  39.329378   3.464102
## 18  20.493902  44.145215  15.798734  11.009087  41.221354   8.831761
## 19  18.718974  41.655732  17.111400   6.099180  37.469988  21.326040
## 20  22.899782  34.205263  39.023070  32.236625  34.415113  18.264720
## 21  35.156792  50.864526  32.422215  29.738863  49.815660  13.371612
## 22  13.813037  21.990907  35.445733  21.410278  17.899721  26.381812
## 23  31.349641  51.158577  20.985709  19.036806  48.756538  10.733126
##             7          8          9         10         11         12
## 2                                                                   
## 3                                                                   
## 4                                                                   
## 5                                                                   
## 6                                                                   
## 7                                                                   
## 8  152.585714                                                       
## 9   42.694262 112.649900                                            
## 10 116.869158  39.038443  75.649190                                 
## 11  58.491025  98.144791  17.181385  60.209634                      
## 12  99.745677  57.456070  58.950827  19.318385  42.680206           
## 13  65.038450  87.560265  27.756080  52.865868  19.411337  37.629775
## 14 116.956402  35.949965  76.931138   9.979980  62.373071  23.443549
## 15  88.038628  64.631262  49.501515  32.255232  37.373788  22.768399
## 16 122.449990  30.731092  83.455377  19.989997  70.022853  33.728326
## 17  78.696887  73.981079  39.708941  39.814570  28.270126  27.099815
## 18  82.282440  70.806779  41.928511  35.088460  28.628657  21.605555
## 19  81.107336  75.641259  40.054962  37.341666  23.571169  19.193749
## 20  66.118076  90.126578  30.436820  57.664547  28.354894  46.346521
## 21  83.642095  72.315973  49.002041  44.819639  41.612498  37.773006
## 22  61.530480  94.392796  20.493902  56.593286   4.098780  38.976916
## 23  87.409382  65.461439  49.646752  34.064644  38.042082  24.787093
##            13         14         15         16         17         18
## 2                                                                   
## 3                                                                   
## 4                                                                   
## 5                                                                   
## 6                                                                   
## 7                                                                   
## 8                                                                   
## 9                                                                   
## 10                                                                  
## 11                                                                  
## 12                                                                  
## 13                                                                  
## 14  52.007692                                                       
## 15  23.134390  29.597297                                            
## 16  57.570826  10.954451  34.467376                                 
## 17  14.028542  38.605699   9.919677  44.063590                      
## 18  18.231840  35.105555   9.859006  41.698921   6.292853           
## 19  22.742032  40.234314  21.990907  49.050994  18.297541  13.769532
## 20  17.320508  56.370205  28.523674  60.119880  20.493902  24.955961
## 21  23.622024  40.264128  15.059880  41.698921  15.987495  20.668817
## 22  16.613248  58.562787  33.621422  66.217822  24.738634  24.955961
## 23  22.715633  30.789609   2.683282  35.088460  10.392305  11.644741
##            19         20         21         22
## 2                                             
## 3                                             
## 4                                             
## 5                                             
## 6                                             
## 7                                             
## 8                                             
## 9                                             
## 10                                            
## 11                                            
## 12                                            
## 13                                            
## 14                                            
## 15                                            
## 16                                            
## 17                                            
## 18                                            
## 19                                            
## 20  33.603571                                 
## 21  33.905752  22.423202                      
## 22  19.929877  27.232334  38.559046           
## 23  23.672769  28.354894  13.371612  34.292856
#Hierarchical Clustering -- Agglomerative with Dendrogram
res.hc <- hclust(d = dist.eucl, method = "ward.D2")
fviz_dend(res.hc, cex = 0.5)

fviz_dend(res.hc, k = 3, kcolors = 3, palette = "simpsons", cex = 0.5)

K-Means cluster analysis

#5 cluster
Uni$UNDER <- as.numeric(Uni$UNDER)
fviz_nbclust(Uni, kmeans, k.max = 5, method = "gap_stat")

km.res <- kmeans(Uni, 5, nstart = 25)
fviz_cluster(km.res, data = Uni, k = 5, kcolors = 5, palette = "uchicago", cex = 0.5)
## Warning: Duplicated aesthetics after name standardisation: size

km.res1 <- kmeans(Uni, 3, nstart = 25)
fviz_cluster(km.res1, data = Uni, k = 3, kcolors = 3, palette = "uchicago", cex = 0.5)
## Warning: Duplicated aesthetics after name standardisation: size

km.res2 <- kmeans(Uni, 4, nstart = 25)
fviz_cluster(km.res2, data = Uni, k = 4, kcolors = 4, palette = "uchicago", cex = 0.5)
## Warning: Duplicated aesthetics after name standardisation: size